Forked from mikkokotila/minimal_talos_example.py
Last active
August 28, 2019 17:46
-
-
Save ronammar/a62fe679ef156135faf5b171c39cd47e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import talos as ta | |
from keras.models import Sequential | |
from keras.layers import Dense | |
def minimal(): | |
x, y = ta.templates.datasets.iris() | |
p = {'activation':['relu', 'elu'], | |
'optimizer': ['Nadam', 'Adam'], | |
'losses': ['logcosh'], | |
'hidden_layers':[0, 1, 2], | |
'batch_size': [20,30,40], | |
'epochs': [10,20]} | |
def iris_model(x_train, y_train, x_val, y_val, params): | |
model = Sequential() | |
model.add(Dense(32, input_dim=4, activation=params['activation'])) | |
model.add(Dense(3, activation='softmax')) | |
model.compile(optimizer=params['optimizer'], loss=params['losses']) | |
out = model.fit(x_train, y_train, | |
batch_size=params['batch_size'], | |
epochs=params['epochs'], | |
validation_data=[x_val, y_val], | |
verbose=0) | |
return out, model | |
scan_object = ta.Scan(x, y, params=p, model=iris_model, experiment_name="minimal_iris", fraction_limit=0.1) | |
return scan_object |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment