Last active
October 4, 2024 07:13
-
-
Save robcarver17/3d0f13e49daea396b209a19c6230966f to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from systems.provided.futures_chapter15.basesystem import * | |
import numpy as np | |
from syscore.algos import robust_vol_calc | |
## test kurtosis AND skew with trading rules | |
# The trading rules | |
def factor_trading_rule(demean_factor_value, smooth=90): | |
vol =robust_vol_calc(demean_factor_value) | |
normalised_factor_value = demean_factor_value / vol | |
smoothed_normalised_factor_value = normalised_factor_value.ewm(span=smooth).mean() | |
return smoothed_normalised_factor_value | |
def conditioned_factor_trading_rule(demean_factor_value, condition_demean_factor_value, smooth=90): | |
vol = robust_vol_calc(demean_factor_value) | |
normalised_factor_value = demean_factor_value / vol | |
sign_condition = condition_demean_factor_value.apply(np.sign) | |
sign_condition_resample = sign_condition.reindex(normalised_factor_value.index).ffill() | |
conditioned_factor = normalised_factor_value *sign_condition_resample | |
smoothed_conditioned_factor = conditioned_factor.ewm(span=smooth).mean() | |
return smoothed_conditioned_factor | |
list_of_lookbacks=[7,14,30,90,180,365] | |
temp_system = futures_system() | |
existing_trading_rules = temp_system.config.trading_rules | |
all_trading_rules = existing_trading_rules | |
temp_config = temp_system.config | |
from systems.forecasting import TradingRule | |
for lookback_days in list_of_lookbacks: | |
smooth = int(np.ceil(lookback_days/4.0)) | |
# The skew rules | |
skew_abs = TradingRule(factor_trading_rule, data=['rawdata.get_demeanded_factor_value'], | |
other_args=dict(smooth = smooth, | |
_factor_name="neg_skew", | |
_demean_method="historic_average_factor_value_all_assets", | |
_lookback_days = lookback_days)) | |
all_trading_rules["skew_abs_%d" % lookback_days] = skew_abs | |
skew_ts = TradingRule(factor_trading_rule, data=['rawdata.get_demeanded_factor_value'], | |
other_args=dict(smooth = smooth, | |
_factor_name="neg_skew", | |
_demean_method="average_factor_value_for_instrument", | |
_lookback_days = lookback_days)) | |
all_trading_rules["skew_ts_%d" % lookback_days] = skew_ts | |
skew_cs = TradingRule(factor_trading_rule, data=['rawdata.get_demeanded_factor_value'], | |
other_args=dict(smooth = smooth, | |
_factor_name="neg_skew", | |
_demean_method="current_average_factor_values_over_all_assets", | |
_lookback_days = lookback_days)) | |
all_trading_rules["skew_cs_%d" % lookback_days] = skew_cs | |
skew_rv = TradingRule(factor_trading_rule, data=['rawdata.get_demeanded_factor_value'], | |
other_args=dict(smooth = smooth, | |
_factor_name="neg_skew", | |
_demean_method="average_factor_value_in_asset_class_for_instrument", | |
_lookback_days = lookback_days)) | |
all_trading_rules["skew_rv_%d" % lookback_days] = skew_rv | |
# The skew conditioned on kurtosis rules | |
#{(skew - Average skew) / Sigma [Skew]} | |
#* sign (Kurtosis - average kurtosis) | |
skewK_abs = TradingRule(conditioned_factor_trading_rule, data=['rawdata.get_demeanded_factor_value', | |
'rawdata.get_demeanded_factor_value'], | |
other_args=dict(smooth = smooth, _factor_name="skew", | |
_demean_method="historic_average_factor_value_all_assets", | |
_lookback_days = lookback_days, | |
__factor_name="kurtosis", | |
__demean_method="historic_average_factor_value_all_assets", | |
__lookback_days = lookback_days | |
)) | |
all_trading_rules["skewK_abs_%d" % lookback_days] = skewK_abs | |
skewK_ts = TradingRule(conditioned_factor_trading_rule, data=['rawdata.get_demeanded_factor_value', | |
'rawdata.get_demeanded_factor_value'], | |
other_args=dict(smooth = smooth, _factor_name="skew", | |
_demean_method="average_factor_value_for_instrument", | |
_lookback_days = lookback_days, | |
__factor_name="kurtosis", | |
__demean_method="average_factor_value_for_instrument", | |
__lookback_days = lookback_days | |
)) | |
all_trading_rules["skewK_ts_%d" % lookback_days] = skewK_ts | |
skewK_cs = TradingRule(conditioned_factor_trading_rule, data=['rawdata.get_demeanded_factor_value', | |
'rawdata.get_demeanded_factor_value'], | |
other_args=dict(smooth = smooth, _factor_name="skew", | |
_demean_method="current_average_factor_values_over_all_assets", | |
_lookback_days = lookback_days, | |
__factor_name="kurtosis", | |
__demean_method="current_average_factor_values_over_all_assets", | |
__lookback_days = lookback_days | |
)) | |
all_trading_rules["skewK_cs_%d" % lookback_days] = skewK_cs | |
skewK_rv = TradingRule(conditioned_factor_trading_rule, data=['rawdata.get_demeanded_factor_value', | |
'rawdata.get_demeanded_factor_value'], | |
other_args=dict(smooth = smooth, _factor_name="skew", | |
_demean_method="average_factor_value_in_asset_class_for_instrument", | |
_lookback_days = lookback_days, | |
__factor_name="kurtosis", | |
__demean_method="average_factor_value_in_asset_class_for_instrument", | |
__lookback_days = lookback_days | |
)) | |
all_trading_rules["skewK_rv_%d" % lookback_days] = skewK_rv | |
# Now we reverse condition | |
kurtS_abs = TradingRule(conditioned_factor_trading_rule, data=['rawdata.get_demeanded_factor_value', | |
'rawdata.get_demeanded_factor_value'], | |
other_args=dict(smooth = smooth, _factor_name="kurtosis", | |
_demean_method="historic_average_factor_value_all_assets", | |
_lookback_days = lookback_days, | |
__factor_name="skew", | |
__demean_method="historic_average_factor_value_all_assets", | |
__lookback_days = lookback_days | |
)) | |
all_trading_rules["kurtS_abs_%d" % lookback_days] = kurtS_abs | |
kurtS_ts = TradingRule(conditioned_factor_trading_rule, data=['rawdata.get_demeanded_factor_value', | |
'rawdata.get_demeanded_factor_value'], | |
other_args=dict(smooth = smooth, _factor_name="kurtosis", | |
_demean_method="average_factor_value_for_instrument", | |
_lookback_days = lookback_days, | |
__factor_name="skew", | |
__demean_method="average_factor_value_for_instrument", | |
__lookback_days = lookback_days | |
)) | |
all_trading_rules["kurtS_ts_%d" % lookback_days] = kurtS_ts | |
kurtS_cs = TradingRule(conditioned_factor_trading_rule, data=['rawdata.get_demeanded_factor_value', | |
'rawdata.get_demeanded_factor_value'], | |
other_args=dict(smooth = smooth, _factor_name="kurtosis", | |
_demean_method="current_average_factor_values_over_all_assets", | |
_lookback_days = lookback_days, | |
__factor_name="skew", | |
__demean_method="current_average_factor_values_over_all_assets", | |
__lookback_days = lookback_days | |
)) | |
all_trading_rules["kurtS_cs_%d" % lookback_days] = kurtS_cs | |
kurtS_rv = TradingRule(conditioned_factor_trading_rule, data=['rawdata.get_demeanded_factor_value', | |
'rawdata.get_demeanded_factor_value'], | |
other_args=dict(smooth = smooth, _factor_name="kurtosis", | |
_demean_method="average_factor_value_in_asset_class_for_instrument", | |
_lookback_days = lookback_days, | |
__factor_name="skew", | |
__demean_method="average_factor_value_in_asset_class_for_instrument", | |
__lookback_days = lookback_days | |
)) | |
all_trading_rules["kurtS_rv_%d" % lookback_days] = kurtS_rv |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment