Skip to content

Instantly share code, notes, and snippets.

@rohan-paul
Created September 16, 2021 11:21
Show Gist options
  • Select an option

  • Save rohan-paul/fff3ae0a502f873bf95613298078b41c to your computer and use it in GitHub Desktop.

Select an option

Save rohan-paul/fff3ae0a502f873bf95613298078b41c to your computer and use it in GitHub Desktop.
noise_shape = 100
# Generator will upsample our seed using convolutional transpose layers (upsampling layers)
def generator_model():
generator=Sequential()
# Random noise to 4x4x512 image
generator.add(Dense(4*4*512, input_shape=[noise_shape]))
# Next, add a reshape layer to the network to reshape the tensor from the
# last layer to a tensor of a shape of (4, 4, 512):
generator.add(Reshape([4,4,512]))
generator.add(Conv2DTranspose(256, kernel_size=4, strides=2, padding="same"))
# BatchNormalization is added to the model after the hidden layer, but before the activation, such as LeakyReLU.
generator.add(BatchNormalization())
generator.add(LeakyReLU(alpha=0.2))
generator.add(Conv2DTranspose(128, kernel_size=4, strides=2, padding="same"))
generator.add(LeakyReLU(alpha=0.2))
generator.add(BatchNormalization())
generator.add(Conv2DTranspose(64, kernel_size=4, strides=2, padding="same"))
generator.add(LeakyReLU(alpha=0.2))
generator.add(BatchNormalization())
generator.add(Conv2DTranspose(3, kernel_size=4, strides=2, padding="same",
activation='sigmoid'))
return generator
generator = generator_model()
generator.summary()
def discriminator_model():
discriminator = Sequential()
discriminator.add(Conv2D(64, (3,3), strides=(2, 2), padding='same', input_shape=[64,64, 3]))
discriminator.add(LeakyReLU(alpha=0.2))
discriminator.add(Dropout(0.4))
discriminator.add(Conv2D(64, (3,3), strides=(2, 2), padding='same'))
discriminator.add(BatchNormalization())
discriminator.add(LeakyReLU(alpha=0.2))
discriminator.add(Dropout(0.4))
discriminator.add(Flatten())
discriminator.add(Dense(1, activation='sigmoid'))
return discriminator
discriminator = discriminator_model()
discriminator.summary()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment