Created
December 24, 2019 13:58
-
-
Save rodrigofp-cit/c6edfcc3c07187740dba74ec378116fe to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
import argparse | |
import datetime | |
import pandas as pd | |
import os | |
from sklearn import preprocessing | |
from sklearn.metrics import mean_squared_error, make_scorer | |
from sklearn.externals import joblib | |
from sklearn.model_selection import train_test_split | |
from sklearn.metrics import mean_squared_error | |
from tensorflow.python.lib.io import file_io | |
from models import model_zoo | |
import logging | |
logging.basicConfig() | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.INFO) | |
INPUT_FEAT_NAMES = ['Age', 'City_Category', 'Gender', | |
'Marital_Status', 'Occupation', | |
'Product_Category_1', 'Product_Category_2', | |
'Product_Category_3', 'Stay_In_Current_City_Years', | |
'Product_ID', 'User_ID'] | |
TARGET_NAME = 'Purchase' | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--csv-data-path', | |
dest='csv_data_path', required=True) | |
parser.add_argument('--model-dir', | |
dest='model_dir', required=True) | |
parser.add_argument('--model-name', | |
dest='model_name', required=True) | |
parser.add_argument('--job-dir', | |
dest='job_dir', required=False, default='/tmp') | |
args = parser.parse_args() | |
df_raw = pd.read_csv(args.csv_data_path) | |
logger.info(df_raw.head()) | |
# Split data into train and eval set | |
df_raw_X = df_raw[INPUT_FEAT_NAMES] | |
df_raw_Y = df_raw[TARGET_NAME].values | |
df_raw_train_X, df_raw_eval_X, df_raw_train_Y, df_raw_eval_Y = train_test_split( | |
df_raw_X, df_raw_Y, test_size=0.2) | |
# Train model | |
model = model_zoo.get_model(args.model_name) | |
logger.info('Training {}'.format(args.model_name)) | |
model.fit(df_raw_train_X, df_raw_train_Y) | |
logger.info('Done') | |
# Evaluate | |
eval_pred = model.predict(df_raw_eval_X) | |
logger.info("MSE: {}".format(mean_squared_error(df_raw_eval_Y, eval_pred))) | |
# Dump model | |
model_buffer = file_io.FileIO(os.path.join( | |
args.model_dir, 'model.joblib'), 'w') | |
joblib.dump(model, model_buffer) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment