Created
August 14, 2021 13:35
-
-
Save rohithteja/670ef63df6287ff71576b29d3dfe5f10 to your computer and use it in GitHub Desktop.
Karate club embedding visualization
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from sklearn.manifold import TSNE | |
import matplotlib.pyplot as plt | |
# retrieve the labels for each node | |
labels = np.asarray([G.nodes[i]['club'] != 'Mr. Hi' for i in G.nodes]).astype(np.int64) | |
# assigning colours to node labels | |
color_map = [] | |
for i in labels: | |
if i == 0: | |
color_map.append('blue') | |
else: | |
color_map.append('red') | |
# transform the embeddings from 128 dimensions to 2D space | |
m = TSNE(learning_rate=20, random_state=42) | |
tsne_features = m.fit_transform(list(embeddings.values())) | |
# plot the transformed embeddings | |
plt.figure(figsize=(9,6)) | |
plt.scatter(x = tsne_features[:,0], | |
y = tsne_features[:,1], | |
c = color_map, | |
s =600, | |
alpha=0.6) | |
# adds annotations | |
for i, label in enumerate(np.arange(0,34)): | |
plt.annotate(label, (tsne_features[:,0][i], tsne_features[:,1][i])) | |
# save the visualization | |
plt.savefig('tsne.png', bbox_inches='tight',dpi = 1000) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment