Skip to content

Instantly share code, notes, and snippets.

View roachsinai's full-sized avatar
🌴
On vacation

RoachZhao roachsinai

🌴
On vacation
View GitHub Profile
@roachsinai
roachsinai / .cpp
Created May 6, 2024 12:45 — forked from DongHeZheng/.cpp
One method of scaling, rotating and cropping image by using OpenCV
void imageScaleAndRotate(const cv::Mat &src, cv::Mat &out, double scale, double roll) {
// scaling
cv::Mat imSmall;
cv::resize(src, imSmall, cv::Size(), scale, scale);
// prepare for rotating
int width = imSmall.cols, height = imSmall.rows;
int diagonal = int(sqrt(height * height + width * width));
int offsetX = (diagonal - width) / 2, offsetY = (diagonal - height) / 2;
#include <cstddef>
#include <cstdlib>
template <typename R, auto getter, auto setter, size_t (*offset)()>
struct property {
inline R *self() {
return reinterpret_cast<R *>(reinterpret_cast<size_t>(this) - offset());
}
inline operator auto() { return (self()->*getter)(); }
inline void operator=(auto t) { (self()->*setter)(t); }
@roachsinai
roachsinai / How_rpath_works
Last active March 15, 2024 09:39 — forked from ardrabczyk/Makefile
Shared object with rpath set
all:
cc -shared -fPIC lib_one.c lib_one.h -o libone.so
cc -shared -fPIC lib_two.c lib_two.h -o libtwo.so -L. -lone -Wl,-rpath=libs
mkdir -p libs
mv libone.so libs
# -L. 是针对编译时的,使得链接器(ld)可以在 gcc 编译时找到 libtwo.so 让 name loopup 成功
# -rpath=. 是针对运行时的,使得在执行 main 时让动态链接器(ld.so)可以找到 main 依赖的 so
# Wl 表示后面的是一个链接器选项(针对 ld,而不是 gcc 的选项)
cc main.c -o main -L. -ltwo -Wl,-rpath=.
@roachsinai
roachsinai / mkdir_p.c
Created June 30, 2022 07:55 — forked from ChisholmKyle/mkdir_p.c
Simple recursive mkdir in C
/* recursive mkdir based on
http://nion.modprobe.de/blog/archives/357-Recursive-directory-creation.html
*/
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <string.h>
#define PATH_MAX_STRING_SIZE 256
#!/bin/bash
## This gist contains instructions about cuda v11.2 and cudnn8.1 installation in Ubuntu 20.04 for Pytorch 1.8 & Tensorflow 2.7.0
### steps ####
# verify the system has a cuda-capable gpu
# download and install the nvidia cuda toolkit and cudnn
# setup environmental variables
# verify the installation
###
#include <assert.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <windows.h> // 各种位图数据结构
class Converter
{
public:
Converter() : pixels_(NULL), width_(0), height_(0) {}
@roachsinai
roachsinai / n.sh
Created July 15, 2020 06:45 — forked from dagelf/n.sh
Netspeed 2 - gets Linux network interface throughput speed from /proc/net/dev; busybox bash/awk/sed compatible, good for embedded OpenWRT or UBNT / Ubiquiti, etc routers
#!/bin/sh
# Copy the contents of this file to the clipboard, then get a terminal open on your device and enter:
# $ cat > n.sh
# [Ctrl+V] or Right Click, Paste. Then [Ctrl+D].
# chmod +x n.sh
# To run: ./n.sh eth0
SLP=1 # display / sleep interval
DEVICE=$1
IS_GOOD=0
for GOOD_DEVICE in `grep \: /proc/net/dev | awk -F: '{print $1}'`; do
name: "YOLONET"
layer {
name: "data"
type: "Input"
top: "data"
input_param { shape: { dim: 1 dim: 3 dim: 416 dim: 416 } }
}
layer {
name: "conv1"
type: "Convolution"

WORK IN PROGRESS

PyTorch Internals Part II - The Build System

In the first post I explained how we generate a torch.Tensor object that you can use in your Python interpreter. Next, I will explore the build system for PyTorch. The PyTorch codebase has a variety of components:

  • The core Torch libraries: TH, THC, THNN, THCUNN
  • Vendor libraries: CuDNN, NCCL
  • Python Extension libraries
  • Additional third-party libraries: NumPy, MKL, LAPACK