Created
August 21, 2021 14:07
-
-
Save rohithteja/d378a1cdee32b7d55d79e9c9756de157 to your computer and use it in GitHub Desktop.
Spektral Custom Dataset
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import networkx as nx | |
from spektral.data import Dataset | |
from sklearn.preprocessing import OneHotEncoder | |
from sklearn.model_selection import train_test_split | |
from spektral.transforms import AdjToSpTensor, LayerPreprocess | |
from spektral.layers import GCNConv | |
# spektral custom dataset class | |
class KarateDataset(Dataset): | |
def __init__(self, nodes, feats, **kwargs): | |
self.nodes = nodes | |
self.feats = feats | |
super().__init__(**kwargs) | |
def read(self): | |
output = [] | |
A = nx.to_scipy_sparse_matrix(G) | |
Y = labels | |
le = OneHotEncoder() | |
YY = le.fit_transform(Y.reshape(-1,1)) | |
output.append( | |
Graph(x=self.feats.astype("float32"), | |
a=A.astype("float32"), | |
y=YY.astype("float32").todense())) | |
return output | |
dataset = KarateDataset(nodes=np.array(list(G.nodes())), | |
feats=embeddings.numpy(), | |
transforms=[LayerPreprocess(GCNConv), AdjToSpTensor()]) | |
data = dataset[0] | |
# create train and test masks | |
node = np.array(list(G.nodes())) | |
n_nodes = node.shape[0] | |
X_train, X_test, y_train, y_test = train_test_split(pd.Series(node), | |
pd.Series(labels), | |
test_size=0.30, | |
random_state=42) | |
train_mask = torch.zeros(n_nodes, dtype=torch.float32) | |
test_mask = torch.zeros(n_nodes, dtype=torch.float32) | |
train_mask[X_train.index] = 1 | |
test_mask[X_test.index] = 1 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment