Created
May 7, 2018 14:35
-
-
Save rodrigobaron/28a94d34a2cdb8d4f1b1ac26c2a3f90d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import rpyc | |
from rpyc.utils.zerodeploy import DeployedServer | |
from plumbum import SshMachine | |
mach = SshMachine("rodrigo@server") | |
server = DeployedServer(mach, python_executable='/home/rodrigo/venv/bin/python') | |
conn = server.classic_connect() | |
import sys | |
conn.modules.sys.stdout = sys.stdout | |
keras = conn.modules.keras | |
mnist = conn.modules['keras.datasets'].mnist | |
Sequential = conn.modules['keras.models'].Sequential | |
Dense = conn.modules['keras.layers'].Dense | |
Dropout = conn.modules['keras.layers'].Dropout | |
RMSprop = conn.modules['keras.optimizers'].RMSprop | |
batch_size = 128 | |
num_classes = 10 | |
epochs = 20 | |
# the data, shuffled and split between train and test sets | |
(x_train, y_train), (x_test, y_test) = mnist.load_data() | |
x_train = x_train.reshape(60000, 784) | |
x_test = x_test.reshape(10000, 784) | |
(x_train, y_train), (x_test, y_test) = (x_train[:100], y_train[:100]), (x_test[:100], y_test[:100]) | |
x_train = x_train.astype('float32') | |
x_test = x_test.astype('float32') | |
x_train /= 255 | |
x_test /= 255 | |
print(x_train.shape[0], 'train samples') | |
print(x_test.shape[0], 'test samples') | |
# convert class vectors to binary class matrices | |
y_train = keras.utils.to_categorical(y_train, num_classes) | |
y_test = keras.utils.to_categorical(y_test, num_classes) | |
model = Sequential() | |
model.add(Dense(512, activation='relu', input_shape=(784,))) | |
model.add(Dropout(0.2)) | |
model.add(Dense(512, activation='relu')) | |
model.add(Dropout(0.2)) | |
model.add(Dense(num_classes, activation='softmax')) | |
model.summary() | |
model.compile(loss='categorical_crossentropy', | |
optimizer=RMSprop(), | |
metrics=['accuracy']) | |
history = model.fit(x_train, y_train, | |
batch_size=batch_size, | |
epochs=epochs, | |
verbose=1, | |
validation_data=(x_test, y_test)) | |
score = model.evaluate(x_test, y_test, verbose=0) | |
print('Test loss:', score[0]) | |
print('Test accuracy:', score[1]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment