Created
September 4, 2021 15:53
-
-
Save rohan-paul/cc5a58ed4580c1611a1f5e2af5c12045 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import tensorflow as tf | |
| from tensorflow import keras | |
| def mp_model(): | |
| model = keras.Sequential( | |
| [ | |
| keras.layers.Flatten(input_shape=(32, 32, 3)), | |
| keras.layers.Dense(3000, activation="relu"), | |
| keras.layers.Dense(1000, activation="relu"), | |
| keras.layers.Dense( | |
| 10, | |
| ), | |
| keras.layers.Activation("sigmoid", dtype="float32"), | |
| ] | |
| ) | |
| model.compile( | |
| optimizer="SGD", loss="categorical_crossentropy", metrics=["accuracy"] | |
| ) | |
| return model | |
| # Dense(units) => units: Positive integer, dimensionality of the output space. | |
| # Note Thus, we had to overwrite the policy for the last layer to | |
| # float32. We will se why in a moment. | |
| tf.keras.mixed_precision.set_global_policy("mixed_floats16") | |
| (X_train, y_train), (X_test, y_test) = tf.keras.datasets.cifar10.load_data() | |
| multi_class_cifar_10 = [ | |
| "airplane", | |
| "automobile", | |
| "bird", | |
| "cat", | |
| "deer", | |
| "dog", | |
| "frog", | |
| "horse", | |
| "ship", | |
| "truck", | |
| ] | |
| X_train_scaled = X_train / 255 | |
| X_test_scaled = X_test / 255 | |
| y_train_categorical = keras.utils.to_categorical(y_train, num_classes=10, dtype="float") | |
| y_test_categorical = keras.utils.to_categorical(y_test, num_classes=10, dtype=10) | |
| with tf.device("/GPU:0"): | |
| model = mp_model() | |
| model.fit(X_test_scaled, y_test_categorical) | |
| model.evaluate(X_test_scaled, y_test_categorical) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment