Created
June 15, 2017 14:54
-
-
Save robertleeplummerjr/e416bcb64c2c81bd5fc4f23e70a7a3e9 to your computer and use it in GitHub Desktop.
a mostly pseudo script of the gpu version of sigmoid runInput
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
//existing neural net | |
class NeuralNetwork { | |
runInput(input) { | |
this.outputs[0] = input; // set output state of input layer | |
let output = null; | |
for (let layer = 1; layer <= this.outputLayer; layer++) { | |
for (let node = 0; node < this.sizes[layer]; node++) { | |
let weights = this.weights[layer][node]; | |
let sum = this.biases[layer][node]; | |
for (let k = 0; k < weights.length; k++) { | |
sum += weights[k] * input[k]; | |
} | |
this.outputs[layer][node] = 1 / (1 + Math.exp(-sum)); | |
} | |
output = input = this.outputs[layer]; | |
} | |
return output; | |
} | |
} | |
//with gpu.js | |
class NeuralNetwork { | |
makeLayers() { | |
const layers = this.layers; | |
const kernels = this.kernels; | |
for (let i = 0; i < layers.length; i++) { | |
const layer = layers[i]; | |
const kernel = gpu.createKernel(`function(input, weights, biases) { | |
var sum = biases[this.thread.x]; | |
for (var i = 0; i < ${ weights.length }; i++) { | |
sum += weights[i] * input[i]; | |
} | |
return 1 / (1 + Math.exp(-sum)); | |
}`, { | |
dimensions: [layer.length - 1] | |
}); | |
kernel.build(new Array(this.size[i]), layer.weights, layer.biases); | |
kernels.push(kernel); | |
} | |
} | |
runInput(input) { | |
this.outputs[0] = input; // set output state of input layer | |
let output = null; | |
for (let layer = 1; layer <= this.outputLayer; layer++) { | |
this.outputs[layer] = this.kernels[layer](input, this.weights[layer], this.biases[layer]); | |
output = input = this.outputs[layer]; | |
} | |
return output; | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment