Created
December 8, 2015 12:37
-
-
Save robinvanemden/bd0db492189f5798ac00 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Implementation of Lock in Feedback. | |
# -*- coding: utf-8 -*- | |
from libs.base import * | |
import numpy as np | |
import ujson as json | |
import sys | |
class Lif: | |
def __init__(self, theta, x0=1.0, A=1.4, T=100, gamma=.004, omega=0.8, lifversion=2): | |
self._set_parameters(x0, A, T, gamma, omega, lifversion) | |
self._set_dict(theta) | |
def _set_parameters(self, x0, A, T, gamma, omega, lifversion): | |
self.x0 = x0 | |
self.A = A | |
self.T = T | |
self.gamma = gamma | |
self.omega = omega | |
self.lifversion = lifversion | |
def _set_dict(self,theta): | |
if theta == {}: | |
self.theta = {'Yw': self._np_nan_fill(self.T, 3), 't':0, 'x0':self.x0} | |
else: | |
self.theta = theta | |
self.theta['Yw'] = np.array(json.loads(str(self.theta['Yw']))) | |
# Nan is not allowed in JSON specs | |
where_are_NaNs = self.theta['Yw'] == 99.9e+99 | |
self.theta['Yw'][where_are_NaNs] = np.nan | |
self.theta['t'] = int(self.theta['t']) | |
self.theta['x0'] = float(self.theta['x0']) | |
def get_dict(self): | |
# Nan is not allowed in JSON specs | |
where_are_NaNs = np.isnan(self.theta['Yw']) | |
self.theta['Yw'][where_are_NaNs] = 99.9e+99 | |
theta_dict = {'Yw': json.dumps(self.theta['Yw'].tolist()), 't':self.theta['t'], 'x0':self.theta['x0']} | |
return theta_dict | |
def suggest(self): | |
if np.all(np.isfinite(self.theta['Yw'][:,0])): | |
self.theta['x0'] = np.mean(self.theta['Yw'][:,1]) | |
self.theta['x0'] = self.theta['x0'] + self.gamma * sum( self.theta['Yw'][:,2] ) | |
if self.lifversion==1: self.theta['Yw'].fill(np.nan) | |
self.theta['t'] = self.theta['t'] + 1 | |
x = self.theta['x0'] + self.A*np.cos(self.omega * self.theta['t']) | |
suggestion = {'x': x, 't':self.theta['t'], 'x0': self.theta['x0']} | |
return suggestion | |
def update(self, t, x, y): | |
y = self.A*np.cos(self.omega * t)*y | |
row_to_add = np.array([t,x,y]) | |
self.theta['Yw'] = self._matrixpush(self.theta['Yw'], row_to_add) | |
return True | |
def _matrixpush(self, m, row): | |
if not np.all(np.isfinite(self.theta['Yw'][:,0])): | |
i = np.count_nonzero(np.logical_not(np.isnan(self.theta['Yw'][:,0]))) | |
m[i,] = row | |
else: | |
m = np.vstack([m,row]) | |
m = m[1:,] | |
return(m) | |
def _np_nan_fill(self,rows,columns): | |
nan_values = np.zeros((rows,columns)) | |
nan_values.fill(np.nan) | |
return nan_values |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment