Skip to content

Instantly share code, notes, and snippets.

@roflmaostc
Forked from Kulbear/interpolate3d.py
Created March 29, 2023 09:34
Show Gist options
  • Save roflmaostc/4f9deb340a4654c21f23fbed6cc2a1a7 to your computer and use it in GitHub Desktop.
Save roflmaostc/4f9deb340a4654c21f23fbed6cc2a1a7 to your computer and use it in GitHub Desktop.
Trilinear interpolation on a 3D regular grid, implemented with PyTorch.
import tensorflow as tf
import torch
import numpy as np
def gather_nd_torch(params, indices, batch_dim=1):
""" A PyTorch porting of tensorflow.gather_nd
This implementation can handle leading batch dimensions in params, see below for detailed explanation.
The majority of this implementation is from Michael Jungo @ https://stackoverflow.com/a/61810047/6670143
I just ported it compatible to leading batch dimension.
Args:
params: a tensor of dimension [b1, ..., bn, g1, ..., gm, c].
indices: a tensor of dimension [b1, ..., bn, x, m]
batch_dim: indicate how many batch dimension you have, in the above example, batch_dim = n.
Returns:
gathered: a tensor of dimension [b1, ..., bn, x, c].
Example:
>>> batch_size = 5
>>> inputs = torch.randn(batch_size, batch_size, batch_size, 4, 4, 4, 32)
>>> pos = torch.randint(4, (batch_size, batch_size, batch_size, 12, 3))
>>> gathered = gather_nd_torch(inputs, pos, batch_dim=3)
>>> gathered.shape
torch.Size([5, 5, 5, 12, 32])
>>> inputs_tf = tf.convert_to_tensor(inputs.numpy())
>>> pos_tf = tf.convert_to_tensor(pos.numpy())
>>> gathered_tf = tf.gather_nd(inputs_tf, pos_tf, batch_dims=3)
>>> gathered_tf.shape
TensorShape([5, 5, 5, 12, 32])
>>> gathered_tf = torch.from_numpy(gathered_tf.numpy())
>>> torch.equal(gathered_tf, gathered)
True
"""
batch_dims = params.size()[:batch_dim] # [b1, ..., bn]
batch_size = np.cumprod(list(batch_dims))[-1] # b1 * ... * bn
c_dim = params.size()[-1] # c
grid_dims = params.size()[batch_dim:-1] # [g1, ..., gm]
n_indices = indices.size(-2) # x
n_pos = indices.size(-1) # m
# reshape leadning batch dims to a single batch dim
params = params.reshape(batch_size, *grid_dims, c_dim)
indices = indices.reshape(batch_size, n_indices, n_pos)
# build gather indices
# gather for each of the data point in this "batch"
batch_enumeration = torch.arange(batch_size).unsqueeze(1)
gather_dims = [indices[:, :, i] for i in range(len(grid_dims))]
gather_dims.insert(0, batch_enumeration)
gathered = params[gather_dims]
# reshape back to the shape with leading batch dims
gathered = gathered.reshape(*batch_dims, n_indices, c_dim)
return gathered
def interpolate(grid_3d,
sampling_points):
"""Trilinear interpolation on a 3D regular grid.
This is a porting of TensorFlow Graphics implementation of trilinear interpolation.
Check https://github.com/tensorflow/graphics/blob/master/tensorflow_graphics/math/interpolation/trilinear.py
for more details.
Args:
grid_3d: A tensor with shape `[A1, ..., An, H, W, D, C]` where H, W, D are
height, width, depth of the grid and C is the number of channels.
sampling_points: A tensor with shape `[A1, ..., An, M, 3]` where M is the
number of sampling points. Sampling points outside the grid are projected
in the grid borders.
Returns:
A tensor of shape `[A1, ..., An, M, C]`
"""
grid_3d_shape = grid_3d.size()
sampling_points_shape = sampling_points.size()
voxel_cube_shape = grid_3d_shape[-4:-1] # [H, W, D]
batch_dims = sampling_points_shape[:-2] # [A1, ..., An]
num_points = sampling_points_shape[-2] # M
bottom_left = torch.floor(sampling_points)
top_right = bottom_left + 1
bottom_left_index = bottom_left.type(torch.int32)
top_right_index = top_right.type(torch.int32)
x0_index, y0_index, z0_index = torch.unbind(bottom_left_index, dim=-1)
x1_index, y1_index, z1_index = torch.unbind(top_right_index, dim=-1)
index_x = torch.concat([x0_index, x1_index, x0_index, x1_index,
x0_index, x1_index, x0_index, x1_index], dim=-1)
index_y = torch.concat([y0_index, y0_index, y1_index, y1_index,
y0_index, y0_index, y1_index, y1_index], dim=-1)
index_z = torch.concat([z0_index, z0_index, z0_index, z0_index,
z1_index, z1_index, z1_index, z1_index], dim=-1)
indices = torch.stack([index_x, index_y, index_z], dim=-1)
clip_value_max = torch.from_numpy(np.ndarray(list(voxel_cube_shape)) - 1)
clip_value_min = torch.zeros_like(clip_value_max)
indices = torch.clamp(indices, min=0, max=63)
content = gather_nd_torch(
params=grid_3d, indices=indices.long(), batch_dim=len(batch_dims))
distance_to_bottom_left = sampling_points - bottom_left
distance_to_top_right = top_right - sampling_points
x_x0, y_y0, z_z0 = torch.unbind(distance_to_bottom_left, dim=-1)
x1_x, y1_y, z1_z = torch.unbind(distance_to_top_right, dim=-1)
weights_x = torch.concat([x1_x, x_x0, x1_x, x_x0,
x1_x, x_x0, x1_x, x_x0], dim=-1)
weights_y = torch.concat([y1_y, y1_y, y_y0, y_y0,
y1_y, y1_y, y_y0, y_y0], dim=-1)
weights_z = torch.concat([z1_z, z1_z, z1_z, z1_z,
z_z0, z_z0, z_z0, z_z0], dim=-1)
weights = weights_x * weights_y * weights_z
weights = weights.unsqueeze(-1)
interpolated_values = weights * content
return sum(torch.split(interpolated_values, [num_points] * 8, dim=-2))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment