Created
November 11, 2023 17:26
-
-
Save rockerBOO/1bb228a06c7d6f03a8c79bc7ff1fa902 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from torchmetrics.functional.multimodal import clip_score | |
from functools import partial | |
import torch | |
from datasets import load_dataset | |
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler | |
import random | |
from pathlib import Path | |
import argparse | |
import numpy | |
clip_score_fn = partial(clip_score, model_name_or_path="openai/clip-vit-base-patch16") | |
def calculate_clip_score(images, prompts): | |
images_int = (images * 255).astype("uint8") | |
clip_score = clip_score_fn( | |
torch.from_numpy(images_int).permute(0, 3, 1, 2), prompts | |
).detach() | |
return round(float(clip_score), 4) | |
def seed_worker(worker_id): | |
worker_seed = torch.initial_seed() % 2**32 | |
# numpy.random.seed(worker_seed) | |
random.seed(worker_seed) | |
def main(args): | |
seed = args.seed | |
torch.manual_seed(seed) | |
random.seed(seed) | |
device = torch.device( | |
args.device if args.device else ("cuda" if torch.cuda.is_available() else "cpu") | |
) | |
# model_ckpt = "runwayml/stable-diffusion-v1-5" | |
model_ckpt = args.pretrained_model_name_or_path | |
scheduler = DPMSolverMultistepScheduler.from_pretrained( | |
model_ckpt, subfolder="scheduler" | |
) | |
sd_pipeline = StableDiffusionPipeline.from_pretrained( | |
model_ckpt, | |
torch_dtype=torch.float16, | |
safety_checker=None, | |
use_safetensors=True, | |
scheduler=scheduler, | |
).to(device) | |
if args.xformers: | |
sd_pipeline.enable_xformers_memory_efficient_attention() | |
if args.ti_embedding_file is not None: | |
ti_embedding_file = Path(args.ti_embedding_file) | |
sd_pipeline.load_textual_inversion( | |
args.ti_embedding_file, weight_name=ti_embedding_file.name | |
) | |
if args.lora_file is not None: | |
# lora_file = "/mnt/900/training/sets/women-2023-11-10-162026-0fd2ee16/women-2023-11-10-162026-0fd2ee16.safetensors" | |
lora_file = Path(args.lora_file) | |
sd_pipeline.load_lora_weights(lora_file, weight_name=lora_file.name) | |
prompts = load_dataset("nateraw/parti-prompts", split="train") | |
prompts = prompts.shuffle(seed=seed) | |
sample_prompts = [prompts[i]["Prompt"] for i in range(50)] | |
for sample_prompt in sample_prompts: | |
print(sample_prompt) | |
images = [] | |
batch_size = 5 | |
for i in range(len(sample_prompts) // batch_size): | |
print(i * batch_size, i * batch_size + batch_size) | |
images.append( | |
sd_pipeline( | |
sample_prompts[i * batch_size : i * batch_size + batch_size], | |
num_images_per_prompt=1, | |
num_inference_steps=15, | |
output_type="np", | |
generator=torch.manual_seed(seed), | |
).images | |
) | |
sd_clip_score = calculate_clip_score(numpy.concatenate(images), sample_prompts) | |
print(f"CLIP score: {sd_clip_score}") | |
# CLIP score: 35.7038 | |
if __name__ == "__main__": | |
argparser = argparse.ArgumentParser() | |
argparser.add_argument( | |
"--seed", type=int, default=1234, help="Seed for random and torch" | |
) | |
argparser.add_argument( | |
"--pretrained_model_name_or_path", | |
default="runwayml/stable-diffusion-v1-5", | |
help="Model to load", | |
) | |
argparser.add_argument( | |
"--lora_file", | |
default=None, | |
help="Lora model file to load", | |
) | |
argparser.add_argument( | |
"--ti_embedding_file", | |
default=None, | |
help="Textual inversion file to load", | |
) | |
argparser.add_argument("--xformers", action="store_true", help="Use XFormers") | |
argparser.add_argument("--device", default=None, help="Set device to use") | |
args = argparser.parse_args() | |
main(args) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment