Created
March 22, 2018 02:57
-
-
Save rocking5566/a284bebf5f39640d6eae6f744f74c2d2 to your computer and use it in GitHub Desktop.
Tensorflow Object Detection API in WebCam
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
sys.path.append("/opt/tf_model/research") | |
sys.path.append("/opt/tf_model/research/object_detection") | |
import os | |
import cv2 | |
import numpy as np | |
import tensorflow as tf | |
from utils import label_map_util | |
from utils import visualization_utils as vis_util | |
if tf.__version__ < '1.4.0': | |
raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!') | |
print("OpenCV version : {0}".format(cv2.__version__)) | |
# Should run under docker container from tensorflow_object_detection | |
ROOT = '/opt/tf_model/research/object_detection/' | |
# Download pre-train SSD-MobileNet model from | |
# http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2017_11_17.tar.gz | |
MODEL_ROOT = '/datasets/tf_model/' | |
MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17' | |
PATH_TO_CKPT = os.path.join(MODEL_ROOT, MODEL_NAME, 'frozen_inference_graph.pb') | |
# List of the strings that is used to add correct label for each box. | |
PATH_TO_LABELS = os.path.join(ROOT, 'data', 'mscoco_label_map.pbtxt') | |
NUM_CLASSES = 90 | |
def detect_objects(image_np, sess, detection_graph): | |
# Expand dimensions since the model expects images to have shape: [1, None, None, 3] | |
image_np_expanded = np.expand_dims(image_np, axis=0) | |
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') | |
# Each box represents a part of the image where a particular object was detected. | |
boxes = detection_graph.get_tensor_by_name('detection_boxes:0') | |
# Each score represent how level of confidence for each of the objects. | |
# Score is shown on the result image, together with the class label. | |
scores = detection_graph.get_tensor_by_name('detection_scores:0') | |
classes = detection_graph.get_tensor_by_name('detection_classes:0') | |
num_detections = detection_graph.get_tensor_by_name('num_detections:0') | |
t1 = cv2.getTickCount() | |
# Actual detection. | |
(boxes, scores, classes, num_detections) = sess.run( | |
[boxes, scores, classes, num_detections], | |
feed_dict={image_tensor: image_np_expanded}) | |
t2 = cv2.getTickCount() | |
print((t2 - t1) / cv2.getTickFrequency()) | |
# Visualization of the results of a detection. | |
vis_util.visualize_boxes_and_labels_on_image_array( | |
image_np, | |
np.squeeze(boxes), | |
np.squeeze(classes).astype(np.int32), | |
np.squeeze(scores), | |
category_index, | |
use_normalized_coordinates=True, | |
line_thickness=8) | |
return image_np | |
if __name__ == '__main__': | |
# This is needed since the notebook is stored in the object_detection folder. | |
video_capture = cv2.VideoCapture(0) | |
if not video_capture.isOpened(): | |
print('No video camera found') | |
exit() | |
detection_graph = tf.Graph() | |
with detection_graph.as_default(): | |
od_graph_def = tf.GraphDef() | |
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: | |
serialized_graph = fid.read() | |
od_graph_def.ParseFromString(serialized_graph) | |
tf.import_graph_def(od_graph_def, name='') | |
label_map = label_map_util.load_labelmap(PATH_TO_LABELS) | |
categories = label_map_util.convert_label_map_to_categories( | |
label_map, max_num_classes=NUM_CLASSES, use_display_name=True) | |
category_index = label_map_util.create_category_index(categories) | |
with detection_graph.as_default(): | |
with tf.Session(graph=detection_graph) as sess: | |
# Definite input and output Tensors for detection_graph | |
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') | |
# Each box represents a part of the image where a particular object was detected. | |
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0') | |
# Each score represent how level of confidence for each of the objects. | |
# Score is shown on the result image, together with the class label. | |
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0') | |
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0') | |
num_detections = detection_graph.get_tensor_by_name('num_detections:0') | |
while True: | |
ret, frame = video_capture.read() | |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
result_rgb = detect_objects(frame_rgb, sess, detection_graph) | |
result_bgr = cv2.cvtColor(result_rgb, cv2.COLOR_RGB2BGR) | |
cv2.imshow('Video', result_bgr) | |
if cv2.waitKey(1) & 0xFF == ord('q'): | |
break | |
video_capture.release() | |
cv2.destroyAllWindows() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment