Created
May 24, 2022 12:17
-
-
Save rolisz/1b93e60f5b9a85fb5a5b79913fd0ad4c to your computer and use it in GitHub Desktop.
Prodigy pattern for multi-label text classification using patterns, without a model in the loop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import copy | |
from typing import Union, Iterable, Optional, List | |
import spacy | |
from prodigy import recipe, log, get_stream | |
from prodigy.models.matcher import PatternMatcher | |
from prodigy.types import RecipeSettingsType | |
from prodigy.util import get_labels | |
@recipe( | |
"textcat.manual_patterns", | |
# fmt: off | |
dataset=("Dataset to save annotations to", "positional", None, str), | |
source=("Data to annotate (file path or '-' to read from standard input)", "positional", None, str), | |
spacy_model=("Loadable spaCy pipeline or blank:lang (e.g. blank:en)", "positional", None, str), | |
labels=("Comma-separated label(s) to annotate or text file with one label per line", "option", "l", get_labels), | |
patterns=("Path to match patterns file", "option", "pt", str), | |
# fmt: on | |
) | |
def manual( | |
dataset: str, | |
source: Union[str, Iterable[dict]], | |
spacy_model: str, | |
labels: Optional[List[str]] = None, | |
patterns: Optional[str] = None, | |
) -> RecipeSettingsType: | |
""" | |
Manually annotate categories that apply to a text. If more than one label | |
is specified, categories are added as multiple choice options. If the | |
--exclusive flag is set, categories become mutually exclusive, meaning that | |
only one can be selected during annotation. | |
""" | |
log("RECIPE: Starting recipe textcat.manual", locals()) | |
log(f"RECIPE: Annotating with {len(labels)} labels", labels) | |
stream = get_stream(source, rehash=True, dedup=True, input_key="text") | |
nlp = spacy.load(spacy_model) | |
matcher = PatternMatcher( | |
nlp, | |
prior_correct=5.0, | |
prior_incorrect=5.0, | |
label_span=False, | |
label_task=True, | |
filter_labels=labels, | |
combine_matches=True, | |
task_hash_keys=("label",), | |
) | |
matcher = matcher.from_disk(patterns) | |
stream = add_suggestions(stream, matcher, labels) | |
return { | |
"view_id": "choice", | |
"dataset": dataset, | |
"stream": stream, | |
"config": { | |
"labels": labels, | |
"choice_style": "multiple", | |
"choice_auto_accept": False, | |
"exclude_by": "task", | |
"auto_count_stream": True, | |
}, | |
} | |
def add_suggestions(stream, matcher, labels): | |
texts = (eg for score, eg in matcher(stream)) | |
options = [{"id": label, "text": label} for label in labels] | |
for eg in texts: | |
task = copy.deepcopy(eg) | |
task["options"] = options | |
if 'label' in task: | |
task["accept"] = [task['label']] | |
del task['label'] | |
yield task |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment