Last active
December 22, 2023 09:44
-
-
Save rolux/48f1da6cf2bc6ca5833dbacbf852b348 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# git clone https://github.com/NVlabs/stylegan2 | |
import os | |
import numpy as np | |
from scipy.interpolate import interp1d | |
from scipy.io import wavfile | |
import matplotlib.pyplot as plt | |
import PIL.Image | |
import moviepy.editor | |
import dnnlib | |
import dnnlib.tflib as tflib | |
import pretrained_networks | |
audio = {} | |
fps = 60 | |
# https://www.google.com/search?q=death+grips+black+google+download | |
for mp3_filename in [f for f in os.listdir('data') if f.endswith('.mp3')]: | |
mp3_filename = f'data/{mp3_filename}' | |
wav_filename = mp3_filename[:-4] + '.wav' | |
if not os.path.exists(wav_filename): | |
audio_clip = moviepy.editor.AudioFileClip(mp3_filename) | |
audio_clip.write_audiofile(wav_filename, fps=44100, nbytes=2, codec='pcm_s16le') | |
track_name = os.path.basename(wav_filename)[15:-5] | |
rate, signal = wavfile.read(wav_filename) | |
signal = np.mean(signal, axis=1) # to mono | |
signal = np.abs(signal) | |
seed = signal.shape[0] | |
duration = signal.shape[0] / rate | |
frames = int(np.ceil(duration * fps)) | |
samples_per_frame = signal.shape[0] / frames | |
audio[track_name] = np.zeros(frames, dtype=signal.dtype) | |
for frame in range(frames): | |
start = int(round(frame * samples_per_frame)) | |
stop = int(round((frame + 1) * samples_per_frame)) | |
audio[track_name][frame] = np.mean(signal[start:stop], axis=0) | |
audio[track_name] /= max(audio[track_name]) | |
for track in sorted(audio.keys()): | |
plt.figure(figsize=(8, 3)) | |
plt.title(track) | |
plt.plot(audio[track]) | |
plt.savefig(f'data/{track}.png') | |
network_pkl = 'gdrive:networks/stylegan2-ffhq-config-f.pkl' | |
_G, _D, Gs = pretrained_networks.load_networks(network_pkl) | |
Gs_kwargs = dnnlib.EasyDict() | |
Gs_kwargs.output_transform = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True) | |
Gs_kwargs.randomize_noise = False | |
Gs_syn_kwargs = dnnlib.EasyDict() | |
Gs_syn_kwargs.output_transform = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True) | |
Gs_syn_kwargs.randomize_noise = False | |
Gs_syn_kwargs.minibatch_size = 4 | |
noise_vars = [var for name, var in Gs.components.synthesis.vars.items() if name.startswith('noise')] | |
w_avg = Gs.get_var('dlatent_avg') | |
def get_ws(n, frames, seed): | |
filename = f'data/ws_{n}_{frames}_{seed}.npy' | |
if not os.path.exists(filename): | |
src_ws = np.random.RandomState(seed).randn(n, 512) | |
ws = np.empty((frames, 512)) | |
for i in range(512): | |
# FIXME: retarded | |
x = np.linspace(0, 3*frames, 3*len(src_ws), endpoint=False) | |
y = np.tile(src_ws[:, i], 3) | |
x_ = np.linspace(0, 3*frames, 3*frames, endpoint=False) | |
y_ = interp1d(x, y, kind='quadratic', fill_value='extrapolate')(x_) | |
ws[:, i] = y_[frames:2*frames] | |
np.save(filename, ws) | |
else: | |
ws = np.load(filename) | |
return ws | |
def mix_styles(wa, wb, ivs): | |
w = np.copy(wa) | |
for i, v in ivs: | |
w[i] = wa[i] * (1 - v) + wb[i] * v | |
return w | |
def normalize_vector(v): | |
return v * np.std(w_avg) / np.std(v) + np.mean(w_avg) - np.mean(v) | |
def render_frame(t): | |
global base_index | |
frame = np.clip(np.int(np.round(t * fps)), 0, frames - 1) | |
base_index += base_speed * audio['Instrumental'][frame]**2 | |
base_w = base_ws[int(round(base_index)) % len(base_ws)] | |
base_w = np.tile(base_w, (18, 1)) | |
psi = 0.5 + audio['FX'][frame] / 2 | |
base_w = w_avg + (base_w - w_avg) * psi | |
mix_w = np.tile(mix_ws[frame], (18, 1)) | |
mix_w = w_avg + (mix_w - w_avg) * 0.75 | |
ranges = [range(0, 4), range(4, 8), range(8, 18)] | |
values = [audio[track][frame] for track in ['Drums', 'E Drums', 'Synth']] | |
w = mix_styles(base_w, mix_w, zip(ranges, values)) | |
w += mouth_open * audio['Vocal'][frame] * 1.5 | |
image = Gs.components.synthesis.run(np.stack([w]), **Gs_syn_kwargs)[0] | |
image = PIL.Image.fromarray(image).resize((size, size), PIL.Image.LANCZOS) | |
return np.array(image) | |
size = 1080 | |
seconds = int(np.ceil(duration)) | |
resolution = 10 | |
base_frames = resolution * frames | |
base_ws = get_ws(seconds, base_frames, seed) | |
base_speed = base_frames / sum(audio['Instrumental']**2) | |
base_index = 0 | |
mix_ws = get_ws(seconds, frames, seed + 1) | |
# https://rolux.org/media/stylegan2/vectors/mouth_ratio.npy | |
mouth_open = normalize_vector(-np.load('data/mouth_ratio.npy')) | |
mp4_filename = 'data/Culture Shock.mp4' | |
video_clip = moviepy.editor.VideoClip(render_frame, duration=duration) | |
audio_clip_i = moviepy.editor.AudioFileClip('data/Culture Shock (Instrumental).wav') | |
audio_clip_v = moviepy.editor.AudioFileClip('data/Culture Shock (Vocal).wav') | |
audio_clip = moviepy.editor.CompositeAudioClip([audio_clip_i, audio_clip_v]) | |
video_clip = video_clip.set_audio(audio_clip) | |
video_clip.write_videofile(mp4_filename, fps=fps, codec='libx264', audio_codec='aac', bitrate='8M') |
what python you use? stylegun2 is for 3.6 or later but PIL is for 2.7 or less
@nikitatishin5 install pillow instead of PIL and use python 3.6
if I want to combine another parameter to the drums for example, how should I do it? I already downloaded other vectors but I can't seem to make it work properly
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
what python you use? stylegun2 is for 3.6 or later but PIL is for 2.7 or less