Skip to content

Instantly share code, notes, and snippets.

View rohankshir's full-sized avatar

Rohan Kshirsagar rohankshir

View GitHub Profile
@yifanzz
yifanzz / code-editor-rules.md
Created December 17, 2024 00:01
EP12 - The One File to Rule Them All

[Project Name]

Every time you choose to apply a rule(s), explicitly state the rule(s) in the output. You can abbreviate the rule description to a single word or phrase.

Project Context

[Brief description ]

  • [more description]
  • [more description]
  • [more description]
@cbaziotis
cbaziotis / AttentionWithContext.py
Last active April 25, 2022 14:37
Keras Layer that implements an Attention mechanism, with a context/query vector, for temporal data. Supports Masking. Follows the work of Yang et al. [https://www.cs.cmu.edu/~diyiy/docs/naacl16.pdf] "Hierarchical Attention Networks for Document Classification"
def dot_product(x, kernel):
"""
Wrapper for dot product operation, in order to be compatible with both
Theano and Tensorflow
Args:
x (): input
kernel (): weights
Returns:
"""
if K.backend() == 'tensorflow':
@cbaziotis
cbaziotis / Attention.py
Last active October 22, 2024 08:31
Keras Layer that implements an Attention mechanism for temporal data. Supports Masking. Follows the work of Raffel et al. [https://arxiv.org/abs/1512.08756]
from keras import backend as K, initializers, regularizers, constraints
from keras.engine.topology import Layer
def dot_product(x, kernel):
"""
Wrapper for dot product operation, in order to be compatible with both
Theano and Tensorflow
Args:
@baraldilorenzo
baraldilorenzo / readme.md
Last active January 14, 2025 11:07
VGG-16 pre-trained model for Keras

##VGG16 model for Keras

This is the Keras model of the 16-layer network used by the VGG team in the ILSVRC-2014 competition.

It has been obtained by directly converting the Caffe model provived by the authors.

Details about the network architecture can be found in the following arXiv paper:

Very Deep Convolutional Networks for Large-Scale Image Recognition

K. Simonyan, A. Zisserman