Created
November 18, 2018 20:14
-
-
Save rom1504/edcfe21f45d3dc61ece1a312656ff3c0 to your computer and use it in GitHub Desktop.
keras square function
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
from tensorflow import keras | |
import numpy as np | |
from keras.layers import Dense, Activation | |
from keras.models import Sequential | |
model = Sequential([ | |
Dense(40, input_shape=(1,)), | |
Activation('relu'), | |
Dense(12), | |
Activation('sigmoid'), | |
Dense(1) | |
]) | |
model.compile(loss='mean_squared_error', optimizer='SGD', metrics=['mean_squared_error']) | |
x = np.arange(0, 1, 0.001).reshape(-1, 1) | |
y = np.square(x) | |
print("x {}".format(x[:10])) | |
print("y {}".format(y[:10])) | |
validation_x = np.arange(0, 1, 0.1).reshape(-1, 1) | |
validation_y = np.square(validation_x) | |
for i in range(10): | |
model.fit(x, y, nb_epoch=25, batch_size=16) | |
predictions = model.predict(x) | |
print(np.mean(np.square(predictions - y))) | |
predictions_validation = model.predict(validation_x) | |
print(np.mean(np.square(predictions_validation - validation_y))) | |
print(np.square(predictions_validation - validation_y)[:3]) | |
test_data = np.arange(0, 1, 0.2).reshape(-1, 1) | |
print("test data {}".format(test_data)) | |
prediction = model.predict(test_data) | |
print("Prediction: {}".format(prediction)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment