Created
April 10, 2019 09:21
-
-
Save rocking5566/edccdcd37ba8025603d49931df874c95 to your computer and use it in GitHub Desktop.
Get tensorflow pb tensor
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import argparse | |
import sys | |
from PIL import Image | |
import numpy as np | |
import tensorflow as tf | |
FLAGS = None | |
image_path = '/workspace/example/imagenet/test_data/husky.jpg' | |
label_file = '/workspace/example/imagenet/test_data/labels.txt' | |
model_path = 'mobilenet_v1_1.0_224_quant.pb' | |
def load_labels(filename): | |
my_labels = [] | |
input_file = open(filename, 'r') | |
for l in input_file: | |
my_labels.append(l.strip()) | |
return my_labels | |
def create_graph(model_path): | |
with tf.gfile.FastGFile(model_path, 'rb') as f: | |
graph_def = tf.GraphDef() | |
graph_def.ParseFromString(f.read()) | |
_ = tf.import_graph_def(graph_def, name='') | |
def run_inference_on_image(image_path): | |
# Creates graph from saved GraphDef. | |
create_graph(model_path) | |
height = 224 | |
width = 224 | |
img = Image.open(image_path) | |
img = img.resize((width, height)) | |
# add N dim | |
img = np.expand_dims(img, axis=0) | |
img = img - 127.5 | |
img = img / 127.5 | |
x = tf.get_default_graph().get_tensor_by_name('input:0') | |
with tf.Session() as sess: | |
# NHWC | |
input = sess.run(x, feed_dict={x: img}) | |
print('Input') | |
print(input.shape) | |
print(input[0, 0, 0:3, :]) | |
print('========================================================================') | |
for node in tf.get_default_graph().as_graph_def().node: | |
if 'pointwise/weights_quant/FakeQuantWithMinMaxVars' in node.name \ | |
or 'Conv2d_0/weights_quant/FakeQuantWithMinMaxVars' in node.name \ | |
or 'Conv2d_1c_1x1/weights_quant/FakeQuantWithMinMaxVars' in node.name: | |
w_tensor = tf.get_default_graph().get_tensor_by_name(node.name + ':0') | |
# HWIO | |
w = sess.run(w_tensor, feed_dict={x: img}) | |
print('Conv weight') | |
print(node.name) | |
print(w.shape) | |
if w.shape[3] > 300: | |
print(w[0, 0, 0, 0:301]) | |
else: | |
print(w[0, 0, 0, :]) | |
print('========================================================================') | |
elif 'depthwise/weights_quant/FakeQuantWithMinMaxVars' in node.name: | |
w_tensor = tf.get_default_graph().get_tensor_by_name(node.name + ':0') | |
# HWO1 | |
w = sess.run(w_tensor, feed_dict={x: img}) | |
print('Depthwise Conv weight') | |
print(node.name) | |
print(w.shape) | |
if w.shape[2] > 300: | |
print(w[0, 0, 0:301, 0]) | |
else: | |
print(w[0, 0, :, 0]) | |
print('========================================================================') | |
elif 'BatchNorm_Fold/bias' in node.name or 'biases/read' in node.name: | |
bias_tensor = tf.get_default_graph().get_tensor_by_name(node.name + ':0') | |
b = sess.run(bias_tensor, feed_dict={x: img}) | |
print('Bias') | |
print(node.name) | |
print(b.shape) | |
if b.shape[0] > 300: | |
print(b[0:301]) | |
else: | |
print(b) | |
print('========================================================================') | |
elif 'act_quant/FakeQuantWithMinMaxVars' in node.name: | |
act_tensor = tf.get_default_graph().get_tensor_by_name(node.name + ':0') | |
# NHWC | |
act = sess.run(act_tensor, feed_dict={x: img}) | |
print('Activation') | |
print(node.name) | |
print(act.shape) | |
if act.shape[3] > 300: | |
print(act[0, 0, 0, 0:301]) | |
else: | |
print(act[0, 0, 0, :]) | |
print('========================================================================') | |
elif node.name.endswith('pointwise/mul_fold') \ | |
or node.name.endswith('Conv2d_0/mul_fold') \ | |
or node.name.endswith('Conv2d_1c_1x1/weights'): | |
w_tensor = tf.get_default_graph().get_tensor_by_name(node.name + ':0') | |
# HWIO | |
w = sess.run(w_tensor, feed_dict={x: img}) | |
print('Conv weight') | |
print(node.name) | |
print(w.shape) | |
if w.shape[3] > 300: | |
print(w[0, 0, 0, 0:301]) | |
else: | |
print(w[0, 0, 0, :]) | |
print('========================================================================') | |
elif node.name.endswith('_depthwise/mul_fold'): | |
w_tensor = tf.get_default_graph().get_tensor_by_name(node.name + ':0') | |
# HWO1 | |
w = sess.run(w_tensor, feed_dict={x: img}) | |
print('Depthwise Conv weight') | |
print(node.name) | |
print(w.shape) | |
if w.shape[2] > 300: | |
print(w[0, 0, 0:301, 0]) | |
else: | |
print(w[0, 0, :, 0]) | |
print('========================================================================') | |
elif node.name.endswith('act_quant/min/read') \ | |
or node.name.endswith('act_quant/max/read'): | |
act_tensor = tf.get_default_graph().get_tensor_by_name(node.name + ':0') | |
act = sess.run(act_tensor, feed_dict={x: img}) | |
print(node.name) | |
print(act) | |
print('========================================================================') | |
def main(_): | |
run_inference_on_image(image_path) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
'--num_top_predictions', | |
type=int, | |
default=5, | |
help='Display this many predictions.' | |
) | |
FLAGS, unparsed = parser.parse_known_args() | |
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment