Created
January 18, 2016 16:50
-
-
Save rocknrollnerd/06bfed6b9d1bce612fd6 to your computer and use it in GitHub Desktop.
A simple adversarial network in Theano+Lasagne trying to estimate a 1d normal distribution
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
import numpy as np | |
import lasagne | |
import theano | |
import theano.tensor as T | |
from lasagne.nonlinearities import rectify, sigmoid, linear, tanh | |
from scipy.stats import norm | |
import seaborn as sns | |
# with the huge help of http://evjang.com/articles/genadv1 | |
def sample_noise(M): | |
z = np.float32(np.linspace(-5.0, 5.0, M) + np.random.random(M) * 0.01) | |
return z | |
def plot_d_boundary(discriminate): | |
# p_data | |
xs = np.linspace(-5, 5, 1000) | |
plt.plot(xs, norm.pdf(xs, loc=mu, scale=sigma), label='p_data') | |
# decision boundary | |
r = 1000 # resolution (number of points) | |
xs = np.float32(np.linspace(-5, 5, r)) | |
# process multiple points in parallel in a minibatch | |
ds = discriminate(xs.reshape(r, 1)) | |
plt.plot(xs, ds, label='decision boundary') | |
plt.show() | |
def plot_fig(generate, discriminate): | |
# plots pg, pdata, decision boundary | |
xs = np.linspace(-5, 5, 1000) | |
plt.plot(xs, norm.pdf(xs, loc=mu, scale=sigma), label='p_data') | |
# decision boundary | |
r = 5000 # resolution (number of points) | |
xs = np.float32(np.linspace(-5, 5, r)) | |
# process multiple points in parallel in same minibatch | |
ds = discriminate(xs.reshape(r, 1)) | |
plt.plot(xs, ds, label='decision boundary') | |
# distribution of inverse-mapped points | |
zs = sample_noise(r) | |
gs = generate(zs.reshape(r, 1)) | |
plt.hist(gs, bins=10, normed=True) | |
if __name__ == '__main__': | |
mu = -2 | |
sigma = 0.3 | |
M = 200 | |
# generator | |
G_input = T.matrix('Gx') | |
G_l1 = lasagne.layers.InputLayer((None, 1), G_input) | |
G_l2 = lasagne.layers.DenseLayer(G_l1, 10, nonlinearity=rectify) | |
G_l3 = lasagne.layers.DenseLayer(G_l2, 10, nonlinearity=rectify) | |
G_l4 = lasagne.layers.DenseLayer(G_l3, 1, nonlinearity=linear) | |
G = G_l4 | |
G_out = lasagne.layers.get_output(G) | |
# discriminators | |
D1_input = T.matrix('D1x') | |
D1_target = T.matrix('D1y') | |
D1_l1 = lasagne.layers.InputLayer((None, 1), D1_input) | |
D1_l2 = lasagne.layers.DenseLayer(D1_l1, 10, nonlinearity=tanh) | |
D1_l3 = lasagne.layers.DenseLayer(D1_l2, 10, nonlinearity=tanh) | |
D1_l4 = lasagne.layers.DenseLayer(D1_l3, 1, nonlinearity=sigmoid) | |
D1 = D1_l4 | |
D2_l1 = lasagne.layers.InputLayer((None, 1), G_out) | |
D2_l2 = lasagne.layers.DenseLayer(D2_l1, 10, nonlinearity=tanh, W=D1_l2.W, b=D1_l2.b) | |
D2_l3 = lasagne.layers.DenseLayer(D2_l2, 10, nonlinearity=tanh, W=D1_l3.W, b=D1_l3.b) | |
D2_l4 = lasagne.layers.DenseLayer(D2_l3, 1, nonlinearity=sigmoid, W=D1_l4.W, b=D1_l4.b) | |
D2 = D2_l4 | |
D1_out = lasagne.layers.get_output(D1) | |
D2_out = lasagne.layers.get_output(D2) | |
# output functions | |
discriminate = theano.function([D1_input], D1_out) | |
generate = theano.function([G_input], G_out) | |
plot_d_boundary(discriminate) | |
G_obj = (T.log(D2_out)).mean() | |
D_obj = (T.log(D1_out) + T.log(1 - D2_out)).mean() | |
# parameters update and training | |
G_params = lasagne.layers.get_all_params(G, trainable=True) | |
G_lr = theano.shared(np.array(0.01, dtype=theano.config.floatX)) | |
G_updates = lasagne.updates.nesterov_momentum(1 - G_obj, G_params, learning_rate=G_lr, momentum=0.6) | |
G_train = theano.function([G_input], G_obj, updates=G_updates) | |
D_params = lasagne.layers.get_all_params(D1, trainable=True) | |
D_lr = theano.shared(np.array(0.1, dtype=theano.config.floatX)) | |
D_updates = lasagne.updates.nesterov_momentum(1 - D_obj, D_params, learning_rate=D_lr, momentum=0.6) | |
D_train = theano.function([G_input, D1_input], D_obj, updates=D_updates) | |
plot_fig(generate, discriminate) | |
plt.title('Before Training') | |
plt.show() | |
epochs = 400 | |
histd, histg = np.zeros(epochs), np.zeros(epochs) | |
k = 20 | |
visualize_training = False # set to True to monitor training progress | |
plt.ion() | |
for i in range(epochs): | |
for j in range(k): | |
x = np.float32(np.random.normal(mu, sigma, M)) # sampled m-batch from p_data | |
z = sample_noise(M) # sample m-batch from noise prior | |
histd[i] = D_train(z.reshape(M, 1), x.reshape(M, 1)) | |
z = sample_noise(M) | |
histg[i] = G_train(z.reshape(M, 1)) | |
if i % 10 == 0: | |
G_lr *= 0.999 | |
D_lr *= 0.999 | |
if visualize_training: | |
plt.clf() | |
plot_fig(generate, discriminate) | |
plt.draw() | |
plt.ioff() | |
plt.clf() | |
plt.plot(range(epochs), histd, label='obj_d') | |
plt.plot(range(epochs), 1 - histg, label='obj_g') | |
plt.legend() | |
plt.show() | |
plot_fig(generate, discriminate) | |
plt.title('After Training') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment