Last active
June 21, 2022 11:37
-
-
Save rohithteja/821935e7c3c690bb424ab8e1edc59dec to your computer and use it in GitHub Desktop.
Optuna LSTM
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import optuna | |
| from optuna.trial import TrialState | |
| from sklearn.metrics import accuracy_score | |
| def objective(trial): | |
| optimizer_name = trial.suggest_categorical("optimizer", ["adam", "SGD", "RMSprop", "Adadelta"]) | |
| epochs = trial.suggest_int("epochs", 5, 15,step=5, log=False) | |
| batchsize = trial.suggest_int("batchsize", 8, 40,step=16, log=False) | |
| history, model = lstm(optimizer_name,epochs,batchsize) | |
| val_acc = model.evaluate(X_val,y_val)[1] | |
| weights = model.get_weights() | |
| # Handle pruning based on the intermediate value. | |
| if trial.should_prune(): | |
| raise optuna.exceptions.TrialPruned() | |
| trial.set_user_attr(key="best_model_weights", value=weights) | |
| return val_acc | |
| def callback(study, trial): | |
| if study.best_trial.number == trial.number: | |
| study.set_user_attr(key="best_model_weights", | |
| value=trial.user_attrs["best_model_weights"]) | |
| study = optuna.create_study(direction="maximize") | |
| study.optimize(objective, n_trials=20, timeout=None, callbacks=[callback]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment