You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
procedure bubbleSort( A : list of sortable items )
n = length(A)
repeat
swapped = false
for i = 1 to n-1 inclusive do
/* if this pair is out of order */
if A[i-1] > A[i] then
/* swap them and remember something changed */
swap( A[i-1], A[i] )
swapped = true
end if
end for
until not swapped
end procedure
Implement a selection sort algorithm
Select the smallest, move to the front.
/* a[0] to a[n-1] is the array to sort */
int i,j;
int n;
/* advance the position through the entire array */
/* (could do j < n-1 because single element is also min element) */
for (j = 0; j < n-1; j++)
{
/* find the min element in the unsorted a[j .. n-1] */
/* assume the min is the first element */
int iMin = j;
/* test against elements after j to find the smallest */
for (i = j+1; i < n; i++) {
/* if this element is less, then it is the new minimum */
if (a[i] < a[iMin]) {
/* found new minimum; remember its index */
iMin = i;
}
}
if(iMin != j)
{
swap(a[j], a[iMin]);
}
}
Implement an insertion sort algorithm
For every item, find where it belongs, then instert it there.
i ← 1
while i < length(A)
j ← i
while j > 0 and A[j-1] > A[j]
swap A[j] and A[j-1]
j ← j - 1
end while
i ← i + 1
end while