Skip to content

Instantly share code, notes, and snippets.

@ronekko
Created December 1, 2017 11:11
Show Gist options
  • Save ronekko/99932362a9fc78e2edf3aa30b81360fb to your computer and use it in GitHub Desktop.
Save ronekko/99932362a9fc78e2edf3aa30b81360fb to your computer and use it in GitHub Desktop.
# -*- coding: utf-8 -*-
"""
Created on Mon Jun 29 14:55:33 2015
@author: sakurai
"""
import numpy as np
import matplotlib.pyplot as plt
from sklearn import preprocessing
def generate_clustering_data():
N, D, K = 100, 2, 4
X = []
X_k = np.random.randn(N, D) * [50, 1] + [0, 10] + [0, -100]
X.append(X_k)
X_k = np.random.randn(N, D) * [50, 1] + [0, -10] + [0, -100]
X.append(X_k)
X_k = np.random.randn(N, D) * [1, 50] + [10, 0] + [0, 100]
X.append(X_k)
X_k = np.random.randn(N, D) * [1, 50] + [-10, 0] + [0, 100]
X.append(X_k)
X = np.concatenate(X)
np.random.shuffle(X)
return X
if __name__ == '__main__':
X = generate_clustering_data()
plt.plot(X[:, 0], X[:, 1], '.')
plt.title('Number of clusters is 4.')
plt.show()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment