Skip to content

Instantly share code, notes, and snippets.

View roachsinai's full-sized avatar
🌴
On vacation

RoachZhao roachsinai

🌴
On vacation
View GitHub Profile
#!/bin/bash
# This script is used to complete the output of the docker stats command.
# The docker stats command does not compute the total amount of resources (RAM or CPU)
# Get the total amount of RAM, assumes there are at least 1024*1024 KiB, therefore > 1 GiB
#HOST_MEM_TOTAL=$(grep MemTotal /proc/meminfo | awk '{print $2/1024/1024}')
DOCKER_MEM_TOTAL=$(docker info | grep Memory | awk '{print $3}' | grep -o '[0-9]*\.[0-9]*')
# Get the output of the docker stat command. Will be displayed at the end
@roachsinai
roachsinai / mkdir_p.c
Created June 30, 2022 07:55 — forked from Reobos/mkdir_p.c
Simple recursive mkdir in C
/* recursive mkdir based on
http://nion.modprobe.de/blog/archives/357-Recursive-directory-creation.html
*/
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <string.h>
#define PATH_MAX_STRING_SIZE 256
@roachsinai
roachsinai / time_counter.py
Created April 8, 2022 11:30
一个实用简单的 python 时间统计函数 https://zhuanlan.zhihu.com/p/404204964
import time
import warnings
from contextlib import contextmanager
import torch
class TimeCounter:
names = dict()
#!/bin/bash
## This gist contains instructions about cuda v11.2 and cudnn8.1 installation in Ubuntu 20.04 for Pytorch 1.8 & Tensorflow 2.7.0
### steps ####
# verify the system has a cuda-capable gpu
# download and install the nvidia cuda toolkit and cudnn
# setup environmental variables
# verify the installation
###
#include <assert.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <windows.h> // 各种位图数据结构
class Converter
{
public:
Converter() : pixels_(NULL), width_(0), height_(0) {}
@roachsinai
roachsinai / n.sh
Created July 15, 2020 06:45 — forked from dagelf/n.sh
Netspeed 2 - gets Linux network interface throughput speed from /proc/net/dev; busybox bash/awk/sed compatible, good for embedded OpenWRT or UBNT / Ubiquiti, etc routers
#!/bin/sh
# Copy the contents of this file to the clipboard, then get a terminal open on your device and enter:
# $ cat > n.sh
# [Ctrl+V] or Right Click, Paste. Then [Ctrl+D].
# chmod +x n.sh
# To run: ./n.sh eth0
SLP=1 # display / sleep interval
DEVICE=$1
IS_GOOD=0
for GOOD_DEVICE in `grep \: /proc/net/dev | awk -F: '{print $1}'`; do
name: "cornernet"
input: "blob1"
input_dim: 1
input_dim: 3
input_dim: 511
input_dim: 511
layer {
name: "conv1"
type: "Convolution"
bottom: "blob1"
name: "YOLONET"
layer {
name: "data"
type: "Input"
top: "data"
input_param { shape: { dim: 1 dim: 3 dim: 416 dim: 416 } }
}
layer {
name: "conv1"
type: "Convolution"
name: "VGG_coco_SSD_300x300_train"
layer {
name: "data"
type: "AnnotatedData"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {

WORK IN PROGRESS

PyTorch Internals Part II - The Build System

In the first post I explained how we generate a torch.Tensor object that you can use in your Python interpreter. Next, I will explore the build system for PyTorch. The PyTorch codebase has a variety of components:

  • The core Torch libraries: TH, THC, THNN, THCUNN
  • Vendor libraries: CuDNN, NCCL
  • Python Extension libraries
  • Additional third-party libraries: NumPy, MKL, LAPACK