Created
July 12, 2019 16:00
-
-
Save ronaldgreeff/0cd0a8b14a1aac1c17830b14bda2a4e2 to your computer and use it in GitHub Desktop.
script that converts data from a database of scraped data to a csv format, ready to feed into a ml model
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#*-*encoding: utf-8*-* | |
from peewee import * | |
from sklearn.preprocessing import LabelEncoder | |
import pandas as pd | |
import numpy as np | |
import json | |
import re | |
from urllib.parse import urlparse, parse_qs | |
re_toke = re.compile('\W+') | |
database = SqliteDatabase('raw_extracts.db') | |
class BaseModel(Model): | |
class Meta: | |
database = database | |
class Extract(BaseModel): | |
url = CharField(null=True, unique=True) | |
site = CharField(null=True) | |
screenshot = CharField(null=True) | |
extract = TextField(null=True) | |
if __name__ == '__main__': | |
def create_csv(filename, limited=True): | |
selection = Extract.select().where(Extract.extract.is_null(False)) | |
e = [] | |
for select in selection: | |
site = select.site.lower() | |
extract = json.loads(select.extract) | |
d = { | |
'site': extract['site'], | |
'url': extract['url'], | |
'images': len(extract['images']), | |
'texts': len(extract['texts']), | |
'links': len(extract['links']), | |
} | |
if limited: | |
d.update( | |
{k: ''.join([i for i in v if not i.isalpha()]) for k, v in extract['body']['computed'].items() if k in ('height', 'width')}) | |
meta_tags = extract['meta_tags'] | |
descriptions = set() | |
titles = set() | |
types = set() | |
for title_string in [t for t in extract['titles'] if t]: | |
for word in re.split(re_toke, title_string): | |
word = word.lower() | |
if word and (len(word)>1) and word.isalpha() and word != site: | |
titles.add(word) | |
for k in meta_tags: | |
if k in ('keywords', 'description', 'og:description', 'twitter:description'): | |
descript_string = meta_tags[k] | |
for word in re.split(re_toke, descript_string): | |
word = word.lower() | |
if word and (len(word)>1) and word.isalpha() and word != site: | |
descriptions.add(word) | |
elif k in ('og:title', 'twitter:title'): | |
title_string = meta_tags[k] | |
for word in re.split(re_toke, title_string): | |
word = word.lower() | |
if word and (len(word)>1) and word.isalpha() and word != site: | |
titles.add(word) | |
elif k in ('og:type', ): | |
type_string = meta_tags[k] | |
for word in re.split(re_toke, type_string): | |
word = word.lower() | |
if word and (len(word)>1) and word.isalpha() and word != site: | |
types.add(word) | |
if descriptions: | |
d['descriptions'] = ','.join(descriptions) | |
if titles: | |
d['titles'] = ','.join(titles) | |
if types: | |
d['types'] = ','.join(types) | |
else: | |
d.update( | |
{k:v for k, v in extract['meta_tags'].items()}) | |
d.update( | |
{k:v for k, v in extract['body']['computed'].items()}) | |
e.append(d) | |
df = pd.DataFrame(e) | |
df.to_csv(filename, index=None, header=True) | |
# create_csv(filename='page_classification_data.csv') | |
# df = (pd.read_csv('page_classification_data.csv', engine='python')) | |
# print(df.info()) | |
def get_url_info(url): | |
""" scheme://netloc/path;parameters?query#fragment | |
https://www.amazon.co.uk/ap/signin?openid.return_to=https%3A%2F%2Fwww.amazon.co.uk%2Fref%3Dgw_sgn_ib%2F259-3956818-6697345&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.assoc_handle=gbflex&openid.mode=checkid_setup&marketPlaceId=A1F83G8C2ARO7P&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&#collection | |
ParseResult( | |
scheme='https', | |
netloc='www.amazon.co.uk', | |
path='/ap/signin', | |
params='', | |
query='openid.return_to=https%3A%2F%2Fwww.amazon.co.uk%2Fref%3Dgw_sgn_ib%2F259-3956818-6697345&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.assoc_handle=gbflex&openid.mode=checkid_setup&marketPlaceId=A1F83G8C2ARO7P&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&', | |
fragment='collection') | |
qs = { | |
'openid.return_to': ['https://www.amazon.co.uk/ref=gw_sgn_ib/259-3956818-6697345'], | |
'openid.identity': ['http://specs.openid.net/auth/2.0/identifier_select'], | |
'openid.assoc_handle': ['gbflex'], | |
'openid.mode': ['checkid_setup'], | |
'marketPlaceId': ['A1F83G8C2ARO7P'], | |
'openid.claimed_id': ['http://specs.openid.net/auth/2.0/identifier_select'], | |
'openid.ns': ['http://specs.openid.net/auth/2.0']} | |
""" | |
u = urlparse(url) | |
print(u) | |
string = ''.join(u[2:]) | |
length = len(string) | |
c = [] | |
n = [] | |
o = [] | |
for i in string: | |
if i.isalpha(): | |
c.append(i) | |
elif i.isnumeric(): | |
n.append(i) | |
else: | |
o.append(i) | |
path_segments = len(u.path.split('/')) | |
qs = parse_qs(u.query).keys() | |
# queries = len(o.) | |
url = 'https://www.amazon.co.uk/ap/signin?openid.return_to=https%3A%2F%2Fwww.amazon.co.uk%2Fref%3Dgw_sgn_ib%2F259-3956818-6697345&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.assoc_handle=gbflex&openid.mode=checkid_setup&marketPlaceId=A1F83G8C2ARO7P&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&#collection' | |
get_url_info(url) | |
# data['og:url'] = split_url(list(data['og:url'])) | |
# # description_encoder = LabelEncoder() | |
# # ogtype_encoder = LabelEncoder() | |
# # url_encoder = LabelEncoder() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment