Skip to content

Instantly share code, notes, and snippets.

@rodrigobaron
Created November 4, 2021 21:31
Show Gist options
  • Save rodrigobaron/7830c073aea3d7d37a761f8299f65f7d to your computer and use it in GitHub Desktop.
Save rodrigobaron/7830c073aea3d7d37a761f8299f65f7d to your computer and use it in GitHub Desktop.
"""This example showcases the hello world example of Hera using kubernetes user token"""
from typing import Optional
import errno
import os
from hera.v1.input import InputFrom
from hera.v1.resources import Resources
from hera.v1.task import Task
from hera.v1.workflow import Workflow
from hera.v1.volume import Volume
from hera.v1.workflow_service import WorkflowService
from kubernetes import client, config
import base64
def get_sa_token(
service_account: str, namespace: str = "default", config_file: Optional[str] = None
):
"""Get ServiceAccount token using kubernetes config.
Parameters
----------
service_account: str
The service account to authenticate from.
namespace: str = 'default'
The K8S namespace the workflow service submits workflows to. This defaults to the `default` namespace.
config_file: str
The path to k8s configuration file.
Raises
------
FileNotFoundError
When the config_file can not be found.
"""
if config_file is not None and not os.path.isfile(config_file):
raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), config_file)
config.load_kube_config(config_file=config_file)
v1 = client.CoreV1Api()
secret_name = (
v1.read_namespaced_service_account(service_account, namespace).secrets[0].name
)
sec = v1.read_namespaced_secret(secret_name, namespace).data
return base64.b64decode(sec["token"]).decode()
def preprocess_data(base_path: str):
import os
import sys
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from pathlib import Path
preprocess_path = Path(base_path) / 'preprocess'
preprocess_path.mkdir(parents=True, exist_ok=True)
(Path(base_path) / 'models').mkdir(parents=True, exist_ok=True)
X, y = datasets.load_boston(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
x_train_path = str(preprocess_path / 'x_train.npy')
x_test_path = str(preprocess_path / 'x_test.npy')
y_train_path = str(preprocess_path / 'y_train.npy')
y_test_path = str(preprocess_path / 'y_test.npy')
model_path = str(Path(base_path) / 'models' / 'sgd_regressor.pkl')
np.save(x_train_path, X_train)
np.save(x_test_path, X_test)
np.save(y_train_path, y_train)
np.save(y_test_path, y_test)
sys.stdout.flush()
json.dump([{
'pipeline_config': {
'base_path': base_path,
'x_train': x_train_path,
'x_test': x_test_path,
'y_train': y_train_path,
'y_test': y_test_path,
'model_path': model_path
}
}], sys.stdout)
def train_model(pipeline_config):
import os
import sys
import joblib
import numpy as np
from sklearn.linear_model import SGDRegressor
from pathlib import Path
_sys_stdout = sys.stdout
sys.stdout=open("/tmp/logs.txt","w")
base_path = pipeline_config.get('base_path')
sgd_regressor_path = pipeline_config.get('model_path')
x_train = pipeline_config.get('x_train')
y_train = pipeline_config.get('y_train')
x_train_data = np.load(x_train)
y_train_data = np.load(y_train)
model = SGDRegressor(verbose=1)
model.fit(x_train_data, y_train_data)
joblib.dump(model, sgd_regressor_path)
sys.stdout.close()
sys.stdout = _sys_stdout
sys.stdout.flush()
json.dump({'pipeline_config': pipeline_config}, sys.stdout)
with open("/tmp/logs.txt","r") as fd:
sys.stdout.write(f"\n{'-' * 50}\n{fd.read()}")
def check_model_state(pipeline_config):
from pathlib import Path
import sys
import json
model_path = Path(pipeline_config.get('model_path'))
result = 'done' if model_path.is_file() else 'unknow'
sys.stdout.flush()
json.dump(result, sys.stdout)
def test_model(pipeline_config):
import os
import sys
import joblib
import numpy as np
from sklearn.metrics import mean_squared_error
from pathlib import Path
base_path = pipeline_config.get('base_path')
summary_path = Path(base_path) / 'summary'
summary_path.mkdir(parents=True, exist_ok=True)
x_test = pipeline_config.get('x_test')
y_test = pipeline_config.get('y_test')
model_path = pipeline_config.get('model_path')
x_test_data = np.load(x_test)
y_test_data = np.load(y_test)
model = joblib.load(model_path)
y_pred = model.predict(x_test_data)
err = mean_squared_error(y_test_data, y_pred)
summary_path_result = str(summary_path / 'output.txt')
with open(summary_path_result, 'a') as f:
f.write(str(err))
pipeline_config.update({'summary_path_result': summary_path_result})
sys.stdout.flush()
json.dump([{'pipeline_config': pipeline_config}], sys.stdout)
resource_path = '/pipeline'
resource_volume = Resources(volume=Volume(size='2Gi', mount_path=resource_path, storage_class_name='local-path'))
task_preprocess = Task(
'preprocess',
preprocess_data,
[{'base_path': resource_path}],
image='rodrigobaron/example:latest',
resources=resource_volume
)
task_model_state = Task(
'state',
check_model_state,
input_from=InputFrom(name='preprocess', parameters=['pipeline_config']),
image='rodrigobaron/example:latest',
resources=resource_volume
)
task_train_model = Task(
'train_model',
train_model,
input_from=InputFrom(name='preprocess', parameters=['pipeline_config']),
image='rodrigobaron/example:latest',
resources=resource_volume
)
task_test_model = Task(
'test_model',
test_model,
input_from=InputFrom(name='preprocess', parameters=['pipeline_config']),
image='rodrigobaron/example:latest',
resources=resource_volume
)
task_preprocess.next(task_model_state)
task_model_state.next_when('{{item.outputs.result}} == ["unknow"]', task_train_model)
# task_model_state.next_when('{{item.outputs.result}} == ["done"]', task_test_model)
task_model_state.next(task_test_model)
task_train_model.next(task_test_model)
namespace = "argo"
token = get_sa_token("argo-server", namespace=namespace)
ws = WorkflowService("argo.k8s", token, namespace=namespace)
w = Workflow("ml-pipeline", ws)
w.add_tasks(task_preprocess, task_model_state, task_train_model, task_test_model)
ws.submit(w.workflow, namespace=namespace)
@rodrigobaron
Copy link
Author

yep

resource_volume = Resources(volume=Volume(size='2Gi', mount_path=resource_path, storage_class_name='local-path'))

it create a new volume (using rancher local-path) and share between tasks:

resources=resource_volume

also we could just re-use an existing volume instead of create.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment