Skip to content

Instantly share code, notes, and snippets.

@ronghanghu
Created July 25, 2016 18:25
Show Gist options
  • Save ronghanghu/a98c3e28ef6a5c5b87c38e64034147eb to your computer and use it in GitHub Desktop.
Save ronghanghu/a98c3e28ef6a5c5b87c38e64034147eb to your computer and use it in GitHub Desktop.
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcuda.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcurand.so locally
WARNING:tensorflow:<tensorflow.python.ops.rnn_cell.BasicLSTMCell object at 0x7fe3fc03dd10>: Using a concatenated state is slower and will soon be deprecated. Use state_is_tuple=True.
I tensorflow/core/common_runtime/gpu/gpu_init.cc:102] Found device 0 with properties:
name: Tesla K40c
major: 3 minor: 5 memoryClockRate (GHz) 0.745
pciBusID 0000:88:00.0
Total memory: 12.00GiB
Free memory: 11.90GiB
I tensorflow/core/common_runtime/gpu/gpu_init.cc:126] DMA: 0
I tensorflow/core/common_runtime/gpu/gpu_init.cc:136] 0: Y
I tensorflow/core/common_runtime/gpu/gpu_device.cc:806] Creating TensorFlow device (/gpu:0) -> (device: 0, name: Tesla K40c, pci bus id: 0000:88:00.0)
testing image 0 / 9994
/home/ronghang/anaconda/lib/python2.7/site-packages/skimage/util/dtype.py:110: UserWarning: Possible precision loss when converting from float64 to uint8
"%s to %s" % (dtypeobj_in, dtypeobj))
W tensorflow/core/common_runtime/bfc_allocator.cc:213] Ran out of memory trying to allocate 16.19GiB. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory is available.
W tensorflow/core/common_runtime/bfc_allocator.cc:213] Ran out of memory trying to allocate 32.38GiB. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory is available.
W tensorflow/core/common_runtime/bfc_allocator.cc:213] Ran out of memory trying to allocate 32.38GiB. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory is available.
W tensorflow/core/common_runtime/bfc_allocator.cc:213] Ran out of memory trying to allocate 16.29GiB. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory is available.
W tensorflow/core/common_runtime/bfc_allocator.cc:213] Ran out of memory trying to allocate 32.57GiB. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory is available.
W tensorflow/core/common_runtime/bfc_allocator.cc:213] Ran out of memory trying to allocate 32.57GiB. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory is available.
W tensorflow/core/common_runtime/bfc_allocator.cc:213] Ran out of memory trying to allocate 17.39GiB. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory is available.
testing image 1 / 9994
testing image 2 / 9994
testing image 3 / 9994
testing image 4 / 9994
testing image 5 / 9994
testing image 6 / 9994
testing image 7 / 9994
testing image 8 / 9994
testing image 9 / 9994
testing image 10 / 9994
testing image 11 / 9994
testing image 12 / 9994
testing image 13 / 9994
testing image 14 / 9994
testing image 15 / 9994
testing image 16 / 9994
testing image 17 / 9994
testing image 18 / 9994
testing image 19 / 9994
testing image 20 / 9994
testing image 21 / 9994
testing image 22 / 9994
testing image 23 / 9994
testing image 24 / 9994
testing image 25 / 9994
testing image 26 / 9994
testing image 27 / 9994
testing image 28 / 9994
testing image 29 / 9994
testing image 30 / 9994
testing image 31 / 9994
testing image 32 / 9994
testing image 33 / 9994
testing image 34 / 9994
testing image 35 / 9994
testing image 36 / 9994
testing image 37 / 9994
testing image 38 / 9994
testing image 39 / 9994
testing image 40 / 9994
testing image 41 / 9994
testing image 42 / 9994
testing image 43 / 9994
testing image 44 / 9994
testing image 45 / 9994
testing image 46 / 9994
testing image 47 / 9994
testing image 48 / 9994
testing image 49 / 9994
testing image 50 / 9994
testing image 51 / 9994
testing image 52 / 9994
testing image 53 / 9994
testing image 54 / 9994
testing image 55 / 9994
testing image 56 / 9994
testing image 57 / 9994
testing image 58 / 9994
testing image 59 / 9994
testing image 60 / 9994
testing image 61 / 9994
testing image 62 / 9994
testing image 63 / 9994
testing image 64 / 9994
testing image 65 / 9994
testing image 66 / 9994
testing image 67 / 9994
testing image 68 / 9994
testing image 69 / 9994
testing image 70 / 9994
testing image 71 / 9994
testing image 72 / 9994
testing image 73 / 9994
testing image 74 / 9994
testing image 75 / 9994
testing image 76 / 9994
testing image 77 / 9994
testing image 78 / 9994
testing image 79 / 9994
testing image 80 / 9994
testing image 81 / 9994
testing image 82 / 9994
testing image 83 / 9994
testing image 84 / 9994
testing image 85 / 9994
testing image 86 / 9994
testing image 87 / 9994
testing image 88 / 9994
testing image 89 / 9994
testing image 90 / 9994
testing image 91 / 9994
testing image 92 / 9994
testing image 93 / 9994
testing image 94 / 9994
testing image 95 / 9994
testing image 96 / 9994
testing image 97 / 9994
testing image 98 / 9994
testing image 99 / 9994
testing image 100 / 9994
testing image 101 / 9994
testing image 102 / 9994
testing image 103 / 9994
testing image 104 / 9994
testing image 105 / 9994
testing image 106 / 9994
testing image 107 / 9994
testing image 108 / 9994
testing image 109 / 9994
testing image 110 / 9994
testing image 111 / 9994
testing image 112 / 9994
testing image 113 / 9994
testing image 114 / 9994
testing image 115 / 9994
testing image 116 / 9994
testing image 117 / 9994
testing image 118 / 9994
testing image 119 / 9994
testing image 120 / 9994
testing image 121 / 9994
testing image 122 / 9994
testing image 123 / 9994
testing image 124 / 9994
testing image 125 / 9994
testing image 126 / 9994
testing image 127 / 9994
testing image 128 / 9994
testing image 129 / 9994
testing image 130 / 9994
testing image 131 / 9994
testing image 132 / 9994
testing image 133 / 9994
testing image 134 / 9994
testing image 135 / 9994
testing image 136 / 9994
testing image 137 / 9994
testing image 138 / 9994
testing image 139 / 9994
testing image 140 / 9994
testing image 141 / 9994
testing image 142 / 9994
testing image 143 / 9994
testing image 144 / 9994
testing image 145 / 9994
testing image 146 / 9994
testing image 147 / 9994
testing image 148 / 9994
testing image 149 / 9994
testing image 150 / 9994
testing image 151 / 9994
testing image 152 / 9994
testing image 153 / 9994
testing image 154 / 9994
testing image 155 / 9994
testing image 156 / 9994
testing image 157 / 9994
testing image 158 / 9994
testing image 159 / 9994
testing image 160 / 9994
testing image 161 / 9994
testing image 162 / 9994
testing image 163 / 9994
testing image 164 / 9994
testing image 165 / 9994
testing image 166 / 9994
testing image 167 / 9994
testing image 168 / 9994
testing image 169 / 9994
testing image 170 / 9994
testing image 171 / 9994
testing image 172 / 9994
testing image 173 / 9994
testing image 174 / 9994
testing image 175 / 9994
testing image 176 / 9994
testing image 177 / 9994
testing image 178 / 9994
testing image 179 / 9994
testing image 180 / 9994
testing image 181 / 9994
testing image 182 / 9994
testing image 183 / 9994
testing image 184 / 9994
testing image 185 / 9994
testing image 186 / 9994
testing image 187 / 9994
testing image 188 / 9994
testing image 189 / 9994
testing image 190 / 9994
testing image 191 / 9994
testing image 192 / 9994
testing image 193 / 9994
testing image 194 / 9994
testing image 195 / 9994
testing image 196 / 9994
testing image 197 / 9994
testing image 198 / 9994
testing image 199 / 9994
testing image 200 / 9994
testing image 201 / 9994
testing image 202 / 9994
testing image 203 / 9994
testing image 204 / 9994
testing image 205 / 9994
testing image 206 / 9994
testing image 207 / 9994
testing image 208 / 9994
testing image 209 / 9994
testing image 210 / 9994
testing image 211 / 9994
testing image 212 / 9994
testing image 213 / 9994
testing image 214 / 9994
testing image 215 / 9994
testing image 216 / 9994
testing image 217 / 9994
testing image 218 / 9994
testing image 219 / 9994
testing image 220 / 9994
testing image 221 / 9994
testing image 222 / 9994
testing image 223 / 9994
testing image 224 / 9994
testing image 225 / 9994
testing image 226 / 9994
testing image 227 / 9994
testing image 228 / 9994
testing image 229 / 9994
testing image 230 / 9994
testing image 231 / 9994
testing image 232 / 9994
testing image 233 / 9994
testing image 234 / 9994
testing image 235 / 9994
testing image 236 / 9994
testing image 237 / 9994
testing image 238 / 9994
testing image 239 / 9994
testing image 240 / 9994
testing image 241 / 9994
testing image 242 / 9994
testing image 243 / 9994
testing image 244 / 9994
testing image 245 / 9994
testing image 246 / 9994
testing image 247 / 9994
testing image 248 / 9994
testing image 249 / 9994
testing image 250 / 9994
testing image 251 / 9994
testing image 252 / 9994
testing image 253 / 9994
testing image 254 / 9994
testing image 255 / 9994
testing image 256 / 9994
testing image 257 / 9994
testing image 258 / 9994
testing image 259 / 9994
testing image 260 / 9994
testing image 261 / 9994
testing image 262 / 9994
testing image 263 / 9994
testing image 264 / 9994
testing image 265 / 9994
testing image 266 / 9994
testing image 267 / 9994
testing image 268 / 9994
testing image 269 / 9994
testing image 270 / 9994
testing image 271 / 9994
testing image 272 / 9994
testing image 273 / 9994
testing image 274 / 9994
testing image 275 / 9994
testing image 276 / 9994
testing image 277 / 9994
testing image 278 / 9994
testing image 279 / 9994
testing image 280 / 9994
testing image 281 / 9994
testing image 282 / 9994
testing image 283 / 9994
testing image 284 / 9994
testing image 285 / 9994
testing image 286 / 9994
testing image 287 / 9994
testing image 288 / 9994
testing image 289 / 9994
testing image 290 / 9994
testing image 291 / 9994
testing image 292 / 9994
testing image 293 / 9994
testing image 294 / 9994
testing image 295 / 9994
testing image 296 / 9994
testing image 297 / 9994
testing image 298 / 9994
testing image 299 / 9994
testing image 300 / 9994
testing image 301 / 9994
testing image 302 / 9994
testing image 303 / 9994
testing image 304 / 9994
testing image 305 / 9994
testing image 306 / 9994
testing image 307 / 9994
testing image 308 / 9994
testing image 309 / 9994
testing image 310 / 9994
testing image 311 / 9994
testing image 312 / 9994
testing image 313 / 9994
testing image 314 / 9994
testing image 315 / 9994
testing image 316 / 9994
testing image 317 / 9994
testing image 318 / 9994
testing image 319 / 9994
testing image 320 / 9994
testing image 321 / 9994
testing image 322 / 9994
testing image 323 / 9994
testing image 324 / 9994
testing image 325 / 9994
testing image 326 / 9994
testing image 327 / 9994
testing image 328 / 9994
testing image 329 / 9994
testing image 330 / 9994
testing image 331 / 9994
testing image 332 / 9994
testing image 333 / 9994
testing image 334 / 9994
testing image 335 / 9994
testing image 336 / 9994
testing image 337 / 9994
testing image 338 / 9994
testing image 339 / 9994
testing image 340 / 9994
testing image 341 / 9994
testing image 342 / 9994
testing image 343 / 9994
testing image 344 / 9994
testing image 345 / 9994
testing image 346 / 9994
testing image 347 / 9994
testing image 348 / 9994
testing image 349 / 9994
testing image 350 / 9994
testing image 351 / 9994
testing image 352 / 9994
testing image 353 / 9994
testing image 354 / 9994
testing image 355 / 9994
testing image 356 / 9994
testing image 357 / 9994
testing image 358 / 9994
testing image 359 / 9994
testing image 360 / 9994
testing image 361 / 9994
testing image 362 / 9994
testing image 363 / 9994
testing image 364 / 9994
testing image 365 / 9994
testing image 366 / 9994
testing image 367 / 9994
testing image 368 / 9994
testing image 369 / 9994
testing image 370 / 9994
testing image 371 / 9994
testing image 372 / 9994
testing image 373 / 9994
testing image 374 / 9994
testing image 375 / 9994
testing image 376 / 9994
testing image 377 / 9994
testing image 378 / 9994
testing image 379 / 9994
testing image 380 / 9994
testing image 381 / 9994
testing image 382 / 9994
testing image 383 / 9994
testing image 384 / 9994
testing image 385 / 9994
testing image 386 / 9994
testing image 387 / 9994
testing image 388 / 9994
testing image 389 / 9994
testing image 390 / 9994
testing image 391 / 9994
testing image 392 / 9994
testing image 393 / 9994
testing image 394 / 9994
testing image 395 / 9994
testing image 396 / 9994
testing image 397 / 9994
testing image 398 / 9994
testing image 399 / 9994
testing image 400 / 9994
testing image 401 / 9994
testing image 402 / 9994
testing image 403 / 9994
testing image 404 / 9994
testing image 405 / 9994
testing image 406 / 9994
testing image 407 / 9994
testing image 408 / 9994
testing image 409 / 9994
testing image 410 / 9994
testing image 411 / 9994
testing image 412 / 9994
testing image 413 / 9994
testing image 414 / 9994
testing image 415 / 9994
testing image 416 / 9994
testing image 417 / 9994
testing image 418 / 9994
testing image 419 / 9994
testing image 420 / 9994
testing image 421 / 9994
testing image 422 / 9994
testing image 423 / 9994
testing image 424 / 9994
testing image 425 / 9994
testing image 426 / 9994
testing image 427 / 9994
testing image 428 / 9994
testing image 429 / 9994
testing image 430 / 9994
testing image 431 / 9994
testing image 432 / 9994
testing image 433 / 9994
testing image 434 / 9994
testing image 435 / 9994
testing image 436 / 9994
testing image 437 / 9994
testing image 438 / 9994
testing image 439 / 9994
testing image 440 / 9994
testing image 441 / 9994
testing image 442 / 9994
testing image 443 / 9994
testing image 444 / 9994
testing image 445 / 9994
testing image 446 / 9994
testing image 447 / 9994
testing image 448 / 9994
testing image 449 / 9994
testing image 450 / 9994
testing image 451 / 9994
testing image 452 / 9994
testing image 453 / 9994
testing image 454 / 9994
testing image 455 / 9994
testing image 456 / 9994
testing image 457 / 9994
testing image 458 / 9994
testing image 459 / 9994
testing image 460 / 9994
testing image 461 / 9994
testing image 462 / 9994
testing image 463 / 9994
testing image 464 / 9994
testing image 465 / 9994
testing image 466 / 9994
testing image 467 / 9994
testing image 468 / 9994
testing image 469 / 9994
testing image 470 / 9994
testing image 471 / 9994
testing image 472 / 9994
testing image 473 / 9994
testing image 474 / 9994
testing image 475 / 9994
testing image 476 / 9994
testing image 477 / 9994
testing image 478 / 9994
testing image 479 / 9994
testing image 480 / 9994
testing image 481 / 9994
testing image 482 / 9994
testing image 483 / 9994
testing image 484 / 9994
testing image 485 / 9994
testing image 486 / 9994
testing image 487 / 9994
testing image 488 / 9994
testing image 489 / 9994
testing image 490 / 9994
testing image 491 / 9994
testing image 492 / 9994
testing image 493 / 9994
testing image 494 / 9994
testing image 495 / 9994
testing image 496 / 9994
testing image 497 / 9994
testing image 498 / 9994
testing image 499 / 9994
testing image 500 / 9994
testing image 501 / 9994
testing image 502 / 9994
testing image 503 / 9994
testing image 504 / 9994
testing image 505 / 9994
testing image 506 / 9994
testing image 507 / 9994
testing image 508 / 9994
testing image 509 / 9994
testing image 510 / 9994
testing image 511 / 9994
testing image 512 / 9994
testing image 513 / 9994
testing image 514 / 9994
testing image 515 / 9994
testing image 516 / 9994
testing image 517 / 9994
testing image 518 / 9994
testing image 519 / 9994
testing image 520 / 9994
testing image 521 / 9994
testing image 522 / 9994
testing image 523 / 9994
testing image 524 / 9994
testing image 525 / 9994
testing image 526 / 9994
testing image 527 / 9994
testing image 528 / 9994
testing image 529 / 9994
testing image 530 / 9994
testing image 531 / 9994
testing image 532 / 9994
testing image 533 / 9994
testing image 534 / 9994
testing image 535 / 9994
testing image 536 / 9994
testing image 537 / 9994
testing image 538 / 9994
testing image 539 / 9994
testing image 540 / 9994
testing image 541 / 9994
testing image 542 / 9994
testing image 543 / 9994
testing image 544 / 9994
testing image 545 / 9994
testing image 546 / 9994
testing image 547 / 9994
testing image 548 / 9994
testing image 549 / 9994
testing image 550 / 9994
testing image 551 / 9994
testing image 552 / 9994
testing image 553 / 9994
testing image 554 / 9994
testing image 555 / 9994
testing image 556 / 9994
testing image 557 / 9994
testing image 558 / 9994
testing image 559 / 9994
testing image 560 / 9994
testing image 561 / 9994
testing image 562 / 9994
testing image 563 / 9994
testing image 564 / 9994
testing image 565 / 9994
testing image 566 / 9994
testing image 567 / 9994
testing image 568 / 9994
testing image 569 / 9994
testing image 570 / 9994
testing image 571 / 9994
testing image 572 / 9994
testing image 573 / 9994
testing image 574 / 9994
testing image 575 / 9994
testing image 576 / 9994
testing image 577 / 9994
testing image 578 / 9994
testing image 579 / 9994
testing image 580 / 9994
testing image 581 / 9994
testing image 582 / 9994
testing image 583 / 9994
testing image 584 / 9994
testing image 585 / 9994
testing image 586 / 9994
testing image 587 / 9994
testing image 588 / 9994
testing image 589 / 9994
testing image 590 / 9994
testing image 591 / 9994
testing image 592 / 9994
testing image 593 / 9994
testing image 594 / 9994
testing image 595 / 9994
testing image 596 / 9994
testing image 597 / 9994
testing image 598 / 9994
testing image 599 / 9994
testing image 600 / 9994
testing image 601 / 9994
testing image 602 / 9994
testing image 603 / 9994
testing image 604 / 9994
testing image 605 / 9994
testing image 606 / 9994
testing image 607 / 9994
testing image 608 / 9994
testing image 609 / 9994
testing image 610 / 9994
testing image 611 / 9994
testing image 612 / 9994
testing image 613 / 9994
testing image 614 / 9994
testing image 615 / 9994
testing image 616 / 9994
testing image 617 / 9994
testing image 618 / 9994
testing image 619 / 9994
testing image 620 / 9994
testing image 621 / 9994
testing image 622 / 9994
testing image 623 / 9994
testing image 624 / 9994
testing image 625 / 9994
testing image 626 / 9994
testing image 627 / 9994
testing image 628 / 9994
testing image 629 / 9994
testing image 630 / 9994
testing image 631 / 9994
testing image 632 / 9994
testing image 633 / 9994
testing image 634 / 9994
testing image 635 / 9994
testing image 636 / 9994
testing image 637 / 9994
testing image 638 / 9994
testing image 639 / 9994
testing image 640 / 9994
testing image 641 / 9994
testing image 642 / 9994
testing image 643 / 9994
testing image 644 / 9994
testing image 645 / 9994
testing image 646 / 9994
testing image 647 / 9994
testing image 648 / 9994
testing image 649 / 9994
testing image 650 / 9994
testing image 651 / 9994
testing image 652 / 9994
testing image 653 / 9994
testing image 654 / 9994
testing image 655 / 9994
testing image 656 / 9994
testing image 657 / 9994
testing image 658 / 9994
testing image 659 / 9994
testing image 660 / 9994
testing image 661 / 9994
testing image 662 / 9994
testing image 663 / 9994
testing image 664 / 9994
testing image 665 / 9994
testing image 666 / 9994
testing image 667 / 9994
testing image 668 / 9994
testing image 669 / 9994
testing image 670 / 9994
testing image 671 / 9994
testing image 672 / 9994
testing image 673 / 9994
testing image 674 / 9994
testing image 675 / 9994
testing image 676 / 9994
testing image 677 / 9994
testing image 678 / 9994
testing image 679 / 9994
testing image 680 / 9994
testing image 681 / 9994
testing image 682 / 9994
testing image 683 / 9994
testing image 684 / 9994
testing image 685 / 9994
testing image 686 / 9994
testing image 687 / 9994
testing image 688 / 9994
testing image 689 / 9994
testing image 690 / 9994
testing image 691 / 9994
testing image 692 / 9994
testing image 693 / 9994
testing image 694 / 9994
testing image 695 / 9994
testing image 696 / 9994
testing image 697 / 9994
testing image 698 / 9994
testing image 699 / 9994
testing image 700 / 9994
testing image 701 / 9994
testing image 702 / 9994
testing image 703 / 9994
testing image 704 / 9994
testing image 705 / 9994
testing image 706 / 9994
testing image 707 / 9994
testing image 708 / 9994
testing image 709 / 9994
testing image 710 / 9994
testing image 711 / 9994
testing image 712 / 9994
testing image 713 / 9994
testing image 714 / 9994
testing image 715 / 9994
testing image 716 / 9994
testing image 717 / 9994
testing image 718 / 9994
testing image 719 / 9994
testing image 720 / 9994
testing image 721 / 9994
testing image 722 / 9994
testing image 723 / 9994
testing image 724 / 9994
testing image 725 / 9994
testing image 726 / 9994
testing image 727 / 9994
testing image 728 / 9994
testing image 729 / 9994
testing image 730 / 9994
testing image 731 / 9994
testing image 732 / 9994
testing image 733 / 9994
testing image 734 / 9994
testing image 735 / 9994
testing image 736 / 9994
testing image 737 / 9994
testing image 738 / 9994
testing image 739 / 9994
testing image 740 / 9994
testing image 741 / 9994
testing image 742 / 9994
testing image 743 / 9994
testing image 744 / 9994
testing image 745 / 9994
testing image 746 / 9994
testing image 747 / 9994
testing image 748 / 9994
testing image 749 / 9994
testing image 750 / 9994
testing image 751 / 9994
testing image 752 / 9994
testing image 753 / 9994
testing image 754 / 9994
testing image 755 / 9994
testing image 756 / 9994
testing image 757 / 9994
testing image 758 / 9994
testing image 759 / 9994
testing image 760 / 9994
testing image 761 / 9994
testing image 762 / 9994
testing image 763 / 9994
testing image 764 / 9994
testing image 765 / 9994
testing image 766 / 9994
testing image 767 / 9994
testing image 768 / 9994
testing image 769 / 9994
testing image 770 / 9994
testing image 771 / 9994
testing image 772 / 9994
testing image 773 / 9994
testing image 774 / 9994
testing image 775 / 9994
testing image 776 / 9994
testing image 777 / 9994
testing image 778 / 9994
testing image 779 / 9994
testing image 780 / 9994
testing image 781 / 9994
testing image 782 / 9994
testing image 783 / 9994
testing image 784 / 9994
testing image 785 / 9994
testing image 786 / 9994
testing image 787 / 9994
testing image 788 / 9994
testing image 789 / 9994
testing image 790 / 9994
testing image 791 / 9994
testing image 792 / 9994
testing image 793 / 9994
testing image 794 / 9994
testing image 795 / 9994
testing image 796 / 9994
testing image 797 / 9994
testing image 798 / 9994
testing image 799 / 9994
testing image 800 / 9994
testing image 801 / 9994
testing image 802 / 9994
testing image 803 / 9994
testing image 804 / 9994
testing image 805 / 9994
testing image 806 / 9994
testing image 807 / 9994
testing image 808 / 9994
testing image 809 / 9994
testing image 810 / 9994
testing image 811 / 9994
testing image 812 / 9994
testing image 813 / 9994
testing image 814 / 9994
testing image 815 / 9994
testing image 816 / 9994
testing image 817 / 9994
testing image 818 / 9994
testing image 819 / 9994
testing image 820 / 9994
testing image 821 / 9994
testing image 822 / 9994
testing image 823 / 9994
testing image 824 / 9994
testing image 825 / 9994
testing image 826 / 9994
testing image 827 / 9994
testing image 828 / 9994
testing image 829 / 9994
testing image 830 / 9994
testing image 831 / 9994
testing image 832 / 9994
testing image 833 / 9994
testing image 834 / 9994
testing image 835 / 9994
testing image 836 / 9994
testing image 837 / 9994
testing image 838 / 9994
testing image 839 / 9994
testing image 840 / 9994
testing image 841 / 9994
testing image 842 / 9994
testing image 843 / 9994
testing image 844 / 9994
testing image 845 / 9994
testing image 846 / 9994
testing image 847 / 9994
testing image 848 / 9994
testing image 849 / 9994
testing image 850 / 9994
testing image 851 / 9994
testing image 852 / 9994
testing image 853 / 9994
testing image 854 / 9994
testing image 855 / 9994
testing image 856 / 9994
testing image 857 / 9994
testing image 858 / 9994
testing image 859 / 9994
testing image 860 / 9994
testing image 861 / 9994
testing image 862 / 9994
testing image 863 / 9994
testing image 864 / 9994
testing image 865 / 9994
testing image 866 / 9994
testing image 867 / 9994
testing image 868 / 9994
testing image 869 / 9994
testing image 870 / 9994
testing image 871 / 9994
testing image 872 / 9994
testing image 873 / 9994
testing image 874 / 9994
testing image 875 / 9994
testing image 876 / 9994
testing image 877 / 9994
testing image 878 / 9994
testing image 879 / 9994
testing image 880 / 9994
testing image 881 / 9994
testing image 882 / 9994
testing image 883 / 9994
testing image 884 / 9994
testing image 885 / 9994
testing image 886 / 9994
testing image 887 / 9994
testing image 888 / 9994
testing image 889 / 9994
testing image 890 / 9994
testing image 891 / 9994
testing image 892 / 9994
testing image 893 / 9994
testing image 894 / 9994
testing image 895 / 9994
testing image 896 / 9994
testing image 897 / 9994
testing image 898 / 9994
testing image 899 / 9994
testing image 900 / 9994
testing image 901 / 9994
testing image 902 / 9994
testing image 903 / 9994
testing image 904 / 9994
testing image 905 / 9994
testing image 906 / 9994
testing image 907 / 9994
testing image 908 / 9994
testing image 909 / 9994
testing image 910 / 9994
testing image 911 / 9994
testing image 912 / 9994
testing image 913 / 9994
testing image 914 / 9994
testing image 915 / 9994
testing image 916 / 9994
testing image 917 / 9994
testing image 918 / 9994
testing image 919 / 9994
testing image 920 / 9994
testing image 921 / 9994
testing image 922 / 9994
testing image 923 / 9994
testing image 924 / 9994
testing image 925 / 9994
testing image 926 / 9994
testing image 927 / 9994
testing image 928 / 9994
testing image 929 / 9994
testing image 930 / 9994
testing image 931 / 9994
testing image 932 / 9994
testing image 933 / 9994
testing image 934 / 9994
testing image 935 / 9994
testing image 936 / 9994
testing image 937 / 9994
testing image 938 / 9994
testing image 939 / 9994
testing image 940 / 9994
testing image 941 / 9994
testing image 942 / 9994
testing image 943 / 9994
testing image 944 / 9994
testing image 945 / 9994
testing image 946 / 9994
testing image 947 / 9994
testing image 948 / 9994
testing image 949 / 9994
testing image 950 / 9994
testing image 951 / 9994
testing image 952 / 9994
testing image 953 / 9994
testing image 954 / 9994
testing image 955 / 9994
testing image 956 / 9994
testing image 957 / 9994
testing image 958 / 9994
testing image 959 / 9994
testing image 960 / 9994
testing image 961 / 9994
testing image 962 / 9994
testing image 963 / 9994
testing image 964 / 9994
testing image 965 / 9994
testing image 966 / 9994
testing image 967 / 9994
testing image 968 / 9994
testing image 969 / 9994
testing image 970 / 9994
testing image 971 / 9994
testing image 972 / 9994
testing image 973 / 9994
testing image 974 / 9994
testing image 975 / 9994
testing image 976 / 9994
testing image 977 / 9994
testing image 978 / 9994
testing image 979 / 9994
testing image 980 / 9994
testing image 981 / 9994
testing image 982 / 9994
testing image 983 / 9994
testing image 984 / 9994
testing image 985 / 9994
testing image 986 / 9994
testing image 987 / 9994
testing image 988 / 9994
testing image 989 / 9994
testing image 990 / 9994
testing image 991 / 9994
testing image 992 / 9994
testing image 993 / 9994
testing image 994 / 9994
testing image 995 / 9994
testing image 996 / 9994
testing image 997 / 9994
testing image 998 / 9994
testing image 999 / 9994
testing image 1000 / 9994
testing image 1001 / 9994
testing image 1002 / 9994
testing image 1003 / 9994
testing image 1004 / 9994
testing image 1005 / 9994
testing image 1006 / 9994
testing image 1007 / 9994
testing image 1008 / 9994
testing image 1009 / 9994
testing image 1010 / 9994
testing image 1011 / 9994
testing image 1012 / 9994
testing image 1013 / 9994
testing image 1014 / 9994
testing image 1015 / 9994
testing image 1016 / 9994
testing image 1017 / 9994
testing image 1018 / 9994
testing image 1019 / 9994
testing image 1020 / 9994
testing image 1021 / 9994
testing image 1022 / 9994
testing image 1023 / 9994
testing image 1024 / 9994
testing image 1025 / 9994
testing image 1026 / 9994
testing image 1027 / 9994
testing image 1028 / 9994
testing image 1029 / 9994
testing image 1030 / 9994
testing image 1031 / 9994
testing image 1032 / 9994
testing image 1033 / 9994
testing image 1034 / 9994
testing image 1035 / 9994
testing image 1036 / 9994
testing image 1037 / 9994
testing image 1038 / 9994
testing image 1039 / 9994
testing image 1040 / 9994
testing image 1041 / 9994
testing image 1042 / 9994
testing image 1043 / 9994
testing image 1044 / 9994
testing image 1045 / 9994
testing image 1046 / 9994
testing image 1047 / 9994
testing image 1048 / 9994
testing image 1049 / 9994
testing image 1050 / 9994
testing image 1051 / 9994
testing image 1052 / 9994
testing image 1053 / 9994
testing image 1054 / 9994
testing image 1055 / 9994
testing image 1056 / 9994
testing image 1057 / 9994
testing image 1058 / 9994
testing image 1059 / 9994
testing image 1060 / 9994
testing image 1061 / 9994
testing image 1062 / 9994
testing image 1063 / 9994
testing image 1064 / 9994
testing image 1065 / 9994
testing image 1066 / 9994
testing image 1067 / 9994
testing image 1068 / 9994
testing image 1069 / 9994
testing image 1070 / 9994
testing image 1071 / 9994
testing image 1072 / 9994
testing image 1073 / 9994
testing image 1074 / 9994
testing image 1075 / 9994
testing image 1076 / 9994
testing image 1077 / 9994
testing image 1078 / 9994
testing image 1079 / 9994
testing image 1080 / 9994
testing image 1081 / 9994
testing image 1082 / 9994
testing image 1083 / 9994
testing image 1084 / 9994
testing image 1085 / 9994
testing image 1086 / 9994
testing image 1087 / 9994
testing image 1088 / 9994
testing image 1089 / 9994
testing image 1090 / 9994
testing image 1091 / 9994
testing image 1092 / 9994
testing image 1093 / 9994
testing image 1094 / 9994
testing image 1095 / 9994
testing image 1096 / 9994
testing image 1097 / 9994
testing image 1098 / 9994
testing image 1099 / 9994
testing image 1100 / 9994
testing image 1101 / 9994
testing image 1102 / 9994
testing image 1103 / 9994
testing image 1104 / 9994
testing image 1105 / 9994
testing image 1106 / 9994
testing image 1107 / 9994
testing image 1108 / 9994
testing image 1109 / 9994
testing image 1110 / 9994
testing image 1111 / 9994
testing image 1112 / 9994
testing image 1113 / 9994
testing image 1114 / 9994
testing image 1115 / 9994
testing image 1116 / 9994
testing image 1117 / 9994
testing image 1118 / 9994
testing image 1119 / 9994
testing image 1120 / 9994
testing image 1121 / 9994
testing image 1122 / 9994
testing image 1123 / 9994
testing image 1124 / 9994
testing image 1125 / 9994
testing image 1126 / 9994
testing image 1127 / 9994
testing image 1128 / 9994
testing image 1129 / 9994
testing image 1130 / 9994
testing image 1131 / 9994
testing image 1132 / 9994
testing image 1133 / 9994
testing image 1134 / 9994
testing image 1135 / 9994
testing image 1136 / 9994
testing image 1137 / 9994
testing image 1138 / 9994
testing image 1139 / 9994
testing image 1140 / 9994
testing image 1141 / 9994
testing image 1142 / 9994
testing image 1143 / 9994
testing image 1144 / 9994
testing image 1145 / 9994
testing image 1146 / 9994
testing image 1147 / 9994
testing image 1148 / 9994
testing image 1149 / 9994
testing image 1150 / 9994
testing image 1151 / 9994
testing image 1152 / 9994
testing image 1153 / 9994
testing image 1154 / 9994
testing image 1155 / 9994
testing image 1156 / 9994
testing image 1157 / 9994
testing image 1158 / 9994
testing image 1159 / 9994
testing image 1160 / 9994
testing image 1161 / 9994
testing image 1162 / 9994
testing image 1163 / 9994
testing image 1164 / 9994
testing image 1165 / 9994
testing image 1166 / 9994
testing image 1167 / 9994
testing image 1168 / 9994
testing image 1169 / 9994
testing image 1170 / 9994
testing image 1171 / 9994
testing image 1172 / 9994
testing image 1173 / 9994
testing image 1174 / 9994
testing image 1175 / 9994
testing image 1176 / 9994
testing image 1177 / 9994
testing image 1178 / 9994
testing image 1179 / 9994
testing image 1180 / 9994
testing image 1181 / 9994
testing image 1182 / 9994
testing image 1183 / 9994
testing image 1184 / 9994
testing image 1185 / 9994
testing image 1186 / 9994
testing image 1187 / 9994
testing image 1188 / 9994
testing image 1189 / 9994
testing image 1190 / 9994
testing image 1191 / 9994
testing image 1192 / 9994
testing image 1193 / 9994
testing image 1194 / 9994
testing image 1195 / 9994
testing image 1196 / 9994
testing image 1197 / 9994
testing image 1198 / 9994
testing image 1199 / 9994
testing image 1200 / 9994
testing image 1201 / 9994
testing image 1202 / 9994
testing image 1203 / 9994
testing image 1204 / 9994
testing image 1205 / 9994
testing image 1206 / 9994
testing image 1207 / 9994
testing image 1208 / 9994
testing image 1209 / 9994
testing image 1210 / 9994
testing image 1211 / 9994
testing image 1212 / 9994
testing image 1213 / 9994
testing image 1214 / 9994
testing image 1215 / 9994
testing image 1216 / 9994
testing image 1217 / 9994
testing image 1218 / 9994
testing image 1219 / 9994
testing image 1220 / 9994
testing image 1221 / 9994
testing image 1222 / 9994
testing image 1223 / 9994
testing image 1224 / 9994
testing image 1225 / 9994
testing image 1226 / 9994
testing image 1227 / 9994
testing image 1228 / 9994
testing image 1229 / 9994
testing image 1230 / 9994
testing image 1231 / 9994
testing image 1232 / 9994
testing image 1233 / 9994
testing image 1234 / 9994
testing image 1235 / 9994
testing image 1236 / 9994
testing image 1237 / 9994
testing image 1238 / 9994
testing image 1239 / 9994
testing image 1240 / 9994
testing image 1241 / 9994
testing image 1242 / 9994
testing image 1243 / 9994
testing image 1244 / 9994
testing image 1245 / 9994
testing image 1246 / 9994
testing image 1247 / 9994
testing image 1248 / 9994
testing image 1249 / 9994
testing image 1250 / 9994
testing image 1251 / 9994
testing image 1252 / 9994
testing image 1253 / 9994
testing image 1254 / 9994
testing image 1255 / 9994
testing image 1256 / 9994
testing image 1257 / 9994
testing image 1258 / 9994
testing image 1259 / 9994
testing image 1260 / 9994
testing image 1261 / 9994
testing image 1262 / 9994
testing image 1263 / 9994
testing image 1264 / 9994
testing image 1265 / 9994
testing image 1266 / 9994
testing image 1267 / 9994
testing image 1268 / 9994
testing image 1269 / 9994
testing image 1270 / 9994
testing image 1271 / 9994
testing image 1272 / 9994
testing image 1273 / 9994
testing image 1274 / 9994
testing image 1275 / 9994
testing image 1276 / 9994
testing image 1277 / 9994
testing image 1278 / 9994
testing image 1279 / 9994
testing image 1280 / 9994
testing image 1281 / 9994
testing image 1282 / 9994
testing image 1283 / 9994
testing image 1284 / 9994
testing image 1285 / 9994
testing image 1286 / 9994
testing image 1287 / 9994
testing image 1288 / 9994
testing image 1289 / 9994
testing image 1290 / 9994
testing image 1291 / 9994
testing image 1292 / 9994
testing image 1293 / 9994
testing image 1294 / 9994
testing image 1295 / 9994
testing image 1296 / 9994
testing image 1297 / 9994
testing image 1298 / 9994
testing image 1299 / 9994
testing image 1300 / 9994
testing image 1301 / 9994
testing image 1302 / 9994
testing image 1303 / 9994
testing image 1304 / 9994
testing image 1305 / 9994
testing image 1306 / 9994
testing image 1307 / 9994
testing image 1308 / 9994
testing image 1309 / 9994
testing image 1310 / 9994
testing image 1311 / 9994
testing image 1312 / 9994
testing image 1313 / 9994
testing image 1314 / 9994
testing image 1315 / 9994
testing image 1316 / 9994
testing image 1317 / 9994
testing image 1318 / 9994
testing image 1319 / 9994
testing image 1320 / 9994
testing image 1321 / 9994
testing image 1322 / 9994
testing image 1323 / 9994
testing image 1324 / 9994
testing image 1325 / 9994
testing image 1326 / 9994
testing image 1327 / 9994
testing image 1328 / 9994
testing image 1329 / 9994
testing image 1330 / 9994
testing image 1331 / 9994
testing image 1332 / 9994
testing image 1333 / 9994
testing image 1334 / 9994
testing image 1335 / 9994
testing image 1336 / 9994
testing image 1337 / 9994
testing image 1338 / 9994
testing image 1339 / 9994
testing image 1340 / 9994
testing image 1341 / 9994
testing image 1342 / 9994
testing image 1343 / 9994
testing image 1344 / 9994
testing image 1345 / 9994
testing image 1346 / 9994
testing image 1347 / 9994
testing image 1348 / 9994
testing image 1349 / 9994
testing image 1350 / 9994
testing image 1351 / 9994
testing image 1352 / 9994
testing image 1353 / 9994
testing image 1354 / 9994
testing image 1355 / 9994
testing image 1356 / 9994
testing image 1357 / 9994
testing image 1358 / 9994
testing image 1359 / 9994
testing image 1360 / 9994
testing image 1361 / 9994
testing image 1362 / 9994
testing image 1363 / 9994
testing image 1364 / 9994
testing image 1365 / 9994
testing image 1366 / 9994
testing image 1367 / 9994
testing image 1368 / 9994
testing image 1369 / 9994
testing image 1370 / 9994
testing image 1371 / 9994
testing image 1372 / 9994
testing image 1373 / 9994
testing image 1374 / 9994
testing image 1375 / 9994
testing image 1376 / 9994
testing image 1377 / 9994
testing image 1378 / 9994
testing image 1379 / 9994
testing image 1380 / 9994
testing image 1381 / 9994
testing image 1382 / 9994
testing image 1383 / 9994
testing image 1384 / 9994
testing image 1385 / 9994
testing image 1386 / 9994
testing image 1387 / 9994
testing image 1388 / 9994
testing image 1389 / 9994
testing image 1390 / 9994
testing image 1391 / 9994
testing image 1392 / 9994
testing image 1393 / 9994
testing image 1394 / 9994
testing image 1395 / 9994
testing image 1396 / 9994
testing image 1397 / 9994
testing image 1398 / 9994
testing image 1399 / 9994
testing image 1400 / 9994
testing image 1401 / 9994
testing image 1402 / 9994
testing image 1403 / 9994
testing image 1404 / 9994
testing image 1405 / 9994
testing image 1406 / 9994
testing image 1407 / 9994
testing image 1408 / 9994
testing image 1409 / 9994
testing image 1410 / 9994
testing image 1411 / 9994
testing image 1412 / 9994
testing image 1413 / 9994
testing image 1414 / 9994
testing image 1415 / 9994
testing image 1416 / 9994
testing image 1417 / 9994
testing image 1418 / 9994
testing image 1419 / 9994
testing image 1420 / 9994
testing image 1421 / 9994
testing image 1422 / 9994
testing image 1423 / 9994
testing image 1424 / 9994
testing image 1425 / 9994
testing image 1426 / 9994
testing image 1427 / 9994
testing image 1428 / 9994
testing image 1429 / 9994
testing image 1430 / 9994
testing image 1431 / 9994
testing image 1432 / 9994
testing image 1433 / 9994
testing image 1434 / 9994
testing image 1435 / 9994
testing image 1436 / 9994
testing image 1437 / 9994
testing image 1438 / 9994
testing image 1439 / 9994
testing image 1440 / 9994
testing image 1441 / 9994
testing image 1442 / 9994
testing image 1443 / 9994
testing image 1444 / 9994
testing image 1445 / 9994
testing image 1446 / 9994
testing image 1447 / 9994
testing image 1448 / 9994
testing image 1449 / 9994
testing image 1450 / 9994
testing image 1451 / 9994
testing image 1452 / 9994
testing image 1453 / 9994
testing image 1454 / 9994
testing image 1455 / 9994
testing image 1456 / 9994
testing image 1457 / 9994
testing image 1458 / 9994
testing image 1459 / 9994
testing image 1460 / 9994
testing image 1461 / 9994
testing image 1462 / 9994
testing image 1463 / 9994
testing image 1464 / 9994
testing image 1465 / 9994
testing image 1466 / 9994
testing image 1467 / 9994
testing image 1468 / 9994
testing image 1469 / 9994
testing image 1470 / 9994
testing image 1471 / 9994
testing image 1472 / 9994
testing image 1473 / 9994
testing image 1474 / 9994
testing image 1475 / 9994
testing image 1476 / 9994
testing image 1477 / 9994
testing image 1478 / 9994
testing image 1479 / 9994
testing image 1480 / 9994
testing image 1481 / 9994
testing image 1482 / 9994
testing image 1483 / 9994
testing image 1484 / 9994
testing image 1485 / 9994
testing image 1486 / 9994
testing image 1487 / 9994
testing image 1488 / 9994
testing image 1489 / 9994
testing image 1490 / 9994
testing image 1491 / 9994
testing image 1492 / 9994
testing image 1493 / 9994
testing image 1494 / 9994
testing image 1495 / 9994
testing image 1496 / 9994
testing image 1497 / 9994
testing image 1498 / 9994
testing image 1499 / 9994
testing image 1500 / 9994
testing image 1501 / 9994
testing image 1502 / 9994
testing image 1503 / 9994
testing image 1504 / 9994
testing image 1505 / 9994
testing image 1506 / 9994
testing image 1507 / 9994
testing image 1508 / 9994
testing image 1509 / 9994
testing image 1510 / 9994
testing image 1511 / 9994
testing image 1512 / 9994
testing image 1513 / 9994
testing image 1514 / 9994
testing image 1515 / 9994
testing image 1516 / 9994
testing image 1517 / 9994
testing image 1518 / 9994
testing image 1519 / 9994
testing image 1520 / 9994
testing image 1521 / 9994
testing image 1522 / 9994
testing image 1523 / 9994
testing image 1524 / 9994
testing image 1525 / 9994
testing image 1526 / 9994
testing image 1527 / 9994
testing image 1528 / 9994
testing image 1529 / 9994
testing image 1530 / 9994
testing image 1531 / 9994
testing image 1532 / 9994
testing image 1533 / 9994
testing image 1534 / 9994
testing image 1535 / 9994
testing image 1536 / 9994
testing image 1537 / 9994
testing image 1538 / 9994
testing image 1539 / 9994
testing image 1540 / 9994
testing image 1541 / 9994
testing image 1542 / 9994
testing image 1543 / 9994
testing image 1544 / 9994
testing image 1545 / 9994
testing image 1546 / 9994
testing image 1547 / 9994
testing image 1548 / 9994
testing image 1549 / 9994
testing image 1550 / 9994
testing image 1551 / 9994
testing image 1552 / 9994
testing image 1553 / 9994
testing image 1554 / 9994
testing image 1555 / 9994
testing image 1556 / 9994
testing image 1557 / 9994
testing image 1558 / 9994
testing image 1559 / 9994
testing image 1560 / 9994
testing image 1561 / 9994
testing image 1562 / 9994
testing image 1563 / 9994
testing image 1564 / 9994
testing image 1565 / 9994
testing image 1566 / 9994
testing image 1567 / 9994
testing image 1568 / 9994
testing image 1569 / 9994
testing image 1570 / 9994
testing image 1571 / 9994
testing image 1572 / 9994
testing image 1573 / 9994
testing image 1574 / 9994
testing image 1575 / 9994
testing image 1576 / 9994
testing image 1577 / 9994
testing image 1578 / 9994
testing image 1579 / 9994
testing image 1580 / 9994
testing image 1581 / 9994
testing image 1582 / 9994
testing image 1583 / 9994
testing image 1584 / 9994
testing image 1585 / 9994
testing image 1586 / 9994
testing image 1587 / 9994
testing image 1588 / 9994
testing image 1589 / 9994
testing image 1590 / 9994
testing image 1591 / 9994
testing image 1592 / 9994
testing image 1593 / 9994
testing image 1594 / 9994
testing image 1595 / 9994
testing image 1596 / 9994
testing image 1597 / 9994
testing image 1598 / 9994
testing image 1599 / 9994
testing image 1600 / 9994
testing image 1601 / 9994
testing image 1602 / 9994
testing image 1603 / 9994
testing image 1604 / 9994
testing image 1605 / 9994
testing image 1606 / 9994
testing image 1607 / 9994
testing image 1608 / 9994
testing image 1609 / 9994
testing image 1610 / 9994
testing image 1611 / 9994
testing image 1612 / 9994
testing image 1613 / 9994
testing image 1614 / 9994
testing image 1615 / 9994
testing image 1616 / 9994
testing image 1617 / 9994
testing image 1618 / 9994
testing image 1619 / 9994
testing image 1620 / 9994
testing image 1621 / 9994
testing image 1622 / 9994
testing image 1623 / 9994
testing image 1624 / 9994
testing image 1625 / 9994
testing image 1626 / 9994
testing image 1627 / 9994
testing image 1628 / 9994
testing image 1629 / 9994
testing image 1630 / 9994
testing image 1631 / 9994
testing image 1632 / 9994
testing image 1633 / 9994
testing image 1634 / 9994
testing image 1635 / 9994
testing image 1636 / 9994
testing image 1637 / 9994
testing image 1638 / 9994
testing image 1639 / 9994
testing image 1640 / 9994
testing image 1641 / 9994
testing image 1642 / 9994
testing image 1643 / 9994
testing image 1644 / 9994
testing image 1645 / 9994
testing image 1646 / 9994
testing image 1647 / 9994
testing image 1648 / 9994
testing image 1649 / 9994
testing image 1650 / 9994
testing image 1651 / 9994
testing image 1652 / 9994
testing image 1653 / 9994
testing image 1654 / 9994
testing image 1655 / 9994
testing image 1656 / 9994
testing image 1657 / 9994
testing image 1658 / 9994
testing image 1659 / 9994
testing image 1660 / 9994
testing image 1661 / 9994
testing image 1662 / 9994
testing image 1663 / 9994
testing image 1664 / 9994
testing image 1665 / 9994
testing image 1666 / 9994
testing image 1667 / 9994
testing image 1668 / 9994
testing image 1669 / 9994
testing image 1670 / 9994
testing image 1671 / 9994
testing image 1672 / 9994
testing image 1673 / 9994
testing image 1674 / 9994
testing image 1675 / 9994
testing image 1676 / 9994
testing image 1677 / 9994
testing image 1678 / 9994
testing image 1679 / 9994
testing image 1680 / 9994
testing image 1681 / 9994
testing image 1682 / 9994
testing image 1683 / 9994
testing image 1684 / 9994
testing image 1685 / 9994
testing image 1686 / 9994
testing image 1687 / 9994
testing image 1688 / 9994
testing image 1689 / 9994
testing image 1690 / 9994
testing image 1691 / 9994
testing image 1692 / 9994
testing image 1693 / 9994
testing image 1694 / 9994
testing image 1695 / 9994
testing image 1696 / 9994
testing image 1697 / 9994
testing image 1698 / 9994
testing image 1699 / 9994
testing image 1700 / 9994
testing image 1701 / 9994
testing image 1702 / 9994
testing image 1703 / 9994
testing image 1704 / 9994
testing image 1705 / 9994
testing image 1706 / 9994
testing image 1707 / 9994
testing image 1708 / 9994
testing image 1709 / 9994
testing image 1710 / 9994
testing image 1711 / 9994
testing image 1712 / 9994
testing image 1713 / 9994
testing image 1714 / 9994
testing image 1715 / 9994
testing image 1716 / 9994
testing image 1717 / 9994
testing image 1718 / 9994
testing image 1719 / 9994
testing image 1720 / 9994
testing image 1721 / 9994
testing image 1722 / 9994
testing image 1723 / 9994
testing image 1724 / 9994
testing image 1725 / 9994
testing image 1726 / 9994
testing image 1727 / 9994
testing image 1728 / 9994
testing image 1729 / 9994
testing image 1730 / 9994
testing image 1731 / 9994
testing image 1732 / 9994
testing image 1733 / 9994
testing image 1734 / 9994
testing image 1735 / 9994
testing image 1736 / 9994
testing image 1737 / 9994
testing image 1738 / 9994
testing image 1739 / 9994
testing image 1740 / 9994
testing image 1741 / 9994
testing image 1742 / 9994
testing image 1743 / 9994
testing image 1744 / 9994
testing image 1745 / 9994
testing image 1746 / 9994
testing image 1747 / 9994
testing image 1748 / 9994
testing image 1749 / 9994
testing image 1750 / 9994
testing image 1751 / 9994
testing image 1752 / 9994
testing image 1753 / 9994
testing image 1754 / 9994
testing image 1755 / 9994
testing image 1756 / 9994
testing image 1757 / 9994
testing image 1758 / 9994
testing image 1759 / 9994
testing image 1760 / 9994
testing image 1761 / 9994
testing image 1762 / 9994
testing image 1763 / 9994
testing image 1764 / 9994
testing image 1765 / 9994
testing image 1766 / 9994
testing image 1767 / 9994
testing image 1768 / 9994
testing image 1769 / 9994
testing image 1770 / 9994
testing image 1771 / 9994
testing image 1772 / 9994
testing image 1773 / 9994
testing image 1774 / 9994
testing image 1775 / 9994
testing image 1776 / 9994
testing image 1777 / 9994
testing image 1778 / 9994
testing image 1779 / 9994
testing image 1780 / 9994
testing image 1781 / 9994
testing image 1782 / 9994
testing image 1783 / 9994
testing image 1784 / 9994
testing image 1785 / 9994
testing image 1786 / 9994
testing image 1787 / 9994
testing image 1788 / 9994
testing image 1789 / 9994
testing image 1790 / 9994
testing image 1791 / 9994
testing image 1792 / 9994
testing image 1793 / 9994
testing image 1794 / 9994
testing image 1795 / 9994
testing image 1796 / 9994
testing image 1797 / 9994
testing image 1798 / 9994
testing image 1799 / 9994
testing image 1800 / 9994
testing image 1801 / 9994
testing image 1802 / 9994
testing image 1803 / 9994
testing image 1804 / 9994
testing image 1805 / 9994
testing image 1806 / 9994
testing image 1807 / 9994
testing image 1808 / 9994
testing image 1809 / 9994
testing image 1810 / 9994
testing image 1811 / 9994
testing image 1812 / 9994
testing image 1813 / 9994
testing image 1814 / 9994
testing image 1815 / 9994
testing image 1816 / 9994
testing image 1817 / 9994
testing image 1818 / 9994
testing image 1819 / 9994
testing image 1820 / 9994
testing image 1821 / 9994
testing image 1822 / 9994
testing image 1823 / 9994
testing image 1824 / 9994
testing image 1825 / 9994
testing image 1826 / 9994
testing image 1827 / 9994
testing image 1828 / 9994
testing image 1829 / 9994
testing image 1830 / 9994
testing image 1831 / 9994
testing image 1832 / 9994
testing image 1833 / 9994
testing image 1834 / 9994
testing image 1835 / 9994
testing image 1836 / 9994
testing image 1837 / 9994
testing image 1838 / 9994
testing image 1839 / 9994
testing image 1840 / 9994
testing image 1841 / 9994
testing image 1842 / 9994
testing image 1843 / 9994
testing image 1844 / 9994
testing image 1845 / 9994
testing image 1846 / 9994
testing image 1847 / 9994
testing image 1848 / 9994
testing image 1849 / 9994
testing image 1850 / 9994
testing image 1851 / 9994
testing image 1852 / 9994
testing image 1853 / 9994
testing image 1854 / 9994
testing image 1855 / 9994
testing image 1856 / 9994
testing image 1857 / 9994
testing image 1858 / 9994
testing image 1859 / 9994
testing image 1860 / 9994
testing image 1861 / 9994
testing image 1862 / 9994
testing image 1863 / 9994
testing image 1864 / 9994
testing image 1865 / 9994
testing image 1866 / 9994
testing image 1867 / 9994
testing image 1868 / 9994
testing image 1869 / 9994
testing image 1870 / 9994
testing image 1871 / 9994
testing image 1872 / 9994
testing image 1873 / 9994
testing image 1874 / 9994
testing image 1875 / 9994
testing image 1876 / 9994
testing image 1877 / 9994
testing image 1878 / 9994
testing image 1879 / 9994
testing image 1880 / 9994
testing image 1881 / 9994
testing image 1882 / 9994
testing image 1883 / 9994
testing image 1884 / 9994
testing image 1885 / 9994
testing image 1886 / 9994
testing image 1887 / 9994
testing image 1888 / 9994
testing image 1889 / 9994
testing image 1890 / 9994
testing image 1891 / 9994
testing image 1892 / 9994
testing image 1893 / 9994
testing image 1894 / 9994
testing image 1895 / 9994
testing image 1896 / 9994
testing image 1897 / 9994
testing image 1898 / 9994
testing image 1899 / 9994
testing image 1900 / 9994
testing image 1901 / 9994
testing image 1902 / 9994
testing image 1903 / 9994
testing image 1904 / 9994
testing image 1905 / 9994
testing image 1906 / 9994
testing image 1907 / 9994
testing image 1908 / 9994
testing image 1909 / 9994
testing image 1910 / 9994
testing image 1911 / 9994
testing image 1912 / 9994
testing image 1913 / 9994
testing image 1914 / 9994
testing image 1915 / 9994
testing image 1916 / 9994
testing image 1917 / 9994
testing image 1918 / 9994
testing image 1919 / 9994
testing image 1920 / 9994
testing image 1921 / 9994
testing image 1922 / 9994
testing image 1923 / 9994
testing image 1924 / 9994
testing image 1925 / 9994
testing image 1926 / 9994
testing image 1927 / 9994
testing image 1928 / 9994
testing image 1929 / 9994
testing image 1930 / 9994
testing image 1931 / 9994
testing image 1932 / 9994
testing image 1933 / 9994
testing image 1934 / 9994
testing image 1935 / 9994
testing image 1936 / 9994
testing image 1937 / 9994
testing image 1938 / 9994
testing image 1939 / 9994
testing image 1940 / 9994
testing image 1941 / 9994
testing image 1942 / 9994
testing image 1943 / 9994
testing image 1944 / 9994
testing image 1945 / 9994
testing image 1946 / 9994
testing image 1947 / 9994
testing image 1948 / 9994
testing image 1949 / 9994
testing image 1950 / 9994
testing image 1951 / 9994
testing image 1952 / 9994
testing image 1953 / 9994
testing image 1954 / 9994
testing image 1955 / 9994
testing image 1956 / 9994
testing image 1957 / 9994
testing image 1958 / 9994
testing image 1959 / 9994
testing image 1960 / 9994
testing image 1961 / 9994
testing image 1962 / 9994
testing image 1963 / 9994
testing image 1964 / 9994
testing image 1965 / 9994
testing image 1966 / 9994
testing image 1967 / 9994
testing image 1968 / 9994
testing image 1969 / 9994
testing image 1970 / 9994
testing image 1971 / 9994
testing image 1972 / 9994
testing image 1973 / 9994
testing image 1974 / 9994
testing image 1975 / 9994
testing image 1976 / 9994
testing image 1977 / 9994
testing image 1978 / 9994
testing image 1979 / 9994
testing image 1980 / 9994
testing image 1981 / 9994
testing image 1982 / 9994
testing image 1983 / 9994
testing image 1984 / 9994
testing image 1985 / 9994
testing image 1986 / 9994
testing image 1987 / 9994
testing image 1988 / 9994
testing image 1989 / 9994
testing image 1990 / 9994
testing image 1991 / 9994
testing image 1992 / 9994
testing image 1993 / 9994
testing image 1994 / 9994
testing image 1995 / 9994
testing image 1996 / 9994
testing image 1997 / 9994
testing image 1998 / 9994
testing image 1999 / 9994
testing image 2000 / 9994
testing image 2001 / 9994
testing image 2002 / 9994
testing image 2003 / 9994
testing image 2004 / 9994
testing image 2005 / 9994
testing image 2006 / 9994
testing image 2007 / 9994
testing image 2008 / 9994
testing image 2009 / 9994
testing image 2010 / 9994
testing image 2011 / 9994
testing image 2012 / 9994
testing image 2013 / 9994
testing image 2014 / 9994
testing image 2015 / 9994
testing image 2016 / 9994
testing image 2017 / 9994
testing image 2018 / 9994
testing image 2019 / 9994
testing image 2020 / 9994
testing image 2021 / 9994
testing image 2022 / 9994
testing image 2023 / 9994
testing image 2024 / 9994
testing image 2025 / 9994
testing image 2026 / 9994
testing image 2027 / 9994
testing image 2028 / 9994
testing image 2029 / 9994
testing image 2030 / 9994
testing image 2031 / 9994
testing image 2032 / 9994
testing image 2033 / 9994
testing image 2034 / 9994
testing image 2035 / 9994
testing image 2036 / 9994
testing image 2037 / 9994
testing image 2038 / 9994
testing image 2039 / 9994
testing image 2040 / 9994
testing image 2041 / 9994
testing image 2042 / 9994
testing image 2043 / 9994
testing image 2044 / 9994
testing image 2045 / 9994
testing image 2046 / 9994
testing image 2047 / 9994
testing image 2048 / 9994
testing image 2049 / 9994
testing image 2050 / 9994
testing image 2051 / 9994
testing image 2052 / 9994
testing image 2053 / 9994
testing image 2054 / 9994
testing image 2055 / 9994
testing image 2056 / 9994
testing image 2057 / 9994
testing image 2058 / 9994
testing image 2059 / 9994
testing image 2060 / 9994
testing image 2061 / 9994
testing image 2062 / 9994
testing image 2063 / 9994
testing image 2064 / 9994
testing image 2065 / 9994
testing image 2066 / 9994
testing image 2067 / 9994
testing image 2068 / 9994
testing image 2069 / 9994
testing image 2070 / 9994
testing image 2071 / 9994
testing image 2072 / 9994
testing image 2073 / 9994
testing image 2074 / 9994
testing image 2075 / 9994
testing image 2076 / 9994
testing image 2077 / 9994
testing image 2078 / 9994
testing image 2079 / 9994
testing image 2080 / 9994
testing image 2081 / 9994
testing image 2082 / 9994
testing image 2083 / 9994
testing image 2084 / 9994
testing image 2085 / 9994
testing image 2086 / 9994
testing image 2087 / 9994
testing image 2088 / 9994
testing image 2089 / 9994
testing image 2090 / 9994
testing image 2091 / 9994
testing image 2092 / 9994
testing image 2093 / 9994
testing image 2094 / 9994
testing image 2095 / 9994
testing image 2096 / 9994
testing image 2097 / 9994
testing image 2098 / 9994
testing image 2099 / 9994
testing image 2100 / 9994
testing image 2101 / 9994
testing image 2102 / 9994
testing image 2103 / 9994
testing image 2104 / 9994
testing image 2105 / 9994
testing image 2106 / 9994
testing image 2107 / 9994
testing image 2108 / 9994
testing image 2109 / 9994
testing image 2110 / 9994
testing image 2111 / 9994
testing image 2112 / 9994
testing image 2113 / 9994
testing image 2114 / 9994
testing image 2115 / 9994
testing image 2116 / 9994
testing image 2117 / 9994
testing image 2118 / 9994
testing image 2119 / 9994
testing image 2120 / 9994
testing image 2121 / 9994
testing image 2122 / 9994
testing image 2123 / 9994
testing image 2124 / 9994
testing image 2125 / 9994
testing image 2126 / 9994
testing image 2127 / 9994
testing image 2128 / 9994
testing image 2129 / 9994
testing image 2130 / 9994
testing image 2131 / 9994
testing image 2132 / 9994
testing image 2133 / 9994
testing image 2134 / 9994
testing image 2135 / 9994
testing image 2136 / 9994
testing image 2137 / 9994
testing image 2138 / 9994
testing image 2139 / 9994
testing image 2140 / 9994
testing image 2141 / 9994
testing image 2142 / 9994
testing image 2143 / 9994
testing image 2144 / 9994
testing image 2145 / 9994
testing image 2146 / 9994
testing image 2147 / 9994
testing image 2148 / 9994
testing image 2149 / 9994
testing image 2150 / 9994
testing image 2151 / 9994
testing image 2152 / 9994
testing image 2153 / 9994
testing image 2154 / 9994
testing image 2155 / 9994
testing image 2156 / 9994
testing image 2157 / 9994
testing image 2158 / 9994
testing image 2159 / 9994
testing image 2160 / 9994
testing image 2161 / 9994
testing image 2162 / 9994
testing image 2163 / 9994
testing image 2164 / 9994
testing image 2165 / 9994
testing image 2166 / 9994
testing image 2167 / 9994
testing image 2168 / 9994
testing image 2169 / 9994
testing image 2170 / 9994
testing image 2171 / 9994
testing image 2172 / 9994
testing image 2173 / 9994
testing image 2174 / 9994
testing image 2175 / 9994
testing image 2176 / 9994
testing image 2177 / 9994
testing image 2178 / 9994
testing image 2179 / 9994
testing image 2180 / 9994
testing image 2181 / 9994
testing image 2182 / 9994
testing image 2183 / 9994
testing image 2184 / 9994
testing image 2185 / 9994
testing image 2186 / 9994
testing image 2187 / 9994
testing image 2188 / 9994
testing image 2189 / 9994
testing image 2190 / 9994
testing image 2191 / 9994
testing image 2192 / 9994
testing image 2193 / 9994
testing image 2194 / 9994
testing image 2195 / 9994
testing image 2196 / 9994
testing image 2197 / 9994
testing image 2198 / 9994
testing image 2199 / 9994
testing image 2200 / 9994
testing image 2201 / 9994
testing image 2202 / 9994
testing image 2203 / 9994
testing image 2204 / 9994
testing image 2205 / 9994
testing image 2206 / 9994
testing image 2207 / 9994
testing image 2208 / 9994
testing image 2209 / 9994
testing image 2210 / 9994
testing image 2211 / 9994
testing image 2212 / 9994
testing image 2213 / 9994
testing image 2214 / 9994
testing image 2215 / 9994
testing image 2216 / 9994
testing image 2217 / 9994
testing image 2218 / 9994
testing image 2219 / 9994
testing image 2220 / 9994
testing image 2221 / 9994
testing image 2222 / 9994
testing image 2223 / 9994
testing image 2224 / 9994
testing image 2225 / 9994
testing image 2226 / 9994
testing image 2227 / 9994
testing image 2228 / 9994
testing image 2229 / 9994
testing image 2230 / 9994
testing image 2231 / 9994
testing image 2232 / 9994
testing image 2233 / 9994
testing image 2234 / 9994
testing image 2235 / 9994
testing image 2236 / 9994
testing image 2237 / 9994
testing image 2238 / 9994
testing image 2239 / 9994
testing image 2240 / 9994
testing image 2241 / 9994
testing image 2242 / 9994
testing image 2243 / 9994
testing image 2244 / 9994
testing image 2245 / 9994
testing image 2246 / 9994
testing image 2247 / 9994
testing image 2248 / 9994
testing image 2249 / 9994
testing image 2250 / 9994
testing image 2251 / 9994
testing image 2252 / 9994
testing image 2253 / 9994
testing image 2254 / 9994
testing image 2255 / 9994
testing image 2256 / 9994
testing image 2257 / 9994
testing image 2258 / 9994
testing image 2259 / 9994
testing image 2260 / 9994
testing image 2261 / 9994
testing image 2262 / 9994
testing image 2263 / 9994
testing image 2264 / 9994
testing image 2265 / 9994
testing image 2266 / 9994
testing image 2267 / 9994
testing image 2268 / 9994
testing image 2269 / 9994
testing image 2270 / 9994
testing image 2271 / 9994
testing image 2272 / 9994
testing image 2273 / 9994
testing image 2274 / 9994
testing image 2275 / 9994
testing image 2276 / 9994
testing image 2277 / 9994
testing image 2278 / 9994
testing image 2279 / 9994
testing image 2280 / 9994
testing image 2281 / 9994
testing image 2282 / 9994
testing image 2283 / 9994
testing image 2284 / 9994
testing image 2285 / 9994
testing image 2286 / 9994
testing image 2287 / 9994
testing image 2288 / 9994
testing image 2289 / 9994
testing image 2290 / 9994
testing image 2291 / 9994
testing image 2292 / 9994
testing image 2293 / 9994
testing image 2294 / 9994
testing image 2295 / 9994
testing image 2296 / 9994
testing image 2297 / 9994
testing image 2298 / 9994
testing image 2299 / 9994
testing image 2300 / 9994
testing image 2301 / 9994
testing image 2302 / 9994
testing image 2303 / 9994
testing image 2304 / 9994
testing image 2305 / 9994
testing image 2306 / 9994
testing image 2307 / 9994
testing image 2308 / 9994
testing image 2309 / 9994
testing image 2310 / 9994
testing image 2311 / 9994
testing image 2312 / 9994
testing image 2313 / 9994
testing image 2314 / 9994
testing image 2315 / 9994
testing image 2316 / 9994
testing image 2317 / 9994
testing image 2318 / 9994
testing image 2319 / 9994
testing image 2320 / 9994
testing image 2321 / 9994
testing image 2322 / 9994
testing image 2323 / 9994
testing image 2324 / 9994
testing image 2325 / 9994
testing image 2326 / 9994
testing image 2327 / 9994
testing image 2328 / 9994
testing image 2329 / 9994
testing image 2330 / 9994
testing image 2331 / 9994
testing image 2332 / 9994
testing image 2333 / 9994
testing image 2334 / 9994
testing image 2335 / 9994
testing image 2336 / 9994
testing image 2337 / 9994
testing image 2338 / 9994
testing image 2339 / 9994
testing image 2340 / 9994
testing image 2341 / 9994
testing image 2342 / 9994
testing image 2343 / 9994
testing image 2344 / 9994
testing image 2345 / 9994
testing image 2346 / 9994
testing image 2347 / 9994
testing image 2348 / 9994
testing image 2349 / 9994
testing image 2350 / 9994
testing image 2351 / 9994
testing image 2352 / 9994
testing image 2353 / 9994
testing image 2354 / 9994
testing image 2355 / 9994
testing image 2356 / 9994
testing image 2357 / 9994
testing image 2358 / 9994
testing image 2359 / 9994
testing image 2360 / 9994
testing image 2361 / 9994
testing image 2362 / 9994
testing image 2363 / 9994
testing image 2364 / 9994
testing image 2365 / 9994
testing image 2366 / 9994
testing image 2367 / 9994
testing image 2368 / 9994
testing image 2369 / 9994
testing image 2370 / 9994
testing image 2371 / 9994
testing image 2372 / 9994
testing image 2373 / 9994
testing image 2374 / 9994
testing image 2375 / 9994
testing image 2376 / 9994
testing image 2377 / 9994
testing image 2378 / 9994
testing image 2379 / 9994
testing image 2380 / 9994
testing image 2381 / 9994
testing image 2382 / 9994
testing image 2383 / 9994
testing image 2384 / 9994
testing image 2385 / 9994
testing image 2386 / 9994
testing image 2387 / 9994
testing image 2388 / 9994
testing image 2389 / 9994
testing image 2390 / 9994
testing image 2391 / 9994
testing image 2392 / 9994
testing image 2393 / 9994
testing image 2394 / 9994
testing image 2395 / 9994
testing image 2396 / 9994
testing image 2397 / 9994
testing image 2398 / 9994
testing image 2399 / 9994
testing image 2400 / 9994
testing image 2401 / 9994
testing image 2402 / 9994
testing image 2403 / 9994
testing image 2404 / 9994
testing image 2405 / 9994
testing image 2406 / 9994
testing image 2407 / 9994
testing image 2408 / 9994
testing image 2409 / 9994
testing image 2410 / 9994
testing image 2411 / 9994
testing image 2412 / 9994
testing image 2413 / 9994
testing image 2414 / 9994
testing image 2415 / 9994
testing image 2416 / 9994
testing image 2417 / 9994
testing image 2418 / 9994
testing image 2419 / 9994
testing image 2420 / 9994
testing image 2421 / 9994
testing image 2422 / 9994
testing image 2423 / 9994
testing image 2424 / 9994
testing image 2425 / 9994
testing image 2426 / 9994
testing image 2427 / 9994
testing image 2428 / 9994
testing image 2429 / 9994
testing image 2430 / 9994
testing image 2431 / 9994
testing image 2432 / 9994
testing image 2433 / 9994
testing image 2434 / 9994
testing image 2435 / 9994
testing image 2436 / 9994
testing image 2437 / 9994
testing image 2438 / 9994
testing image 2439 / 9994
testing image 2440 / 9994
testing image 2441 / 9994
testing image 2442 / 9994
testing image 2443 / 9994
testing image 2444 / 9994
testing image 2445 / 9994
testing image 2446 / 9994
testing image 2447 / 9994
testing image 2448 / 9994
testing image 2449 / 9994
testing image 2450 / 9994
testing image 2451 / 9994
testing image 2452 / 9994
testing image 2453 / 9994
testing image 2454 / 9994
testing image 2455 / 9994
testing image 2456 / 9994
testing image 2457 / 9994
testing image 2458 / 9994
testing image 2459 / 9994
testing image 2460 / 9994
testing image 2461 / 9994
testing image 2462 / 9994
testing image 2463 / 9994
testing image 2464 / 9994
testing image 2465 / 9994
testing image 2466 / 9994
testing image 2467 / 9994
testing image 2468 / 9994
testing image 2469 / 9994
testing image 2470 / 9994
testing image 2471 / 9994
testing image 2472 / 9994
testing image 2473 / 9994
testing image 2474 / 9994
testing image 2475 / 9994
testing image 2476 / 9994
testing image 2477 / 9994
testing image 2478 / 9994
testing image 2479 / 9994
testing image 2480 / 9994
testing image 2481 / 9994
testing image 2482 / 9994
testing image 2483 / 9994
testing image 2484 / 9994
testing image 2485 / 9994
testing image 2486 / 9994
testing image 2487 / 9994
testing image 2488 / 9994
testing image 2489 / 9994
testing image 2490 / 9994
testing image 2491 / 9994
testing image 2492 / 9994
testing image 2493 / 9994
testing image 2494 / 9994
testing image 2495 / 9994
testing image 2496 / 9994
testing image 2497 / 9994
testing image 2498 / 9994
testing image 2499 / 9994
testing image 2500 / 9994
testing image 2501 / 9994
testing image 2502 / 9994
testing image 2503 / 9994
testing image 2504 / 9994
testing image 2505 / 9994
testing image 2506 / 9994
testing image 2507 / 9994
testing image 2508 / 9994
testing image 2509 / 9994
testing image 2510 / 9994
testing image 2511 / 9994
testing image 2512 / 9994
testing image 2513 / 9994
testing image 2514 / 9994
testing image 2515 / 9994
testing image 2516 / 9994
testing image 2517 / 9994
testing image 2518 / 9994
testing image 2519 / 9994
testing image 2520 / 9994
testing image 2521 / 9994
testing image 2522 / 9994
testing image 2523 / 9994
testing image 2524 / 9994
testing image 2525 / 9994
testing image 2526 / 9994
testing image 2527 / 9994
testing image 2528 / 9994
testing image 2529 / 9994
testing image 2530 / 9994
testing image 2531 / 9994
testing image 2532 / 9994
testing image 2533 / 9994
testing image 2534 / 9994
testing image 2535 / 9994
testing image 2536 / 9994
testing image 2537 / 9994
testing image 2538 / 9994
testing image 2539 / 9994
testing image 2540 / 9994
testing image 2541 / 9994
testing image 2542 / 9994
testing image 2543 / 9994
testing image 2544 / 9994
testing image 2545 / 9994
testing image 2546 / 9994
testing image 2547 / 9994
testing image 2548 / 9994
testing image 2549 / 9994
testing image 2550 / 9994
testing image 2551 / 9994
testing image 2552 / 9994
testing image 2553 / 9994
testing image 2554 / 9994
testing image 2555 / 9994
testing image 2556 / 9994
testing image 2557 / 9994
testing image 2558 / 9994
testing image 2559 / 9994
testing image 2560 / 9994
testing image 2561 / 9994
testing image 2562 / 9994
testing image 2563 / 9994
testing image 2564 / 9994
testing image 2565 / 9994
testing image 2566 / 9994
testing image 2567 / 9994
testing image 2568 / 9994
testing image 2569 / 9994
testing image 2570 / 9994
testing image 2571 / 9994
testing image 2572 / 9994
testing image 2573 / 9994
testing image 2574 / 9994
testing image 2575 / 9994
testing image 2576 / 9994
testing image 2577 / 9994
testing image 2578 / 9994
testing image 2579 / 9994
testing image 2580 / 9994
testing image 2581 / 9994
testing image 2582 / 9994
testing image 2583 / 9994
testing image 2584 / 9994
testing image 2585 / 9994
testing image 2586 / 9994
testing image 2587 / 9994
testing image 2588 / 9994
testing image 2589 / 9994
testing image 2590 / 9994
testing image 2591 / 9994
testing image 2592 / 9994
testing image 2593 / 9994
testing image 2594 / 9994
testing image 2595 / 9994
testing image 2596 / 9994
testing image 2597 / 9994
testing image 2598 / 9994
testing image 2599 / 9994
testing image 2600 / 9994
testing image 2601 / 9994
testing image 2602 / 9994
testing image 2603 / 9994
testing image 2604 / 9994
testing image 2605 / 9994
testing image 2606 / 9994
testing image 2607 / 9994
testing image 2608 / 9994
testing image 2609 / 9994
testing image 2610 / 9994
testing image 2611 / 9994
testing image 2612 / 9994
testing image 2613 / 9994
testing image 2614 / 9994
testing image 2615 / 9994
testing image 2616 / 9994
testing image 2617 / 9994
testing image 2618 / 9994
testing image 2619 / 9994
testing image 2620 / 9994
testing image 2621 / 9994
testing image 2622 / 9994
testing image 2623 / 9994
testing image 2624 / 9994
testing image 2625 / 9994
testing image 2626 / 9994
testing image 2627 / 9994
testing image 2628 / 9994
testing image 2629 / 9994
testing image 2630 / 9994
testing image 2631 / 9994
testing image 2632 / 9994
testing image 2633 / 9994
testing image 2634 / 9994
testing image 2635 / 9994
testing image 2636 / 9994
testing image 2637 / 9994
testing image 2638 / 9994
testing image 2639 / 9994
testing image 2640 / 9994
testing image 2641 / 9994
testing image 2642 / 9994
testing image 2643 / 9994
testing image 2644 / 9994
testing image 2645 / 9994
testing image 2646 / 9994
testing image 2647 / 9994
testing image 2648 / 9994
testing image 2649 / 9994
testing image 2650 / 9994
testing image 2651 / 9994
testing image 2652 / 9994
testing image 2653 / 9994
testing image 2654 / 9994
testing image 2655 / 9994
testing image 2656 / 9994
testing image 2657 / 9994
testing image 2658 / 9994
testing image 2659 / 9994
testing image 2660 / 9994
testing image 2661 / 9994
testing image 2662 / 9994
testing image 2663 / 9994
testing image 2664 / 9994
testing image 2665 / 9994
testing image 2666 / 9994
testing image 2667 / 9994
testing image 2668 / 9994
testing image 2669 / 9994
testing image 2670 / 9994
testing image 2671 / 9994
testing image 2672 / 9994
testing image 2673 / 9994
testing image 2674 / 9994
testing image 2675 / 9994
testing image 2676 / 9994
testing image 2677 / 9994
testing image 2678 / 9994
testing image 2679 / 9994
testing image 2680 / 9994
testing image 2681 / 9994
testing image 2682 / 9994
testing image 2683 / 9994
testing image 2684 / 9994
testing image 2685 / 9994
testing image 2686 / 9994
testing image 2687 / 9994
testing image 2688 / 9994
testing image 2689 / 9994
testing image 2690 / 9994
testing image 2691 / 9994
testing image 2692 / 9994
testing image 2693 / 9994
testing image 2694 / 9994
testing image 2695 / 9994
testing image 2696 / 9994
testing image 2697 / 9994
testing image 2698 / 9994
testing image 2699 / 9994
testing image 2700 / 9994
testing image 2701 / 9994
testing image 2702 / 9994
testing image 2703 / 9994
testing image 2704 / 9994
testing image 2705 / 9994
testing image 2706 / 9994
testing image 2707 / 9994
testing image 2708 / 9994
testing image 2709 / 9994
testing image 2710 / 9994
testing image 2711 / 9994
testing image 2712 / 9994
testing image 2713 / 9994
testing image 2714 / 9994
testing image 2715 / 9994
testing image 2716 / 9994
testing image 2717 / 9994
testing image 2718 / 9994
testing image 2719 / 9994
testing image 2720 / 9994
testing image 2721 / 9994
testing image 2722 / 9994
testing image 2723 / 9994
testing image 2724 / 9994
testing image 2725 / 9994
testing image 2726 / 9994
testing image 2727 / 9994
testing image 2728 / 9994
testing image 2729 / 9994
testing image 2730 / 9994
testing image 2731 / 9994
testing image 2732 / 9994
testing image 2733 / 9994
testing image 2734 / 9994
testing image 2735 / 9994
testing image 2736 / 9994
testing image 2737 / 9994
testing image 2738 / 9994
testing image 2739 / 9994
testing image 2740 / 9994
testing image 2741 / 9994
testing image 2742 / 9994
testing image 2743 / 9994
testing image 2744 / 9994
testing image 2745 / 9994
testing image 2746 / 9994
testing image 2747 / 9994
testing image 2748 / 9994
testing image 2749 / 9994
testing image 2750 / 9994
testing image 2751 / 9994
testing image 2752 / 9994
testing image 2753 / 9994
testing image 2754 / 9994
testing image 2755 / 9994
testing image 2756 / 9994
testing image 2757 / 9994
testing image 2758 / 9994
testing image 2759 / 9994
testing image 2760 / 9994
testing image 2761 / 9994
testing image 2762 / 9994
testing image 2763 / 9994
testing image 2764 / 9994
testing image 2765 / 9994
testing image 2766 / 9994
testing image 2767 / 9994
testing image 2768 / 9994
testing image 2769 / 9994
testing image 2770 / 9994
testing image 2771 / 9994
testing image 2772 / 9994
testing image 2773 / 9994
testing image 2774 / 9994
testing image 2775 / 9994
testing image 2776 / 9994
testing image 2777 / 9994
testing image 2778 / 9994
testing image 2779 / 9994
testing image 2780 / 9994
testing image 2781 / 9994
testing image 2782 / 9994
testing image 2783 / 9994
testing image 2784 / 9994
testing image 2785 / 9994
testing image 2786 / 9994
testing image 2787 / 9994
testing image 2788 / 9994
testing image 2789 / 9994
testing image 2790 / 9994
testing image 2791 / 9994
testing image 2792 / 9994
testing image 2793 / 9994
testing image 2794 / 9994
testing image 2795 / 9994
testing image 2796 / 9994
testing image 2797 / 9994
testing image 2798 / 9994
testing image 2799 / 9994
testing image 2800 / 9994
testing image 2801 / 9994
testing image 2802 / 9994
testing image 2803 / 9994
testing image 2804 / 9994
testing image 2805 / 9994
testing image 2806 / 9994
testing image 2807 / 9994
testing image 2808 / 9994
testing image 2809 / 9994
testing image 2810 / 9994
testing image 2811 / 9994
testing image 2812 / 9994
testing image 2813 / 9994
testing image 2814 / 9994
testing image 2815 / 9994
testing image 2816 / 9994
testing image 2817 / 9994
testing image 2818 / 9994
testing image 2819 / 9994
testing image 2820 / 9994
testing image 2821 / 9994
testing image 2822 / 9994
testing image 2823 / 9994
testing image 2824 / 9994
testing image 2825 / 9994
testing image 2826 / 9994
testing image 2827 / 9994
testing image 2828 / 9994
testing image 2829 / 9994
testing image 2830 / 9994
testing image 2831 / 9994
testing image 2832 / 9994
testing image 2833 / 9994
testing image 2834 / 9994
testing image 2835 / 9994
testing image 2836 / 9994
testing image 2837 / 9994
testing image 2838 / 9994
testing image 2839 / 9994
testing image 2840 / 9994
testing image 2841 / 9994
testing image 2842 / 9994
testing image 2843 / 9994
testing image 2844 / 9994
testing image 2845 / 9994
testing image 2846 / 9994
testing image 2847 / 9994
testing image 2848 / 9994
testing image 2849 / 9994
testing image 2850 / 9994
testing image 2851 / 9994
testing image 2852 / 9994
testing image 2853 / 9994
testing image 2854 / 9994
testing image 2855 / 9994
testing image 2856 / 9994
testing image 2857 / 9994
testing image 2858 / 9994
testing image 2859 / 9994
testing image 2860 / 9994
testing image 2861 / 9994
testing image 2862 / 9994
testing image 2863 / 9994
testing image 2864 / 9994
testing image 2865 / 9994
testing image 2866 / 9994
testing image 2867 / 9994
testing image 2868 / 9994
testing image 2869 / 9994
testing image 2870 / 9994
testing image 2871 / 9994
testing image 2872 / 9994
testing image 2873 / 9994
testing image 2874 / 9994
testing image 2875 / 9994
testing image 2876 / 9994
testing image 2877 / 9994
testing image 2878 / 9994
testing image 2879 / 9994
testing image 2880 / 9994
testing image 2881 / 9994
testing image 2882 / 9994
testing image 2883 / 9994
testing image 2884 / 9994
testing image 2885 / 9994
testing image 2886 / 9994
testing image 2887 / 9994
testing image 2888 / 9994
testing image 2889 / 9994
testing image 2890 / 9994
testing image 2891 / 9994
testing image 2892 / 9994
testing image 2893 / 9994
testing image 2894 / 9994
testing image 2895 / 9994
testing image 2896 / 9994
testing image 2897 / 9994
testing image 2898 / 9994
testing image 2899 / 9994
testing image 2900 / 9994
testing image 2901 / 9994
testing image 2902 / 9994
testing image 2903 / 9994
testing image 2904 / 9994
testing image 2905 / 9994
testing image 2906 / 9994
testing image 2907 / 9994
testing image 2908 / 9994
testing image 2909 / 9994
testing image 2910 / 9994
testing image 2911 / 9994
testing image 2912 / 9994
testing image 2913 / 9994
testing image 2914 / 9994
testing image 2915 / 9994
testing image 2916 / 9994
testing image 2917 / 9994
testing image 2918 / 9994
testing image 2919 / 9994
testing image 2920 / 9994
testing image 2921 / 9994
testing image 2922 / 9994
testing image 2923 / 9994
testing image 2924 / 9994
testing image 2925 / 9994
testing image 2926 / 9994
testing image 2927 / 9994
testing image 2928 / 9994
testing image 2929 / 9994
testing image 2930 / 9994
testing image 2931 / 9994
testing image 2932 / 9994
testing image 2933 / 9994
testing image 2934 / 9994
testing image 2935 / 9994
testing image 2936 / 9994
testing image 2937 / 9994
testing image 2938 / 9994
testing image 2939 / 9994
testing image 2940 / 9994
testing image 2941 / 9994
testing image 2942 / 9994
testing image 2943 / 9994
testing image 2944 / 9994
testing image 2945 / 9994
testing image 2946 / 9994
testing image 2947 / 9994
testing image 2948 / 9994
testing image 2949 / 9994
testing image 2950 / 9994
testing image 2951 / 9994
testing image 2952 / 9994
testing image 2953 / 9994
testing image 2954 / 9994
testing image 2955 / 9994
testing image 2956 / 9994
testing image 2957 / 9994
testing image 2958 / 9994
testing image 2959 / 9994
testing image 2960 / 9994
testing image 2961 / 9994
testing image 2962 / 9994
testing image 2963 / 9994
testing image 2964 / 9994
testing image 2965 / 9994
testing image 2966 / 9994
testing image 2967 / 9994
testing image 2968 / 9994
testing image 2969 / 9994
testing image 2970 / 9994
testing image 2971 / 9994
testing image 2972 / 9994
testing image 2973 / 9994
testing image 2974 / 9994
testing image 2975 / 9994
testing image 2976 / 9994
testing image 2977 / 9994
testing image 2978 / 9994
testing image 2979 / 9994
testing image 2980 / 9994
testing image 2981 / 9994
testing image 2982 / 9994
testing image 2983 / 9994
testing image 2984 / 9994
testing image 2985 / 9994
testing image 2986 / 9994
testing image 2987 / 9994
testing image 2988 / 9994
testing image 2989 / 9994
testing image 2990 / 9994
testing image 2991 / 9994
testing image 2992 / 9994
testing image 2993 / 9994
testing image 2994 / 9994
testing image 2995 / 9994
testing image 2996 / 9994
testing image 2997 / 9994
testing image 2998 / 9994
testing image 2999 / 9994
testing image 3000 / 9994
testing image 3001 / 9994
testing image 3002 / 9994
testing image 3003 / 9994
testing image 3004 / 9994
testing image 3005 / 9994
testing image 3006 / 9994
testing image 3007 / 9994
testing image 3008 / 9994
testing image 3009 / 9994
testing image 3010 / 9994
testing image 3011 / 9994
testing image 3012 / 9994
testing image 3013 / 9994
testing image 3014 / 9994
testing image 3015 / 9994
testing image 3016 / 9994
testing image 3017 / 9994
testing image 3018 / 9994
testing image 3019 / 9994
testing image 3020 / 9994
testing image 3021 / 9994
testing image 3022 / 9994
testing image 3023 / 9994
testing image 3024 / 9994
testing image 3025 / 9994
testing image 3026 / 9994
testing image 3027 / 9994
testing image 3028 / 9994
testing image 3029 / 9994
testing image 3030 / 9994
testing image 3031 / 9994
testing image 3032 / 9994
testing image 3033 / 9994
testing image 3034 / 9994
testing image 3035 / 9994
testing image 3036 / 9994
testing image 3037 / 9994
testing image 3038 / 9994
testing image 3039 / 9994
testing image 3040 / 9994
testing image 3041 / 9994
testing image 3042 / 9994
testing image 3043 / 9994
testing image 3044 / 9994
testing image 3045 / 9994
testing image 3046 / 9994
testing image 3047 / 9994
testing image 3048 / 9994
testing image 3049 / 9994
testing image 3050 / 9994
testing image 3051 / 9994
testing image 3052 / 9994
testing image 3053 / 9994
testing image 3054 / 9994
testing image 3055 / 9994
testing image 3056 / 9994
testing image 3057 / 9994
testing image 3058 / 9994
testing image 3059 / 9994
testing image 3060 / 9994
testing image 3061 / 9994
testing image 3062 / 9994
testing image 3063 / 9994
testing image 3064 / 9994
testing image 3065 / 9994
testing image 3066 / 9994
testing image 3067 / 9994
testing image 3068 / 9994
testing image 3069 / 9994
testing image 3070 / 9994
testing image 3071 / 9994
testing image 3072 / 9994
testing image 3073 / 9994
testing image 3074 / 9994
testing image 3075 / 9994
testing image 3076 / 9994
testing image 3077 / 9994
testing image 3078 / 9994
testing image 3079 / 9994
testing image 3080 / 9994
testing image 3081 / 9994
testing image 3082 / 9994
testing image 3083 / 9994
testing image 3084 / 9994
testing image 3085 / 9994
testing image 3086 / 9994
testing image 3087 / 9994
testing image 3088 / 9994
testing image 3089 / 9994
testing image 3090 / 9994
testing image 3091 / 9994
testing image 3092 / 9994
testing image 3093 / 9994
testing image 3094 / 9994
testing image 3095 / 9994
testing image 3096 / 9994
testing image 3097 / 9994
testing image 3098 / 9994
testing image 3099 / 9994
testing image 3100 / 9994
testing image 3101 / 9994
testing image 3102 / 9994
testing image 3103 / 9994
testing image 3104 / 9994
testing image 3105 / 9994
testing image 3106 / 9994
testing image 3107 / 9994
testing image 3108 / 9994
testing image 3109 / 9994
testing image 3110 / 9994
testing image 3111 / 9994
testing image 3112 / 9994
testing image 3113 / 9994
testing image 3114 / 9994
testing image 3115 / 9994
testing image 3116 / 9994
testing image 3117 / 9994
testing image 3118 / 9994
testing image 3119 / 9994
testing image 3120 / 9994
testing image 3121 / 9994
testing image 3122 / 9994
testing image 3123 / 9994
testing image 3124 / 9994
testing image 3125 / 9994
testing image 3126 / 9994
testing image 3127 / 9994
testing image 3128 / 9994
testing image 3129 / 9994
testing image 3130 / 9994
testing image 3131 / 9994
testing image 3132 / 9994
testing image 3133 / 9994
testing image 3134 / 9994
testing image 3135 / 9994
testing image 3136 / 9994
testing image 3137 / 9994
testing image 3138 / 9994
testing image 3139 / 9994
testing image 3140 / 9994
testing image 3141 / 9994
testing image 3142 / 9994
testing image 3143 / 9994
testing image 3144 / 9994
testing image 3145 / 9994
testing image 3146 / 9994
testing image 3147 / 9994
testing image 3148 / 9994
testing image 3149 / 9994
testing image 3150 / 9994
testing image 3151 / 9994
testing image 3152 / 9994
testing image 3153 / 9994
testing image 3154 / 9994
testing image 3155 / 9994
testing image 3156 / 9994
testing image 3157 / 9994
testing image 3158 / 9994
testing image 3159 / 9994
testing image 3160 / 9994
testing image 3161 / 9994
testing image 3162 / 9994
testing image 3163 / 9994
testing image 3164 / 9994
testing image 3165 / 9994
testing image 3166 / 9994
testing image 3167 / 9994
testing image 3168 / 9994
testing image 3169 / 9994
testing image 3170 / 9994
testing image 3171 / 9994
testing image 3172 / 9994
testing image 3173 / 9994
testing image 3174 / 9994
testing image 3175 / 9994
testing image 3176 / 9994
testing image 3177 / 9994
testing image 3178 / 9994
testing image 3179 / 9994
testing image 3180 / 9994
testing image 3181 / 9994
testing image 3182 / 9994
testing image 3183 / 9994
testing image 3184 / 9994
testing image 3185 / 9994
testing image 3186 / 9994
testing image 3187 / 9994
testing image 3188 / 9994
testing image 3189 / 9994
testing image 3190 / 9994
testing image 3191 / 9994
testing image 3192 / 9994
testing image 3193 / 9994
testing image 3194 / 9994
testing image 3195 / 9994
testing image 3196 / 9994
testing image 3197 / 9994
testing image 3198 / 9994
testing image 3199 / 9994
testing image 3200 / 9994
testing image 3201 / 9994
testing image 3202 / 9994
testing image 3203 / 9994
testing image 3204 / 9994
testing image 3205 / 9994
testing image 3206 / 9994
testing image 3207 / 9994
testing image 3208 / 9994
testing image 3209 / 9994
testing image 3210 / 9994
testing image 3211 / 9994
testing image 3212 / 9994
testing image 3213 / 9994
testing image 3214 / 9994
testing image 3215 / 9994
testing image 3216 / 9994
testing image 3217 / 9994
testing image 3218 / 9994
testing image 3219 / 9994
testing image 3220 / 9994
testing image 3221 / 9994
testing image 3222 / 9994
testing image 3223 / 9994
testing image 3224 / 9994
testing image 3225 / 9994
testing image 3226 / 9994
testing image 3227 / 9994
testing image 3228 / 9994
testing image 3229 / 9994
testing image 3230 / 9994
testing image 3231 / 9994
testing image 3232 / 9994
testing image 3233 / 9994
testing image 3234 / 9994
testing image 3235 / 9994
testing image 3236 / 9994
testing image 3237 / 9994
testing image 3238 / 9994
testing image 3239 / 9994
testing image 3240 / 9994
testing image 3241 / 9994
testing image 3242 / 9994
testing image 3243 / 9994
testing image 3244 / 9994
testing image 3245 / 9994
testing image 3246 / 9994
testing image 3247 / 9994
testing image 3248 / 9994
testing image 3249 / 9994
testing image 3250 / 9994
testing image 3251 / 9994
testing image 3252 / 9994
testing image 3253 / 9994
testing image 3254 / 9994
testing image 3255 / 9994
testing image 3256 / 9994
testing image 3257 / 9994
testing image 3258 / 9994
testing image 3259 / 9994
testing image 3260 / 9994
testing image 3261 / 9994
testing image 3262 / 9994
testing image 3263 / 9994
testing image 3264 / 9994
testing image 3265 / 9994
testing image 3266 / 9994
testing image 3267 / 9994
testing image 3268 / 9994
testing image 3269 / 9994
testing image 3270 / 9994
testing image 3271 / 9994
testing image 3272 / 9994
testing image 3273 / 9994
testing image 3274 / 9994
testing image 3275 / 9994
testing image 3276 / 9994
testing image 3277 / 9994
testing image 3278 / 9994
testing image 3279 / 9994
testing image 3280 / 9994
testing image 3281 / 9994
testing image 3282 / 9994
testing image 3283 / 9994
testing image 3284 / 9994
testing image 3285 / 9994
testing image 3286 / 9994
testing image 3287 / 9994
testing image 3288 / 9994
testing image 3289 / 9994
testing image 3290 / 9994
testing image 3291 / 9994
testing image 3292 / 9994
testing image 3293 / 9994
testing image 3294 / 9994
testing image 3295 / 9994
testing image 3296 / 9994
testing image 3297 / 9994
testing image 3298 / 9994
testing image 3299 / 9994
testing image 3300 / 9994
testing image 3301 / 9994
testing image 3302 / 9994
testing image 3303 / 9994
testing image 3304 / 9994
testing image 3305 / 9994
testing image 3306 / 9994
testing image 3307 / 9994
testing image 3308 / 9994
testing image 3309 / 9994
testing image 3310 / 9994
testing image 3311 / 9994
testing image 3312 / 9994
testing image 3313 / 9994
testing image 3314 / 9994
testing image 3315 / 9994
testing image 3316 / 9994
testing image 3317 / 9994
testing image 3318 / 9994
testing image 3319 / 9994
testing image 3320 / 9994
testing image 3321 / 9994
testing image 3322 / 9994
testing image 3323 / 9994
testing image 3324 / 9994
testing image 3325 / 9994
testing image 3326 / 9994
testing image 3327 / 9994
testing image 3328 / 9994
testing image 3329 / 9994
testing image 3330 / 9994
testing image 3331 / 9994
testing image 3332 / 9994
testing image 3333 / 9994
testing image 3334 / 9994
testing image 3335 / 9994
testing image 3336 / 9994
testing image 3337 / 9994
testing image 3338 / 9994
testing image 3339 / 9994
testing image 3340 / 9994
testing image 3341 / 9994
testing image 3342 / 9994
testing image 3343 / 9994
testing image 3344 / 9994
testing image 3345 / 9994
testing image 3346 / 9994
testing image 3347 / 9994
testing image 3348 / 9994
testing image 3349 / 9994
testing image 3350 / 9994
testing image 3351 / 9994
testing image 3352 / 9994
testing image 3353 / 9994
testing image 3354 / 9994
testing image 3355 / 9994
testing image 3356 / 9994
testing image 3357 / 9994
testing image 3358 / 9994
testing image 3359 / 9994
testing image 3360 / 9994
testing image 3361 / 9994
testing image 3362 / 9994
testing image 3363 / 9994
testing image 3364 / 9994
testing image 3365 / 9994
testing image 3366 / 9994
testing image 3367 / 9994
testing image 3368 / 9994
testing image 3369 / 9994
testing image 3370 / 9994
testing image 3371 / 9994
testing image 3372 / 9994
testing image 3373 / 9994
testing image 3374 / 9994
testing image 3375 / 9994
testing image 3376 / 9994
testing image 3377 / 9994
testing image 3378 / 9994
testing image 3379 / 9994
testing image 3380 / 9994
testing image 3381 / 9994
testing image 3382 / 9994
testing image 3383 / 9994
testing image 3384 / 9994
testing image 3385 / 9994
testing image 3386 / 9994
testing image 3387 / 9994
testing image 3388 / 9994
testing image 3389 / 9994
testing image 3390 / 9994
testing image 3391 / 9994
testing image 3392 / 9994
testing image 3393 / 9994
testing image 3394 / 9994
testing image 3395 / 9994
testing image 3396 / 9994
testing image 3397 / 9994
testing image 3398 / 9994
testing image 3399 / 9994
testing image 3400 / 9994
testing image 3401 / 9994
testing image 3402 / 9994
testing image 3403 / 9994
testing image 3404 / 9994
testing image 3405 / 9994
testing image 3406 / 9994
testing image 3407 / 9994
testing image 3408 / 9994
testing image 3409 / 9994
testing image 3410 / 9994
testing image 3411 / 9994
testing image 3412 / 9994
testing image 3413 / 9994
testing image 3414 / 9994
testing image 3415 / 9994
testing image 3416 / 9994
testing image 3417 / 9994
testing image 3418 / 9994
testing image 3419 / 9994
testing image 3420 / 9994
testing image 3421 / 9994
testing image 3422 / 9994
testing image 3423 / 9994
testing image 3424 / 9994
testing image 3425 / 9994
testing image 3426 / 9994
testing image 3427 / 9994
testing image 3428 / 9994
testing image 3429 / 9994
testing image 3430 / 9994
testing image 3431 / 9994
testing image 3432 / 9994
testing image 3433 / 9994
testing image 3434 / 9994
testing image 3435 / 9994
testing image 3436 / 9994
testing image 3437 / 9994
testing image 3438 / 9994
testing image 3439 / 9994
testing image 3440 / 9994
testing image 3441 / 9994
testing image 3442 / 9994
testing image 3443 / 9994
testing image 3444 / 9994
testing image 3445 / 9994
testing image 3446 / 9994
testing image 3447 / 9994
testing image 3448 / 9994
testing image 3449 / 9994
testing image 3450 / 9994
testing image 3451 / 9994
testing image 3452 / 9994
testing image 3453 / 9994
testing image 3454 / 9994
testing image 3455 / 9994
testing image 3456 / 9994
testing image 3457 / 9994
testing image 3458 / 9994
testing image 3459 / 9994
testing image 3460 / 9994
testing image 3461 / 9994
testing image 3462 / 9994
testing image 3463 / 9994
testing image 3464 / 9994
testing image 3465 / 9994
testing image 3466 / 9994
testing image 3467 / 9994
testing image 3468 / 9994
testing image 3469 / 9994
testing image 3470 / 9994
testing image 3471 / 9994
testing image 3472 / 9994
testing image 3473 / 9994
testing image 3474 / 9994
testing image 3475 / 9994
testing image 3476 / 9994
testing image 3477 / 9994
testing image 3478 / 9994
testing image 3479 / 9994
testing image 3480 / 9994
testing image 3481 / 9994
testing image 3482 / 9994
testing image 3483 / 9994
testing image 3484 / 9994
testing image 3485 / 9994
testing image 3486 / 9994
testing image 3487 / 9994
testing image 3488 / 9994
testing image 3489 / 9994
testing image 3490 / 9994
testing image 3491 / 9994
testing image 3492 / 9994
testing image 3493 / 9994
testing image 3494 / 9994
testing image 3495 / 9994
testing image 3496 / 9994
testing image 3497 / 9994
testing image 3498 / 9994
testing image 3499 / 9994
testing image 3500 / 9994
testing image 3501 / 9994
testing image 3502 / 9994
testing image 3503 / 9994
testing image 3504 / 9994
testing image 3505 / 9994
testing image 3506 / 9994
testing image 3507 / 9994
testing image 3508 / 9994
testing image 3509 / 9994
testing image 3510 / 9994
testing image 3511 / 9994
testing image 3512 / 9994
testing image 3513 / 9994
testing image 3514 / 9994
testing image 3515 / 9994
testing image 3516 / 9994
testing image 3517 / 9994
testing image 3518 / 9994
testing image 3519 / 9994
testing image 3520 / 9994
testing image 3521 / 9994
testing image 3522 / 9994
testing image 3523 / 9994
testing image 3524 / 9994
testing image 3525 / 9994
testing image 3526 / 9994
testing image 3527 / 9994
testing image 3528 / 9994
testing image 3529 / 9994
testing image 3530 / 9994
testing image 3531 / 9994
testing image 3532 / 9994
testing image 3533 / 9994
testing image 3534 / 9994
testing image 3535 / 9994
testing image 3536 / 9994
testing image 3537 / 9994
testing image 3538 / 9994
testing image 3539 / 9994
testing image 3540 / 9994
testing image 3541 / 9994
testing image 3542 / 9994
testing image 3543 / 9994
testing image 3544 / 9994
testing image 3545 / 9994
testing image 3546 / 9994
testing image 3547 / 9994
testing image 3548 / 9994
testing image 3549 / 9994
testing image 3550 / 9994
testing image 3551 / 9994
testing image 3552 / 9994
testing image 3553 / 9994
testing image 3554 / 9994
testing image 3555 / 9994
testing image 3556 / 9994
testing image 3557 / 9994
testing image 3558 / 9994
testing image 3559 / 9994
testing image 3560 / 9994
testing image 3561 / 9994
testing image 3562 / 9994
testing image 3563 / 9994
testing image 3564 / 9994
testing image 3565 / 9994
testing image 3566 / 9994
testing image 3567 / 9994
testing image 3568 / 9994
testing image 3569 / 9994
testing image 3570 / 9994
testing image 3571 / 9994
testing image 3572 / 9994
testing image 3573 / 9994
testing image 3574 / 9994
testing image 3575 / 9994
testing image 3576 / 9994
testing image 3577 / 9994
testing image 3578 / 9994
testing image 3579 / 9994
testing image 3580 / 9994
testing image 3581 / 9994
testing image 3582 / 9994
testing image 3583 / 9994
testing image 3584 / 9994
testing image 3585 / 9994
testing image 3586 / 9994
testing image 3587 / 9994
testing image 3588 / 9994
testing image 3589 / 9994
testing image 3590 / 9994
testing image 3591 / 9994
testing image 3592 / 9994
testing image 3593 / 9994
testing image 3594 / 9994
testing image 3595 / 9994
testing image 3596 / 9994
testing image 3597 / 9994
testing image 3598 / 9994
testing image 3599 / 9994
testing image 3600 / 9994
testing image 3601 / 9994
testing image 3602 / 9994
testing image 3603 / 9994
testing image 3604 / 9994
testing image 3605 / 9994
testing image 3606 / 9994
testing image 3607 / 9994
testing image 3608 / 9994
testing image 3609 / 9994
testing image 3610 / 9994
testing image 3611 / 9994
testing image 3612 / 9994
testing image 3613 / 9994
testing image 3614 / 9994
testing image 3615 / 9994
testing image 3616 / 9994
testing image 3617 / 9994
testing image 3618 / 9994
testing image 3619 / 9994
testing image 3620 / 9994
testing image 3621 / 9994
testing image 3622 / 9994
testing image 3623 / 9994
testing image 3624 / 9994
testing image 3625 / 9994
testing image 3626 / 9994
testing image 3627 / 9994
testing image 3628 / 9994
testing image 3629 / 9994
testing image 3630 / 9994
testing image 3631 / 9994
testing image 3632 / 9994
testing image 3633 / 9994
testing image 3634 / 9994
testing image 3635 / 9994
testing image 3636 / 9994
testing image 3637 / 9994
testing image 3638 / 9994
testing image 3639 / 9994
testing image 3640 / 9994
testing image 3641 / 9994
testing image 3642 / 9994
testing image 3643 / 9994
testing image 3644 / 9994
testing image 3645 / 9994
testing image 3646 / 9994
testing image 3647 / 9994
testing image 3648 / 9994
testing image 3649 / 9994
testing image 3650 / 9994
testing image 3651 / 9994
testing image 3652 / 9994
testing image 3653 / 9994
testing image 3654 / 9994
testing image 3655 / 9994
testing image 3656 / 9994
testing image 3657 / 9994
testing image 3658 / 9994
testing image 3659 / 9994
testing image 3660 / 9994
testing image 3661 / 9994
testing image 3662 / 9994
testing image 3663 / 9994
testing image 3664 / 9994
testing image 3665 / 9994
testing image 3666 / 9994
testing image 3667 / 9994
testing image 3668 / 9994
testing image 3669 / 9994
testing image 3670 / 9994
testing image 3671 / 9994
testing image 3672 / 9994
testing image 3673 / 9994
testing image 3674 / 9994
testing image 3675 / 9994
testing image 3676 / 9994
testing image 3677 / 9994
testing image 3678 / 9994
testing image 3679 / 9994
testing image 3680 / 9994
testing image 3681 / 9994
testing image 3682 / 9994
testing image 3683 / 9994
testing image 3684 / 9994
testing image 3685 / 9994
testing image 3686 / 9994
testing image 3687 / 9994
testing image 3688 / 9994
testing image 3689 / 9994
testing image 3690 / 9994
testing image 3691 / 9994
testing image 3692 / 9994
testing image 3693 / 9994
testing image 3694 / 9994
testing image 3695 / 9994
testing image 3696 / 9994
testing image 3697 / 9994
testing image 3698 / 9994
testing image 3699 / 9994
testing image 3700 / 9994
testing image 3701 / 9994
testing image 3702 / 9994
testing image 3703 / 9994
testing image 3704 / 9994
testing image 3705 / 9994
testing image 3706 / 9994
testing image 3707 / 9994
testing image 3708 / 9994
testing image 3709 / 9994
testing image 3710 / 9994
testing image 3711 / 9994
testing image 3712 / 9994
testing image 3713 / 9994
testing image 3714 / 9994
testing image 3715 / 9994
testing image 3716 / 9994
testing image 3717 / 9994
testing image 3718 / 9994
testing image 3719 / 9994
testing image 3720 / 9994
testing image 3721 / 9994
testing image 3722 / 9994
testing image 3723 / 9994
testing image 3724 / 9994
testing image 3725 / 9994
testing image 3726 / 9994
testing image 3727 / 9994
testing image 3728 / 9994
testing image 3729 / 9994
testing image 3730 / 9994
testing image 3731 / 9994
testing image 3732 / 9994
testing image 3733 / 9994
testing image 3734 / 9994
testing image 3735 / 9994
testing image 3736 / 9994
testing image 3737 / 9994
testing image 3738 / 9994
testing image 3739 / 9994
testing image 3740 / 9994
testing image 3741 / 9994
testing image 3742 / 9994
testing image 3743 / 9994
testing image 3744 / 9994
testing image 3745 / 9994
testing image 3746 / 9994
testing image 3747 / 9994
testing image 3748 / 9994
testing image 3749 / 9994
testing image 3750 / 9994
testing image 3751 / 9994
testing image 3752 / 9994
testing image 3753 / 9994
testing image 3754 / 9994
testing image 3755 / 9994
testing image 3756 / 9994
testing image 3757 / 9994
testing image 3758 / 9994
testing image 3759 / 9994
testing image 3760 / 9994
testing image 3761 / 9994
testing image 3762 / 9994
testing image 3763 / 9994
testing image 3764 / 9994
testing image 3765 / 9994
testing image 3766 / 9994
testing image 3767 / 9994
testing image 3768 / 9994
testing image 3769 / 9994
testing image 3770 / 9994
testing image 3771 / 9994
testing image 3772 / 9994
testing image 3773 / 9994
testing image 3774 / 9994
testing image 3775 / 9994
testing image 3776 / 9994
testing image 3777 / 9994
testing image 3778 / 9994
testing image 3779 / 9994
testing image 3780 / 9994
testing image 3781 / 9994
testing image 3782 / 9994
testing image 3783 / 9994
testing image 3784 / 9994
testing image 3785 / 9994
testing image 3786 / 9994
testing image 3787 / 9994
testing image 3788 / 9994
testing image 3789 / 9994
testing image 3790 / 9994
testing image 3791 / 9994
testing image 3792 / 9994
testing image 3793 / 9994
testing image 3794 / 9994
testing image 3795 / 9994
testing image 3796 / 9994
testing image 3797 / 9994
testing image 3798 / 9994
testing image 3799 / 9994
testing image 3800 / 9994
testing image 3801 / 9994
testing image 3802 / 9994
testing image 3803 / 9994
testing image 3804 / 9994
testing image 3805 / 9994
testing image 3806 / 9994
testing image 3807 / 9994
testing image 3808 / 9994
testing image 3809 / 9994
testing image 3810 / 9994
testing image 3811 / 9994
testing image 3812 / 9994
testing image 3813 / 9994
testing image 3814 / 9994
testing image 3815 / 9994
testing image 3816 / 9994
testing image 3817 / 9994
testing image 3818 / 9994
testing image 3819 / 9994
testing image 3820 / 9994
testing image 3821 / 9994
testing image 3822 / 9994
testing image 3823 / 9994
testing image 3824 / 9994
testing image 3825 / 9994
testing image 3826 / 9994
testing image 3827 / 9994
testing image 3828 / 9994
testing image 3829 / 9994
testing image 3830 / 9994
testing image 3831 / 9994
testing image 3832 / 9994
testing image 3833 / 9994
testing image 3834 / 9994
testing image 3835 / 9994
testing image 3836 / 9994
testing image 3837 / 9994
testing image 3838 / 9994
testing image 3839 / 9994
testing image 3840 / 9994
testing image 3841 / 9994
testing image 3842 / 9994
testing image 3843 / 9994
testing image 3844 / 9994
testing image 3845 / 9994
testing image 3846 / 9994
testing image 3847 / 9994
testing image 3848 / 9994
testing image 3849 / 9994
testing image 3850 / 9994
testing image 3851 / 9994
testing image 3852 / 9994
testing image 3853 / 9994
testing image 3854 / 9994
testing image 3855 / 9994
testing image 3856 / 9994
testing image 3857 / 9994
testing image 3858 / 9994
testing image 3859 / 9994
testing image 3860 / 9994
testing image 3861 / 9994
testing image 3862 / 9994
testing image 3863 / 9994
testing image 3864 / 9994
testing image 3865 / 9994
testing image 3866 / 9994
testing image 3867 / 9994
testing image 3868 / 9994
testing image 3869 / 9994
testing image 3870 / 9994
testing image 3871 / 9994
testing image 3872 / 9994
testing image 3873 / 9994
testing image 3874 / 9994
testing image 3875 / 9994
testing image 3876 / 9994
testing image 3877 / 9994
testing image 3878 / 9994
testing image 3879 / 9994
testing image 3880 / 9994
testing image 3881 / 9994
testing image 3882 / 9994
testing image 3883 / 9994
testing image 3884 / 9994
testing image 3885 / 9994
testing image 3886 / 9994
testing image 3887 / 9994
testing image 3888 / 9994
testing image 3889 / 9994
testing image 3890 / 9994
testing image 3891 / 9994
testing image 3892 / 9994
testing image 3893 / 9994
testing image 3894 / 9994
testing image 3895 / 9994
testing image 3896 / 9994
testing image 3897 / 9994
testing image 3898 / 9994
testing image 3899 / 9994
testing image 3900 / 9994
testing image 3901 / 9994
testing image 3902 / 9994
testing image 3903 / 9994
testing image 3904 / 9994
testing image 3905 / 9994
testing image 3906 / 9994
testing image 3907 / 9994
testing image 3908 / 9994
testing image 3909 / 9994
testing image 3910 / 9994
testing image 3911 / 9994
testing image 3912 / 9994
testing image 3913 / 9994
testing image 3914 / 9994
testing image 3915 / 9994
testing image 3916 / 9994
testing image 3917 / 9994
testing image 3918 / 9994
testing image 3919 / 9994
testing image 3920 / 9994
testing image 3921 / 9994
testing image 3922 / 9994
testing image 3923 / 9994
testing image 3924 / 9994
testing image 3925 / 9994
testing image 3926 / 9994
testing image 3927 / 9994
testing image 3928 / 9994
testing image 3929 / 9994
testing image 3930 / 9994
testing image 3931 / 9994
testing image 3932 / 9994
testing image 3933 / 9994
testing image 3934 / 9994
testing image 3935 / 9994
testing image 3936 / 9994
testing image 3937 / 9994
testing image 3938 / 9994
testing image 3939 / 9994
testing image 3940 / 9994
testing image 3941 / 9994
testing image 3942 / 9994
testing image 3943 / 9994
testing image 3944 / 9994
testing image 3945 / 9994
testing image 3946 / 9994
testing image 3947 / 9994
testing image 3948 / 9994
testing image 3949 / 9994
testing image 3950 / 9994
testing image 3951 / 9994
testing image 3952 / 9994
testing image 3953 / 9994
testing image 3954 / 9994
testing image 3955 / 9994
testing image 3956 / 9994
testing image 3957 / 9994
testing image 3958 / 9994
testing image 3959 / 9994
testing image 3960 / 9994
testing image 3961 / 9994
testing image 3962 / 9994
testing image 3963 / 9994
testing image 3964 / 9994
testing image 3965 / 9994
testing image 3966 / 9994
testing image 3967 / 9994
testing image 3968 / 9994
testing image 3969 / 9994
testing image 3970 / 9994
testing image 3971 / 9994
testing image 3972 / 9994
testing image 3973 / 9994
testing image 3974 / 9994
testing image 3975 / 9994
testing image 3976 / 9994
testing image 3977 / 9994
testing image 3978 / 9994
testing image 3979 / 9994
testing image 3980 / 9994
testing image 3981 / 9994
testing image 3982 / 9994
testing image 3983 / 9994
testing image 3984 / 9994
testing image 3985 / 9994
testing image 3986 / 9994
testing image 3987 / 9994
testing image 3988 / 9994
testing image 3989 / 9994
testing image 3990 / 9994
testing image 3991 / 9994
testing image 3992 / 9994
testing image 3993 / 9994
testing image 3994 / 9994
testing image 3995 / 9994
testing image 3996 / 9994
testing image 3997 / 9994
testing image 3998 / 9994
testing image 3999 / 9994
testing image 4000 / 9994
testing image 4001 / 9994
testing image 4002 / 9994
testing image 4003 / 9994
testing image 4004 / 9994
testing image 4005 / 9994
testing image 4006 / 9994
testing image 4007 / 9994
testing image 4008 / 9994
testing image 4009 / 9994
testing image 4010 / 9994
testing image 4011 / 9994
testing image 4012 / 9994
testing image 4013 / 9994
testing image 4014 / 9994
testing image 4015 / 9994
testing image 4016 / 9994
testing image 4017 / 9994
testing image 4018 / 9994
testing image 4019 / 9994
testing image 4020 / 9994
testing image 4021 / 9994
testing image 4022 / 9994
testing image 4023 / 9994
testing image 4024 / 9994
testing image 4025 / 9994
testing image 4026 / 9994
testing image 4027 / 9994
testing image 4028 / 9994
testing image 4029 / 9994
testing image 4030 / 9994
testing image 4031 / 9994
testing image 4032 / 9994
testing image 4033 / 9994
testing image 4034 / 9994
testing image 4035 / 9994
testing image 4036 / 9994
testing image 4037 / 9994
testing image 4038 / 9994
testing image 4039 / 9994
testing image 4040 / 9994
testing image 4041 / 9994
testing image 4042 / 9994
testing image 4043 / 9994
testing image 4044 / 9994
testing image 4045 / 9994
testing image 4046 / 9994
testing image 4047 / 9994
testing image 4048 / 9994
testing image 4049 / 9994
testing image 4050 / 9994
testing image 4051 / 9994
testing image 4052 / 9994
testing image 4053 / 9994
testing image 4054 / 9994
testing image 4055 / 9994
testing image 4056 / 9994
testing image 4057 / 9994
testing image 4058 / 9994
testing image 4059 / 9994
testing image 4060 / 9994
testing image 4061 / 9994
testing image 4062 / 9994
testing image 4063 / 9994
testing image 4064 / 9994
testing image 4065 / 9994
testing image 4066 / 9994
testing image 4067 / 9994
testing image 4068 / 9994
testing image 4069 / 9994
testing image 4070 / 9994
testing image 4071 / 9994
testing image 4072 / 9994
testing image 4073 / 9994
testing image 4074 / 9994
testing image 4075 / 9994
testing image 4076 / 9994
testing image 4077 / 9994
testing image 4078 / 9994
testing image 4079 / 9994
testing image 4080 / 9994
testing image 4081 / 9994
testing image 4082 / 9994
testing image 4083 / 9994
testing image 4084 / 9994
testing image 4085 / 9994
testing image 4086 / 9994
testing image 4087 / 9994
testing image 4088 / 9994
testing image 4089 / 9994
testing image 4090 / 9994
testing image 4091 / 9994
testing image 4092 / 9994
testing image 4093 / 9994
testing image 4094 / 9994
testing image 4095 / 9994
testing image 4096 / 9994
testing image 4097 / 9994
testing image 4098 / 9994
testing image 4099 / 9994
testing image 4100 / 9994
testing image 4101 / 9994
testing image 4102 / 9994
testing image 4103 / 9994
testing image 4104 / 9994
testing image 4105 / 9994
testing image 4106 / 9994
testing image 4107 / 9994
testing image 4108 / 9994
testing image 4109 / 9994
testing image 4110 / 9994
testing image 4111 / 9994
testing image 4112 / 9994
testing image 4113 / 9994
testing image 4114 / 9994
testing image 4115 / 9994
testing image 4116 / 9994
testing image 4117 / 9994
testing image 4118 / 9994
testing image 4119 / 9994
testing image 4120 / 9994
testing image 4121 / 9994
testing image 4122 / 9994
testing image 4123 / 9994
testing image 4124 / 9994
testing image 4125 / 9994
testing image 4126 / 9994
testing image 4127 / 9994
testing image 4128 / 9994
testing image 4129 / 9994
testing image 4130 / 9994
testing image 4131 / 9994
testing image 4132 / 9994
testing image 4133 / 9994
testing image 4134 / 9994
testing image 4135 / 9994
testing image 4136 / 9994
testing image 4137 / 9994
testing image 4138 / 9994
testing image 4139 / 9994
testing image 4140 / 9994
testing image 4141 / 9994
testing image 4142 / 9994
testing image 4143 / 9994
testing image 4144 / 9994
testing image 4145 / 9994
testing image 4146 / 9994
testing image 4147 / 9994
testing image 4148 / 9994
testing image 4149 / 9994
testing image 4150 / 9994
testing image 4151 / 9994
testing image 4152 / 9994
testing image 4153 / 9994
testing image 4154 / 9994
testing image 4155 / 9994
testing image 4156 / 9994
testing image 4157 / 9994
testing image 4158 / 9994
testing image 4159 / 9994
testing image 4160 / 9994
testing image 4161 / 9994
testing image 4162 / 9994
testing image 4163 / 9994
testing image 4164 / 9994
testing image 4165 / 9994
testing image 4166 / 9994
testing image 4167 / 9994
testing image 4168 / 9994
testing image 4169 / 9994
testing image 4170 / 9994
testing image 4171 / 9994
testing image 4172 / 9994
testing image 4173 / 9994
testing image 4174 / 9994
testing image 4175 / 9994
testing image 4176 / 9994
testing image 4177 / 9994
testing image 4178 / 9994
testing image 4179 / 9994
testing image 4180 / 9994
testing image 4181 / 9994
testing image 4182 / 9994
testing image 4183 / 9994
testing image 4184 / 9994
testing image 4185 / 9994
testing image 4186 / 9994
testing image 4187 / 9994
testing image 4188 / 9994
testing image 4189 / 9994
testing image 4190 / 9994
testing image 4191 / 9994
testing image 4192 / 9994
testing image 4193 / 9994
testing image 4194 / 9994
testing image 4195 / 9994
testing image 4196 / 9994
testing image 4197 / 9994
testing image 4198 / 9994
testing image 4199 / 9994
testing image 4200 / 9994
testing image 4201 / 9994
testing image 4202 / 9994
testing image 4203 / 9994
testing image 4204 / 9994
testing image 4205 / 9994
testing image 4206 / 9994
testing image 4207 / 9994
testing image 4208 / 9994
testing image 4209 / 9994
testing image 4210 / 9994
testing image 4211 / 9994
testing image 4212 / 9994
testing image 4213 / 9994
testing image 4214 / 9994
testing image 4215 / 9994
testing image 4216 / 9994
testing image 4217 / 9994
testing image 4218 / 9994
testing image 4219 / 9994
testing image 4220 / 9994
testing image 4221 / 9994
testing image 4222 / 9994
testing image 4223 / 9994
testing image 4224 / 9994
testing image 4225 / 9994
testing image 4226 / 9994
testing image 4227 / 9994
testing image 4228 / 9994
testing image 4229 / 9994
testing image 4230 / 9994
testing image 4231 / 9994
testing image 4232 / 9994
testing image 4233 / 9994
testing image 4234 / 9994
testing image 4235 / 9994
testing image 4236 / 9994
testing image 4237 / 9994
testing image 4238 / 9994
testing image 4239 / 9994
testing image 4240 / 9994
testing image 4241 / 9994
testing image 4242 / 9994
testing image 4243 / 9994
testing image 4244 / 9994
testing image 4245 / 9994
testing image 4246 / 9994
testing image 4247 / 9994
testing image 4248 / 9994
testing image 4249 / 9994
testing image 4250 / 9994
testing image 4251 / 9994
testing image 4252 / 9994
testing image 4253 / 9994
testing image 4254 / 9994
testing image 4255 / 9994
testing image 4256 / 9994
testing image 4257 / 9994
testing image 4258 / 9994
testing image 4259 / 9994
testing image 4260 / 9994
testing image 4261 / 9994
testing image 4262 / 9994
testing image 4263 / 9994
testing image 4264 / 9994
testing image 4265 / 9994
testing image 4266 / 9994
testing image 4267 / 9994
testing image 4268 / 9994
testing image 4269 / 9994
testing image 4270 / 9994
testing image 4271 / 9994
testing image 4272 / 9994
testing image 4273 / 9994
testing image 4274 / 9994
testing image 4275 / 9994
testing image 4276 / 9994
testing image 4277 / 9994
testing image 4278 / 9994
testing image 4279 / 9994
testing image 4280 / 9994
testing image 4281 / 9994
testing image 4282 / 9994
testing image 4283 / 9994
testing image 4284 / 9994
testing image 4285 / 9994
testing image 4286 / 9994
testing image 4287 / 9994
testing image 4288 / 9994
testing image 4289 / 9994
testing image 4290 / 9994
testing image 4291 / 9994
testing image 4292 / 9994
testing image 4293 / 9994
testing image 4294 / 9994
testing image 4295 / 9994
testing image 4296 / 9994
testing image 4297 / 9994
testing image 4298 / 9994
testing image 4299 / 9994
testing image 4300 / 9994
testing image 4301 / 9994
testing image 4302 / 9994
testing image 4303 / 9994
testing image 4304 / 9994
testing image 4305 / 9994
testing image 4306 / 9994
testing image 4307 / 9994
testing image 4308 / 9994
testing image 4309 / 9994
testing image 4310 / 9994
testing image 4311 / 9994
testing image 4312 / 9994
testing image 4313 / 9994
testing image 4314 / 9994
testing image 4315 / 9994
testing image 4316 / 9994
testing image 4317 / 9994
testing image 4318 / 9994
testing image 4319 / 9994
testing image 4320 / 9994
testing image 4321 / 9994
testing image 4322 / 9994
testing image 4323 / 9994
testing image 4324 / 9994
testing image 4325 / 9994
testing image 4326 / 9994
testing image 4327 / 9994
testing image 4328 / 9994
testing image 4329 / 9994
testing image 4330 / 9994
testing image 4331 / 9994
testing image 4332 / 9994
testing image 4333 / 9994
testing image 4334 / 9994
testing image 4335 / 9994
testing image 4336 / 9994
testing image 4337 / 9994
testing image 4338 / 9994
testing image 4339 / 9994
testing image 4340 / 9994
testing image 4341 / 9994
testing image 4342 / 9994
testing image 4343 / 9994
testing image 4344 / 9994
testing image 4345 / 9994
testing image 4346 / 9994
testing image 4347 / 9994
testing image 4348 / 9994
testing image 4349 / 9994
testing image 4350 / 9994
testing image 4351 / 9994
testing image 4352 / 9994
testing image 4353 / 9994
testing image 4354 / 9994
testing image 4355 / 9994
testing image 4356 / 9994
testing image 4357 / 9994
testing image 4358 / 9994
testing image 4359 / 9994
testing image 4360 / 9994
testing image 4361 / 9994
testing image 4362 / 9994
testing image 4363 / 9994
testing image 4364 / 9994
testing image 4365 / 9994
testing image 4366 / 9994
testing image 4367 / 9994
testing image 4368 / 9994
testing image 4369 / 9994
testing image 4370 / 9994
testing image 4371 / 9994
testing image 4372 / 9994
testing image 4373 / 9994
testing image 4374 / 9994
testing image 4375 / 9994
testing image 4376 / 9994
testing image 4377 / 9994
testing image 4378 / 9994
testing image 4379 / 9994
testing image 4380 / 9994
testing image 4381 / 9994
testing image 4382 / 9994
testing image 4383 / 9994
testing image 4384 / 9994
testing image 4385 / 9994
testing image 4386 / 9994
testing image 4387 / 9994
testing image 4388 / 9994
testing image 4389 / 9994
testing image 4390 / 9994
testing image 4391 / 9994
testing image 4392 / 9994
testing image 4393 / 9994
testing image 4394 / 9994
testing image 4395 / 9994
testing image 4396 / 9994
testing image 4397 / 9994
testing image 4398 / 9994
testing image 4399 / 9994
testing image 4400 / 9994
testing image 4401 / 9994
testing image 4402 / 9994
testing image 4403 / 9994
testing image 4404 / 9994
testing image 4405 / 9994
testing image 4406 / 9994
testing image 4407 / 9994
testing image 4408 / 9994
testing image 4409 / 9994
testing image 4410 / 9994
testing image 4411 / 9994
testing image 4412 / 9994
testing image 4413 / 9994
testing image 4414 / 9994
testing image 4415 / 9994
testing image 4416 / 9994
testing image 4417 / 9994
testing image 4418 / 9994
testing image 4419 / 9994
testing image 4420 / 9994
testing image 4421 / 9994
testing image 4422 / 9994
testing image 4423 / 9994
testing image 4424 / 9994
testing image 4425 / 9994
testing image 4426 / 9994
testing image 4427 / 9994
testing image 4428 / 9994
testing image 4429 / 9994
testing image 4430 / 9994
testing image 4431 / 9994
testing image 4432 / 9994
testing image 4433 / 9994
testing image 4434 / 9994
testing image 4435 / 9994
testing image 4436 / 9994
testing image 4437 / 9994
testing image 4438 / 9994
testing image 4439 / 9994
testing image 4440 / 9994
testing image 4441 / 9994
testing image 4442 / 9994
testing image 4443 / 9994
testing image 4444 / 9994
testing image 4445 / 9994
testing image 4446 / 9994
testing image 4447 / 9994
testing image 4448 / 9994
testing image 4449 / 9994
testing image 4450 / 9994
testing image 4451 / 9994
testing image 4452 / 9994
testing image 4453 / 9994
testing image 4454 / 9994
testing image 4455 / 9994
testing image 4456 / 9994
testing image 4457 / 9994
testing image 4458 / 9994
testing image 4459 / 9994
testing image 4460 / 9994
testing image 4461 / 9994
testing image 4462 / 9994
testing image 4463 / 9994
testing image 4464 / 9994
testing image 4465 / 9994
testing image 4466 / 9994
testing image 4467 / 9994
testing image 4468 / 9994
testing image 4469 / 9994
testing image 4470 / 9994
testing image 4471 / 9994
testing image 4472 / 9994
testing image 4473 / 9994
testing image 4474 / 9994
testing image 4475 / 9994
testing image 4476 / 9994
testing image 4477 / 9994
testing image 4478 / 9994
testing image 4479 / 9994
testing image 4480 / 9994
testing image 4481 / 9994
testing image 4482 / 9994
testing image 4483 / 9994
testing image 4484 / 9994
testing image 4485 / 9994
testing image 4486 / 9994
testing image 4487 / 9994
testing image 4488 / 9994
testing image 4489 / 9994
testing image 4490 / 9994
testing image 4491 / 9994
testing image 4492 / 9994
testing image 4493 / 9994
testing image 4494 / 9994
testing image 4495 / 9994
testing image 4496 / 9994
testing image 4497 / 9994
testing image 4498 / 9994
testing image 4499 / 9994
testing image 4500 / 9994
testing image 4501 / 9994
testing image 4502 / 9994
testing image 4503 / 9994
testing image 4504 / 9994
testing image 4505 / 9994
testing image 4506 / 9994
testing image 4507 / 9994
testing image 4508 / 9994
testing image 4509 / 9994
testing image 4510 / 9994
testing image 4511 / 9994
testing image 4512 / 9994
testing image 4513 / 9994
testing image 4514 / 9994
testing image 4515 / 9994
testing image 4516 / 9994
testing image 4517 / 9994
testing image 4518 / 9994
testing image 4519 / 9994
testing image 4520 / 9994
testing image 4521 / 9994
testing image 4522 / 9994
testing image 4523 / 9994
testing image 4524 / 9994
testing image 4525 / 9994
testing image 4526 / 9994
testing image 4527 / 9994
testing image 4528 / 9994
testing image 4529 / 9994
testing image 4530 / 9994
testing image 4531 / 9994
testing image 4532 / 9994
testing image 4533 / 9994
testing image 4534 / 9994
testing image 4535 / 9994
testing image 4536 / 9994
testing image 4537 / 9994
testing image 4538 / 9994
testing image 4539 / 9994
testing image 4540 / 9994
testing image 4541 / 9994
testing image 4542 / 9994
testing image 4543 / 9994
testing image 4544 / 9994
testing image 4545 / 9994
testing image 4546 / 9994
testing image 4547 / 9994
testing image 4548 / 9994
testing image 4549 / 9994
testing image 4550 / 9994
testing image 4551 / 9994
testing image 4552 / 9994
testing image 4553 / 9994
testing image 4554 / 9994
testing image 4555 / 9994
testing image 4556 / 9994
testing image 4557 / 9994
testing image 4558 / 9994
testing image 4559 / 9994
testing image 4560 / 9994
testing image 4561 / 9994
testing image 4562 / 9994
testing image 4563 / 9994
testing image 4564 / 9994
testing image 4565 / 9994
testing image 4566 / 9994
testing image 4567 / 9994
testing image 4568 / 9994
testing image 4569 / 9994
testing image 4570 / 9994
testing image 4571 / 9994
testing image 4572 / 9994
testing image 4573 / 9994
testing image 4574 / 9994
testing image 4575 / 9994
testing image 4576 / 9994
testing image 4577 / 9994
testing image 4578 / 9994
testing image 4579 / 9994
testing image 4580 / 9994
testing image 4581 / 9994
testing image 4582 / 9994
testing image 4583 / 9994
testing image 4584 / 9994
testing image 4585 / 9994
testing image 4586 / 9994
testing image 4587 / 9994
testing image 4588 / 9994
testing image 4589 / 9994
testing image 4590 / 9994
testing image 4591 / 9994
testing image 4592 / 9994
testing image 4593 / 9994
testing image 4594 / 9994
testing image 4595 / 9994
testing image 4596 / 9994
testing image 4597 / 9994
testing image 4598 / 9994
testing image 4599 / 9994
testing image 4600 / 9994
testing image 4601 / 9994
testing image 4602 / 9994
testing image 4603 / 9994
testing image 4604 / 9994
testing image 4605 / 9994
testing image 4606 / 9994
testing image 4607 / 9994
testing image 4608 / 9994
testing image 4609 / 9994
testing image 4610 / 9994
testing image 4611 / 9994
testing image 4612 / 9994
testing image 4613 / 9994
testing image 4614 / 9994
testing image 4615 / 9994
testing image 4616 / 9994
testing image 4617 / 9994
testing image 4618 / 9994
testing image 4619 / 9994
testing image 4620 / 9994
testing image 4621 / 9994
testing image 4622 / 9994
testing image 4623 / 9994
testing image 4624 / 9994
testing image 4625 / 9994
testing image 4626 / 9994
testing image 4627 / 9994
testing image 4628 / 9994
testing image 4629 / 9994
testing image 4630 / 9994
testing image 4631 / 9994
testing image 4632 / 9994
testing image 4633 / 9994
testing image 4634 / 9994
testing image 4635 / 9994
testing image 4636 / 9994
testing image 4637 / 9994
testing image 4638 / 9994
testing image 4639 / 9994
testing image 4640 / 9994
testing image 4641 / 9994
testing image 4642 / 9994
testing image 4643 / 9994
testing image 4644 / 9994
testing image 4645 / 9994
testing image 4646 / 9994
testing image 4647 / 9994
testing image 4648 / 9994
testing image 4649 / 9994
testing image 4650 / 9994
testing image 4651 / 9994
testing image 4652 / 9994
testing image 4653 / 9994
testing image 4654 / 9994
testing image 4655 / 9994
testing image 4656 / 9994
testing image 4657 / 9994
testing image 4658 / 9994
testing image 4659 / 9994
testing image 4660 / 9994
testing image 4661 / 9994
testing image 4662 / 9994
testing image 4663 / 9994
testing image 4664 / 9994
testing image 4665 / 9994
testing image 4666 / 9994
testing image 4667 / 9994
testing image 4668 / 9994
testing image 4669 / 9994
testing image 4670 / 9994
testing image 4671 / 9994
testing image 4672 / 9994
testing image 4673 / 9994
testing image 4674 / 9994
testing image 4675 / 9994
testing image 4676 / 9994
testing image 4677 / 9994
testing image 4678 / 9994
testing image 4679 / 9994
testing image 4680 / 9994
testing image 4681 / 9994
testing image 4682 / 9994
testing image 4683 / 9994
testing image 4684 / 9994
testing image 4685 / 9994
testing image 4686 / 9994
testing image 4687 / 9994
testing image 4688 / 9994
testing image 4689 / 9994
testing image 4690 / 9994
testing image 4691 / 9994
testing image 4692 / 9994
testing image 4693 / 9994
testing image 4694 / 9994
testing image 4695 / 9994
testing image 4696 / 9994
testing image 4697 / 9994
testing image 4698 / 9994
testing image 4699 / 9994
testing image 4700 / 9994
testing image 4701 / 9994
testing image 4702 / 9994
testing image 4703 / 9994
testing image 4704 / 9994
testing image 4705 / 9994
testing image 4706 / 9994
testing image 4707 / 9994
testing image 4708 / 9994
testing image 4709 / 9994
testing image 4710 / 9994
testing image 4711 / 9994
testing image 4712 / 9994
testing image 4713 / 9994
testing image 4714 / 9994
testing image 4715 / 9994
testing image 4716 / 9994
testing image 4717 / 9994
testing image 4718 / 9994
testing image 4719 / 9994
testing image 4720 / 9994
testing image 4721 / 9994
testing image 4722 / 9994
testing image 4723 / 9994
testing image 4724 / 9994
testing image 4725 / 9994
testing image 4726 / 9994
testing image 4727 / 9994
testing image 4728 / 9994
testing image 4729 / 9994
testing image 4730 / 9994
testing image 4731 / 9994
testing image 4732 / 9994
testing image 4733 / 9994
testing image 4734 / 9994
testing image 4735 / 9994
testing image 4736 / 9994
testing image 4737 / 9994
testing image 4738 / 9994
testing image 4739 / 9994
testing image 4740 / 9994
testing image 4741 / 9994
testing image 4742 / 9994
testing image 4743 / 9994
testing image 4744 / 9994
testing image 4745 / 9994
testing image 4746 / 9994
testing image 4747 / 9994
testing image 4748 / 9994
testing image 4749 / 9994
testing image 4750 / 9994
testing image 4751 / 9994
testing image 4752 / 9994
testing image 4753 / 9994
testing image 4754 / 9994
testing image 4755 / 9994
testing image 4756 / 9994
testing image 4757 / 9994
testing image 4758 / 9994
testing image 4759 / 9994
testing image 4760 / 9994
testing image 4761 / 9994
testing image 4762 / 9994
testing image 4763 / 9994
testing image 4764 / 9994
testing image 4765 / 9994
testing image 4766 / 9994
testing image 4767 / 9994
testing image 4768 / 9994
testing image 4769 / 9994
testing image 4770 / 9994
testing image 4771 / 9994
testing image 4772 / 9994
testing image 4773 / 9994
testing image 4774 / 9994
testing image 4775 / 9994
testing image 4776 / 9994
testing image 4777 / 9994
testing image 4778 / 9994
testing image 4779 / 9994
testing image 4780 / 9994
testing image 4781 / 9994
testing image 4782 / 9994
testing image 4783 / 9994
testing image 4784 / 9994
testing image 4785 / 9994
testing image 4786 / 9994
testing image 4787 / 9994
testing image 4788 / 9994
testing image 4789 / 9994
testing image 4790 / 9994
testing image 4791 / 9994
testing image 4792 / 9994
testing image 4793 / 9994
testing image 4794 / 9994
testing image 4795 / 9994
testing image 4796 / 9994
testing image 4797 / 9994
testing image 4798 / 9994
testing image 4799 / 9994
testing image 4800 / 9994
testing image 4801 / 9994
testing image 4802 / 9994
testing image 4803 / 9994
testing image 4804 / 9994
testing image 4805 / 9994
testing image 4806 / 9994
testing image 4807 / 9994
testing image 4808 / 9994
testing image 4809 / 9994
testing image 4810 / 9994
testing image 4811 / 9994
testing image 4812 / 9994
testing image 4813 / 9994
testing image 4814 / 9994
testing image 4815 / 9994
testing image 4816 / 9994
testing image 4817 / 9994
testing image 4818 / 9994
testing image 4819 / 9994
testing image 4820 / 9994
testing image 4821 / 9994
testing image 4822 / 9994
testing image 4823 / 9994
testing image 4824 / 9994
testing image 4825 / 9994
testing image 4826 / 9994
testing image 4827 / 9994
testing image 4828 / 9994
testing image 4829 / 9994
testing image 4830 / 9994
testing image 4831 / 9994
testing image 4832 / 9994
testing image 4833 / 9994
testing image 4834 / 9994
testing image 4835 / 9994
testing image 4836 / 9994
testing image 4837 / 9994
testing image 4838 / 9994
testing image 4839 / 9994
testing image 4840 / 9994
testing image 4841 / 9994
testing image 4842 / 9994
testing image 4843 / 9994
testing image 4844 / 9994
testing image 4845 / 9994
testing image 4846 / 9994
testing image 4847 / 9994
testing image 4848 / 9994
testing image 4849 / 9994
testing image 4850 / 9994
testing image 4851 / 9994
testing image 4852 / 9994
testing image 4853 / 9994
testing image 4854 / 9994
testing image 4855 / 9994
testing image 4856 / 9994
testing image 4857 / 9994
testing image 4858 / 9994
testing image 4859 / 9994
testing image 4860 / 9994
testing image 4861 / 9994
testing image 4862 / 9994
testing image 4863 / 9994
testing image 4864 / 9994
testing image 4865 / 9994
testing image 4866 / 9994
testing image 4867 / 9994
testing image 4868 / 9994
testing image 4869 / 9994
testing image 4870 / 9994
testing image 4871 / 9994
testing image 4872 / 9994
testing image 4873 / 9994
testing image 4874 / 9994
testing image 4875 / 9994
testing image 4876 / 9994
testing image 4877 / 9994
testing image 4878 / 9994
testing image 4879 / 9994
testing image 4880 / 9994
testing image 4881 / 9994
testing image 4882 / 9994
testing image 4883 / 9994
testing image 4884 / 9994
testing image 4885 / 9994
testing image 4886 / 9994
testing image 4887 / 9994
testing image 4888 / 9994
testing image 4889 / 9994
testing image 4890 / 9994
testing image 4891 / 9994
testing image 4892 / 9994
testing image 4893 / 9994
testing image 4894 / 9994
testing image 4895 / 9994
testing image 4896 / 9994
testing image 4897 / 9994
testing image 4898 / 9994
testing image 4899 / 9994
testing image 4900 / 9994
testing image 4901 / 9994
testing image 4902 / 9994
testing image 4903 / 9994
testing image 4904 / 9994
testing image 4905 / 9994
testing image 4906 / 9994
testing image 4907 / 9994
testing image 4908 / 9994
testing image 4909 / 9994
testing image 4910 / 9994
testing image 4911 / 9994
testing image 4912 / 9994
testing image 4913 / 9994
testing image 4914 / 9994
testing image 4915 / 9994
testing image 4916 / 9994
testing image 4917 / 9994
testing image 4918 / 9994
testing image 4919 / 9994
testing image 4920 / 9994
testing image 4921 / 9994
testing image 4922 / 9994
testing image 4923 / 9994
testing image 4924 / 9994
testing image 4925 / 9994
testing image 4926 / 9994
testing image 4927 / 9994
testing image 4928 / 9994
testing image 4929 / 9994
testing image 4930 / 9994
testing image 4931 / 9994
testing image 4932 / 9994
testing image 4933 / 9994
testing image 4934 / 9994
testing image 4935 / 9994
testing image 4936 / 9994
testing image 4937 / 9994
testing image 4938 / 9994
testing image 4939 / 9994
testing image 4940 / 9994
testing image 4941 / 9994
testing image 4942 / 9994
testing image 4943 / 9994
testing image 4944 / 9994
testing image 4945 / 9994
testing image 4946 / 9994
testing image 4947 / 9994
testing image 4948 / 9994
testing image 4949 / 9994
testing image 4950 / 9994
testing image 4951 / 9994
testing image 4952 / 9994
testing image 4953 / 9994
testing image 4954 / 9994
testing image 4955 / 9994
testing image 4956 / 9994
testing image 4957 / 9994
testing image 4958 / 9994
testing image 4959 / 9994
testing image 4960 / 9994
testing image 4961 / 9994
testing image 4962 / 9994
testing image 4963 / 9994
testing image 4964 / 9994
testing image 4965 / 9994
testing image 4966 / 9994
testing image 4967 / 9994
testing image 4968 / 9994
testing image 4969 / 9994
testing image 4970 / 9994
testing image 4971 / 9994
testing image 4972 / 9994
testing image 4973 / 9994
testing image 4974 / 9994
testing image 4975 / 9994
testing image 4976 / 9994
testing image 4977 / 9994
testing image 4978 / 9994
testing image 4979 / 9994
testing image 4980 / 9994
testing image 4981 / 9994
testing image 4982 / 9994
testing image 4983 / 9994
testing image 4984 / 9994
testing image 4985 / 9994
testing image 4986 / 9994
testing image 4987 / 9994
testing image 4988 / 9994
testing image 4989 / 9994
testing image 4990 / 9994
testing image 4991 / 9994
testing image 4992 / 9994
testing image 4993 / 9994
testing image 4994 / 9994
testing image 4995 / 9994
testing image 4996 / 9994
testing image 4997 / 9994
testing image 4998 / 9994
testing image 4999 / 9994
testing image 5000 / 9994
testing image 5001 / 9994
testing image 5002 / 9994
testing image 5003 / 9994
testing image 5004 / 9994
testing image 5005 / 9994
testing image 5006 / 9994
testing image 5007 / 9994
testing image 5008 / 9994
testing image 5009 / 9994
testing image 5010 / 9994
testing image 5011 / 9994
testing image 5012 / 9994
testing image 5013 / 9994
testing image 5014 / 9994
testing image 5015 / 9994
testing image 5016 / 9994
testing image 5017 / 9994
testing image 5018 / 9994
testing image 5019 / 9994
testing image 5020 / 9994
testing image 5021 / 9994
testing image 5022 / 9994
testing image 5023 / 9994
testing image 5024 / 9994
testing image 5025 / 9994
testing image 5026 / 9994
testing image 5027 / 9994
testing image 5028 / 9994
testing image 5029 / 9994
testing image 5030 / 9994
testing image 5031 / 9994
testing image 5032 / 9994
testing image 5033 / 9994
testing image 5034 / 9994
testing image 5035 / 9994
testing image 5036 / 9994
testing image 5037 / 9994
testing image 5038 / 9994
testing image 5039 / 9994
testing image 5040 / 9994
testing image 5041 / 9994
testing image 5042 / 9994
testing image 5043 / 9994
testing image 5044 / 9994
testing image 5045 / 9994
testing image 5046 / 9994
testing image 5047 / 9994
testing image 5048 / 9994
testing image 5049 / 9994
testing image 5050 / 9994
testing image 5051 / 9994
testing image 5052 / 9994
testing image 5053 / 9994
testing image 5054 / 9994
testing image 5055 / 9994
testing image 5056 / 9994
testing image 5057 / 9994
testing image 5058 / 9994
testing image 5059 / 9994
testing image 5060 / 9994
testing image 5061 / 9994
testing image 5062 / 9994
testing image 5063 / 9994
testing image 5064 / 9994
testing image 5065 / 9994
testing image 5066 / 9994
testing image 5067 / 9994
testing image 5068 / 9994
testing image 5069 / 9994
testing image 5070 / 9994
testing image 5071 / 9994
testing image 5072 / 9994
testing image 5073 / 9994
testing image 5074 / 9994
testing image 5075 / 9994
testing image 5076 / 9994
testing image 5077 / 9994
testing image 5078 / 9994
testing image 5079 / 9994
testing image 5080 / 9994
testing image 5081 / 9994
testing image 5082 / 9994
testing image 5083 / 9994
testing image 5084 / 9994
testing image 5085 / 9994
testing image 5086 / 9994
testing image 5087 / 9994
testing image 5088 / 9994
testing image 5089 / 9994
testing image 5090 / 9994
testing image 5091 / 9994
testing image 5092 / 9994
testing image 5093 / 9994
testing image 5094 / 9994
testing image 5095 / 9994
testing image 5096 / 9994
testing image 5097 / 9994
testing image 5098 / 9994
testing image 5099 / 9994
testing image 5100 / 9994
testing image 5101 / 9994
testing image 5102 / 9994
testing image 5103 / 9994
testing image 5104 / 9994
testing image 5105 / 9994
testing image 5106 / 9994
testing image 5107 / 9994
testing image 5108 / 9994
testing image 5109 / 9994
testing image 5110 / 9994
testing image 5111 / 9994
testing image 5112 / 9994
testing image 5113 / 9994
testing image 5114 / 9994
testing image 5115 / 9994
testing image 5116 / 9994
testing image 5117 / 9994
testing image 5118 / 9994
testing image 5119 / 9994
testing image 5120 / 9994
testing image 5121 / 9994
testing image 5122 / 9994
testing image 5123 / 9994
testing image 5124 / 9994
testing image 5125 / 9994
testing image 5126 / 9994
testing image 5127 / 9994
testing image 5128 / 9994
testing image 5129 / 9994
testing image 5130 / 9994
testing image 5131 / 9994
testing image 5132 / 9994
testing image 5133 / 9994
testing image 5134 / 9994
testing image 5135 / 9994
testing image 5136 / 9994
testing image 5137 / 9994
testing image 5138 / 9994
testing image 5139 / 9994
testing image 5140 / 9994
testing image 5141 / 9994
testing image 5142 / 9994
testing image 5143 / 9994
testing image 5144 / 9994
testing image 5145 / 9994
testing image 5146 / 9994
testing image 5147 / 9994
testing image 5148 / 9994
testing image 5149 / 9994
testing image 5150 / 9994
testing image 5151 / 9994
testing image 5152 / 9994
testing image 5153 / 9994
testing image 5154 / 9994
testing image 5155 / 9994
testing image 5156 / 9994
testing image 5157 / 9994
testing image 5158 / 9994
testing image 5159 / 9994
testing image 5160 / 9994
testing image 5161 / 9994
testing image 5162 / 9994
testing image 5163 / 9994
testing image 5164 / 9994
testing image 5165 / 9994
testing image 5166 / 9994
testing image 5167 / 9994
testing image 5168 / 9994
testing image 5169 / 9994
testing image 5170 / 9994
testing image 5171 / 9994
testing image 5172 / 9994
testing image 5173 / 9994
testing image 5174 / 9994
testing image 5175 / 9994
testing image 5176 / 9994
testing image 5177 / 9994
testing image 5178 / 9994
testing image 5179 / 9994
testing image 5180 / 9994
testing image 5181 / 9994
testing image 5182 / 9994
testing image 5183 / 9994
testing image 5184 / 9994
testing image 5185 / 9994
testing image 5186 / 9994
testing image 5187 / 9994
testing image 5188 / 9994
testing image 5189 / 9994
testing image 5190 / 9994
testing image 5191 / 9994
testing image 5192 / 9994
testing image 5193 / 9994
testing image 5194 / 9994
testing image 5195 / 9994
testing image 5196 / 9994
testing image 5197 / 9994
testing image 5198 / 9994
testing image 5199 / 9994
testing image 5200 / 9994
testing image 5201 / 9994
testing image 5202 / 9994
testing image 5203 / 9994
testing image 5204 / 9994
testing image 5205 / 9994
testing image 5206 / 9994
testing image 5207 / 9994
testing image 5208 / 9994
testing image 5209 / 9994
testing image 5210 / 9994
testing image 5211 / 9994
testing image 5212 / 9994
testing image 5213 / 9994
testing image 5214 / 9994
testing image 5215 / 9994
testing image 5216 / 9994
testing image 5217 / 9994
testing image 5218 / 9994
testing image 5219 / 9994
testing image 5220 / 9994
testing image 5221 / 9994
testing image 5222 / 9994
testing image 5223 / 9994
testing image 5224 / 9994
testing image 5225 / 9994
testing image 5226 / 9994
testing image 5227 / 9994
testing image 5228 / 9994
testing image 5229 / 9994
testing image 5230 / 9994
testing image 5231 / 9994
testing image 5232 / 9994
testing image 5233 / 9994
testing image 5234 / 9994
testing image 5235 / 9994
testing image 5236 / 9994
testing image 5237 / 9994
testing image 5238 / 9994
testing image 5239 / 9994
testing image 5240 / 9994
testing image 5241 / 9994
testing image 5242 / 9994
testing image 5243 / 9994
testing image 5244 / 9994
testing image 5245 / 9994
testing image 5246 / 9994
testing image 5247 / 9994
testing image 5248 / 9994
testing image 5249 / 9994
testing image 5250 / 9994
testing image 5251 / 9994
testing image 5252 / 9994
testing image 5253 / 9994
testing image 5254 / 9994
testing image 5255 / 9994
testing image 5256 / 9994
testing image 5257 / 9994
testing image 5258 / 9994
testing image 5259 / 9994
testing image 5260 / 9994
testing image 5261 / 9994
testing image 5262 / 9994
testing image 5263 / 9994
testing image 5264 / 9994
testing image 5265 / 9994
testing image 5266 / 9994
testing image 5267 / 9994
testing image 5268 / 9994
testing image 5269 / 9994
testing image 5270 / 9994
testing image 5271 / 9994
testing image 5272 / 9994
testing image 5273 / 9994
testing image 5274 / 9994
testing image 5275 / 9994
testing image 5276 / 9994
testing image 5277 / 9994
testing image 5278 / 9994
testing image 5279 / 9994
testing image 5280 / 9994
testing image 5281 / 9994
testing image 5282 / 9994
testing image 5283 / 9994
testing image 5284 / 9994
testing image 5285 / 9994
testing image 5286 / 9994
testing image 5287 / 9994
testing image 5288 / 9994
testing image 5289 / 9994
testing image 5290 / 9994
testing image 5291 / 9994
testing image 5292 / 9994
testing image 5293 / 9994
testing image 5294 / 9994
testing image 5295 / 9994
testing image 5296 / 9994
testing image 5297 / 9994
testing image 5298 / 9994
testing image 5299 / 9994
testing image 5300 / 9994
testing image 5301 / 9994
testing image 5302 / 9994
testing image 5303 / 9994
testing image 5304 / 9994
testing image 5305 / 9994
testing image 5306 / 9994
testing image 5307 / 9994
testing image 5308 / 9994
testing image 5309 / 9994
testing image 5310 / 9994
testing image 5311 / 9994
testing image 5312 / 9994
testing image 5313 / 9994
testing image 5314 / 9994
testing image 5315 / 9994
testing image 5316 / 9994
testing image 5317 / 9994
testing image 5318 / 9994
testing image 5319 / 9994
testing image 5320 / 9994
testing image 5321 / 9994
testing image 5322 / 9994
testing image 5323 / 9994
testing image 5324 / 9994
testing image 5325 / 9994
testing image 5326 / 9994
testing image 5327 / 9994
testing image 5328 / 9994
testing image 5329 / 9994
testing image 5330 / 9994
testing image 5331 / 9994
testing image 5332 / 9994
testing image 5333 / 9994
testing image 5334 / 9994
testing image 5335 / 9994
testing image 5336 / 9994
testing image 5337 / 9994
testing image 5338 / 9994
testing image 5339 / 9994
testing image 5340 / 9994
testing image 5341 / 9994
testing image 5342 / 9994
testing image 5343 / 9994
testing image 5344 / 9994
testing image 5345 / 9994
testing image 5346 / 9994
testing image 5347 / 9994
testing image 5348 / 9994
testing image 5349 / 9994
testing image 5350 / 9994
testing image 5351 / 9994
testing image 5352 / 9994
testing image 5353 / 9994
testing image 5354 / 9994
testing image 5355 / 9994
testing image 5356 / 9994
testing image 5357 / 9994
testing image 5358 / 9994
testing image 5359 / 9994
testing image 5360 / 9994
testing image 5361 / 9994
testing image 5362 / 9994
testing image 5363 / 9994
testing image 5364 / 9994
testing image 5365 / 9994
testing image 5366 / 9994
testing image 5367 / 9994
testing image 5368 / 9994
testing image 5369 / 9994
testing image 5370 / 9994
testing image 5371 / 9994
testing image 5372 / 9994
testing image 5373 / 9994
testing image 5374 / 9994
testing image 5375 / 9994
testing image 5376 / 9994
testing image 5377 / 9994
testing image 5378 / 9994
testing image 5379 / 9994
testing image 5380 / 9994
testing image 5381 / 9994
testing image 5382 / 9994
testing image 5383 / 9994
testing image 5384 / 9994
testing image 5385 / 9994
testing image 5386 / 9994
testing image 5387 / 9994
testing image 5388 / 9994
testing image 5389 / 9994
testing image 5390 / 9994
testing image 5391 / 9994
testing image 5392 / 9994
testing image 5393 / 9994
testing image 5394 / 9994
testing image 5395 / 9994
testing image 5396 / 9994
testing image 5397 / 9994
testing image 5398 / 9994
testing image 5399 / 9994
testing image 5400 / 9994
testing image 5401 / 9994
testing image 5402 / 9994
testing image 5403 / 9994
testing image 5404 / 9994
testing image 5405 / 9994
testing image 5406 / 9994
testing image 5407 / 9994
testing image 5408 / 9994
testing image 5409 / 9994
testing image 5410 / 9994
testing image 5411 / 9994
testing image 5412 / 9994
testing image 5413 / 9994
testing image 5414 / 9994
testing image 5415 / 9994
testing image 5416 / 9994
testing image 5417 / 9994
testing image 5418 / 9994
testing image 5419 / 9994
testing image 5420 / 9994
testing image 5421 / 9994
testing image 5422 / 9994
testing image 5423 / 9994
testing image 5424 / 9994
testing image 5425 / 9994
testing image 5426 / 9994
testing image 5427 / 9994
testing image 5428 / 9994
testing image 5429 / 9994
testing image 5430 / 9994
testing image 5431 / 9994
testing image 5432 / 9994
testing image 5433 / 9994
testing image 5434 / 9994
testing image 5435 / 9994
testing image 5436 / 9994
testing image 5437 / 9994
testing image 5438 / 9994
testing image 5439 / 9994
testing image 5440 / 9994
testing image 5441 / 9994
testing image 5442 / 9994
testing image 5443 / 9994
testing image 5444 / 9994
testing image 5445 / 9994
testing image 5446 / 9994
testing image 5447 / 9994
testing image 5448 / 9994
testing image 5449 / 9994
testing image 5450 / 9994
testing image 5451 / 9994
testing image 5452 / 9994
testing image 5453 / 9994
testing image 5454 / 9994
testing image 5455 / 9994
testing image 5456 / 9994
testing image 5457 / 9994
testing image 5458 / 9994
testing image 5459 / 9994
testing image 5460 / 9994
testing image 5461 / 9994
testing image 5462 / 9994
testing image 5463 / 9994
testing image 5464 / 9994
testing image 5465 / 9994
testing image 5466 / 9994
testing image 5467 / 9994
testing image 5468 / 9994
testing image 5469 / 9994
testing image 5470 / 9994
testing image 5471 / 9994
testing image 5472 / 9994
testing image 5473 / 9994
testing image 5474 / 9994
testing image 5475 / 9994
testing image 5476 / 9994
testing image 5477 / 9994
testing image 5478 / 9994
testing image 5479 / 9994
testing image 5480 / 9994
testing image 5481 / 9994
testing image 5482 / 9994
testing image 5483 / 9994
testing image 5484 / 9994
testing image 5485 / 9994
testing image 5486 / 9994
testing image 5487 / 9994
testing image 5488 / 9994
testing image 5489 / 9994
testing image 5490 / 9994
testing image 5491 / 9994
testing image 5492 / 9994
testing image 5493 / 9994
testing image 5494 / 9994
testing image 5495 / 9994
testing image 5496 / 9994
testing image 5497 / 9994
testing image 5498 / 9994
testing image 5499 / 9994
testing image 5500 / 9994
testing image 5501 / 9994
testing image 5502 / 9994
testing image 5503 / 9994
testing image 5504 / 9994
testing image 5505 / 9994
testing image 5506 / 9994
testing image 5507 / 9994
testing image 5508 / 9994
testing image 5509 / 9994
testing image 5510 / 9994
testing image 5511 / 9994
testing image 5512 / 9994
testing image 5513 / 9994
testing image 5514 / 9994
testing image 5515 / 9994
testing image 5516 / 9994
testing image 5517 / 9994
testing image 5518 / 9994
testing image 5519 / 9994
testing image 5520 / 9994
testing image 5521 / 9994
testing image 5522 / 9994
testing image 5523 / 9994
testing image 5524 / 9994
testing image 5525 / 9994
testing image 5526 / 9994
testing image 5527 / 9994
testing image 5528 / 9994
testing image 5529 / 9994
testing image 5530 / 9994
testing image 5531 / 9994
testing image 5532 / 9994
testing image 5533 / 9994
testing image 5534 / 9994
testing image 5535 / 9994
testing image 5536 / 9994
testing image 5537 / 9994
testing image 5538 / 9994
testing image 5539 / 9994
testing image 5540 / 9994
testing image 5541 / 9994
testing image 5542 / 9994
testing image 5543 / 9994
testing image 5544 / 9994
testing image 5545 / 9994
testing image 5546 / 9994
testing image 5547 / 9994
testing image 5548 / 9994
testing image 5549 / 9994
testing image 5550 / 9994
testing image 5551 / 9994
testing image 5552 / 9994
testing image 5553 / 9994
testing image 5554 / 9994
testing image 5555 / 9994
testing image 5556 / 9994
testing image 5557 / 9994
testing image 5558 / 9994
testing image 5559 / 9994
testing image 5560 / 9994
testing image 5561 / 9994
testing image 5562 / 9994
testing image 5563 / 9994
testing image 5564 / 9994
testing image 5565 / 9994
testing image 5566 / 9994
testing image 5567 / 9994
testing image 5568 / 9994
testing image 5569 / 9994
testing image 5570 / 9994
testing image 5571 / 9994
testing image 5572 / 9994
testing image 5573 / 9994
testing image 5574 / 9994
testing image 5575 / 9994
testing image 5576 / 9994
testing image 5577 / 9994
testing image 5578 / 9994
testing image 5579 / 9994
testing image 5580 / 9994
testing image 5581 / 9994
testing image 5582 / 9994
testing image 5583 / 9994
testing image 5584 / 9994
testing image 5585 / 9994
testing image 5586 / 9994
testing image 5587 / 9994
testing image 5588 / 9994
testing image 5589 / 9994
testing image 5590 / 9994
testing image 5591 / 9994
testing image 5592 / 9994
testing image 5593 / 9994
testing image 5594 / 9994
testing image 5595 / 9994
testing image 5596 / 9994
testing image 5597 / 9994
testing image 5598 / 9994
testing image 5599 / 9994
testing image 5600 / 9994
testing image 5601 / 9994
testing image 5602 / 9994
testing image 5603 / 9994
testing image 5604 / 9994
testing image 5605 / 9994
testing image 5606 / 9994
testing image 5607 / 9994
testing image 5608 / 9994
testing image 5609 / 9994
testing image 5610 / 9994
testing image 5611 / 9994
testing image 5612 / 9994
testing image 5613 / 9994
testing image 5614 / 9994
testing image 5615 / 9994
testing image 5616 / 9994
testing image 5617 / 9994
testing image 5618 / 9994
testing image 5619 / 9994
testing image 5620 / 9994
testing image 5621 / 9994
testing image 5622 / 9994
testing image 5623 / 9994
testing image 5624 / 9994
testing image 5625 / 9994
testing image 5626 / 9994
testing image 5627 / 9994
testing image 5628 / 9994
testing image 5629 / 9994
testing image 5630 / 9994
testing image 5631 / 9994
testing image 5632 / 9994
testing image 5633 / 9994
testing image 5634 / 9994
testing image 5635 / 9994
testing image 5636 / 9994
testing image 5637 / 9994
testing image 5638 / 9994
testing image 5639 / 9994
testing image 5640 / 9994
testing image 5641 / 9994
testing image 5642 / 9994
testing image 5643 / 9994
testing image 5644 / 9994
testing image 5645 / 9994
testing image 5646 / 9994
testing image 5647 / 9994
testing image 5648 / 9994
testing image 5649 / 9994
testing image 5650 / 9994
testing image 5651 / 9994
testing image 5652 / 9994
testing image 5653 / 9994
testing image 5654 / 9994
testing image 5655 / 9994
testing image 5656 / 9994
testing image 5657 / 9994
testing image 5658 / 9994
testing image 5659 / 9994
testing image 5660 / 9994
testing image 5661 / 9994
testing image 5662 / 9994
testing image 5663 / 9994
testing image 5664 / 9994
testing image 5665 / 9994
testing image 5666 / 9994
testing image 5667 / 9994
testing image 5668 / 9994
testing image 5669 / 9994
testing image 5670 / 9994
testing image 5671 / 9994
testing image 5672 / 9994
testing image 5673 / 9994
testing image 5674 / 9994
testing image 5675 / 9994
testing image 5676 / 9994
testing image 5677 / 9994
testing image 5678 / 9994
testing image 5679 / 9994
testing image 5680 / 9994
testing image 5681 / 9994
testing image 5682 / 9994
testing image 5683 / 9994
testing image 5684 / 9994
testing image 5685 / 9994
testing image 5686 / 9994
testing image 5687 / 9994
testing image 5688 / 9994
testing image 5689 / 9994
testing image 5690 / 9994
testing image 5691 / 9994
testing image 5692 / 9994
testing image 5693 / 9994
testing image 5694 / 9994
testing image 5695 / 9994
testing image 5696 / 9994
testing image 5697 / 9994
testing image 5698 / 9994
testing image 5699 / 9994
testing image 5700 / 9994
testing image 5701 / 9994
testing image 5702 / 9994
testing image 5703 / 9994
testing image 5704 / 9994
testing image 5705 / 9994
testing image 5706 / 9994
testing image 5707 / 9994
testing image 5708 / 9994
testing image 5709 / 9994
testing image 5710 / 9994
testing image 5711 / 9994
testing image 5712 / 9994
testing image 5713 / 9994
testing image 5714 / 9994
testing image 5715 / 9994
testing image 5716 / 9994
testing image 5717 / 9994
testing image 5718 / 9994
testing image 5719 / 9994
testing image 5720 / 9994
testing image 5721 / 9994
testing image 5722 / 9994
testing image 5723 / 9994
testing image 5724 / 9994
testing image 5725 / 9994
testing image 5726 / 9994
testing image 5727 / 9994
testing image 5728 / 9994
testing image 5729 / 9994
testing image 5730 / 9994
testing image 5731 / 9994
testing image 5732 / 9994
testing image 5733 / 9994
testing image 5734 / 9994
testing image 5735 / 9994
testing image 5736 / 9994
testing image 5737 / 9994
testing image 5738 / 9994
testing image 5739 / 9994
testing image 5740 / 9994
testing image 5741 / 9994
testing image 5742 / 9994
testing image 5743 / 9994
testing image 5744 / 9994
testing image 5745 / 9994
testing image 5746 / 9994
testing image 5747 / 9994
testing image 5748 / 9994
testing image 5749 / 9994
testing image 5750 / 9994
testing image 5751 / 9994
testing image 5752 / 9994
testing image 5753 / 9994
testing image 5754 / 9994
testing image 5755 / 9994
testing image 5756 / 9994
testing image 5757 / 9994
testing image 5758 / 9994
testing image 5759 / 9994
testing image 5760 / 9994
testing image 5761 / 9994
testing image 5762 / 9994
testing image 5763 / 9994
testing image 5764 / 9994
testing image 5765 / 9994
testing image 5766 / 9994
testing image 5767 / 9994
testing image 5768 / 9994
testing image 5769 / 9994
testing image 5770 / 9994
testing image 5771 / 9994
testing image 5772 / 9994
testing image 5773 / 9994
testing image 5774 / 9994
testing image 5775 / 9994
testing image 5776 / 9994
testing image 5777 / 9994
testing image 5778 / 9994
testing image 5779 / 9994
testing image 5780 / 9994
testing image 5781 / 9994
testing image 5782 / 9994
testing image 5783 / 9994
testing image 5784 / 9994
testing image 5785 / 9994
testing image 5786 / 9994
testing image 5787 / 9994
testing image 5788 / 9994
testing image 5789 / 9994
testing image 5790 / 9994
testing image 5791 / 9994
testing image 5792 / 9994
testing image 5793 / 9994
testing image 5794 / 9994
testing image 5795 / 9994
testing image 5796 / 9994
testing image 5797 / 9994
testing image 5798 / 9994
testing image 5799 / 9994
testing image 5800 / 9994
testing image 5801 / 9994
testing image 5802 / 9994
testing image 5803 / 9994
testing image 5804 / 9994
testing image 5805 / 9994
testing image 5806 / 9994
testing image 5807 / 9994
testing image 5808 / 9994
testing image 5809 / 9994
testing image 5810 / 9994
testing image 5811 / 9994
testing image 5812 / 9994
testing image 5813 / 9994
testing image 5814 / 9994
testing image 5815 / 9994
testing image 5816 / 9994
testing image 5817 / 9994
testing image 5818 / 9994
testing image 5819 / 9994
testing image 5820 / 9994
testing image 5821 / 9994
testing image 5822 / 9994
testing image 5823 / 9994
testing image 5824 / 9994
testing image 5825 / 9994
testing image 5826 / 9994
testing image 5827 / 9994
testing image 5828 / 9994
testing image 5829 / 9994
testing image 5830 / 9994
testing image 5831 / 9994
testing image 5832 / 9994
testing image 5833 / 9994
testing image 5834 / 9994
testing image 5835 / 9994
testing image 5836 / 9994
testing image 5837 / 9994
testing image 5838 / 9994
testing image 5839 / 9994
testing image 5840 / 9994
testing image 5841 / 9994
testing image 5842 / 9994
testing image 5843 / 9994
testing image 5844 / 9994
testing image 5845 / 9994
testing image 5846 / 9994
testing image 5847 / 9994
testing image 5848 / 9994
testing image 5849 / 9994
testing image 5850 / 9994
testing image 5851 / 9994
testing image 5852 / 9994
testing image 5853 / 9994
testing image 5854 / 9994
testing image 5855 / 9994
testing image 5856 / 9994
testing image 5857 / 9994
testing image 5858 / 9994
testing image 5859 / 9994
testing image 5860 / 9994
testing image 5861 / 9994
testing image 5862 / 9994
testing image 5863 / 9994
testing image 5864 / 9994
testing image 5865 / 9994
testing image 5866 / 9994
testing image 5867 / 9994
testing image 5868 / 9994
testing image 5869 / 9994
testing image 5870 / 9994
testing image 5871 / 9994
testing image 5872 / 9994
testing image 5873 / 9994
testing image 5874 / 9994
testing image 5875 / 9994
testing image 5876 / 9994
testing image 5877 / 9994
testing image 5878 / 9994
testing image 5879 / 9994
testing image 5880 / 9994
testing image 5881 / 9994
testing image 5882 / 9994
testing image 5883 / 9994
testing image 5884 / 9994
testing image 5885 / 9994
testing image 5886 / 9994
testing image 5887 / 9994
testing image 5888 / 9994
testing image 5889 / 9994
testing image 5890 / 9994
testing image 5891 / 9994
testing image 5892 / 9994
testing image 5893 / 9994
testing image 5894 / 9994
testing image 5895 / 9994
testing image 5896 / 9994
testing image 5897 / 9994
testing image 5898 / 9994
testing image 5899 / 9994
testing image 5900 / 9994
testing image 5901 / 9994
testing image 5902 / 9994
testing image 5903 / 9994
testing image 5904 / 9994
testing image 5905 / 9994
testing image 5906 / 9994
testing image 5907 / 9994
testing image 5908 / 9994
testing image 5909 / 9994
testing image 5910 / 9994
testing image 5911 / 9994
testing image 5912 / 9994
testing image 5913 / 9994
testing image 5914 / 9994
testing image 5915 / 9994
testing image 5916 / 9994
testing image 5917 / 9994
testing image 5918 / 9994
testing image 5919 / 9994
testing image 5920 / 9994
testing image 5921 / 9994
testing image 5922 / 9994
testing image 5923 / 9994
testing image 5924 / 9994
testing image 5925 / 9994
testing image 5926 / 9994
testing image 5927 / 9994
testing image 5928 / 9994
testing image 5929 / 9994
testing image 5930 / 9994
testing image 5931 / 9994
testing image 5932 / 9994
testing image 5933 / 9994
testing image 5934 / 9994
testing image 5935 / 9994
testing image 5936 / 9994
testing image 5937 / 9994
testing image 5938 / 9994
testing image 5939 / 9994
testing image 5940 / 9994
testing image 5941 / 9994
testing image 5942 / 9994
testing image 5943 / 9994
testing image 5944 / 9994
testing image 5945 / 9994
testing image 5946 / 9994
testing image 5947 / 9994
testing image 5948 / 9994
testing image 5949 / 9994
testing image 5950 / 9994
testing image 5951 / 9994
testing image 5952 / 9994
testing image 5953 / 9994
testing image 5954 / 9994
testing image 5955 / 9994
testing image 5956 / 9994
testing image 5957 / 9994
testing image 5958 / 9994
testing image 5959 / 9994
testing image 5960 / 9994
testing image 5961 / 9994
testing image 5962 / 9994
testing image 5963 / 9994
testing image 5964 / 9994
testing image 5965 / 9994
testing image 5966 / 9994
testing image 5967 / 9994
testing image 5968 / 9994
testing image 5969 / 9994
testing image 5970 / 9994
testing image 5971 / 9994
testing image 5972 / 9994
testing image 5973 / 9994
testing image 5974 / 9994
testing image 5975 / 9994
testing image 5976 / 9994
testing image 5977 / 9994
testing image 5978 / 9994
testing image 5979 / 9994
testing image 5980 / 9994
testing image 5981 / 9994
testing image 5982 / 9994
testing image 5983 / 9994
testing image 5984 / 9994
testing image 5985 / 9994
testing image 5986 / 9994
testing image 5987 / 9994
testing image 5988 / 9994
testing image 5989 / 9994
testing image 5990 / 9994
testing image 5991 / 9994
testing image 5992 / 9994
testing image 5993 / 9994
testing image 5994 / 9994
testing image 5995 / 9994
testing image 5996 / 9994
testing image 5997 / 9994
testing image 5998 / 9994
testing image 5999 / 9994
testing image 6000 / 9994
testing image 6001 / 9994
testing image 6002 / 9994
testing image 6003 / 9994
testing image 6004 / 9994
testing image 6005 / 9994
testing image 6006 / 9994
testing image 6007 / 9994
testing image 6008 / 9994
testing image 6009 / 9994
testing image 6010 / 9994
testing image 6011 / 9994
testing image 6012 / 9994
testing image 6013 / 9994
testing image 6014 / 9994
testing image 6015 / 9994
testing image 6016 / 9994
testing image 6017 / 9994
testing image 6018 / 9994
testing image 6019 / 9994
testing image 6020 / 9994
testing image 6021 / 9994
testing image 6022 / 9994
testing image 6023 / 9994
testing image 6024 / 9994
testing image 6025 / 9994
testing image 6026 / 9994
testing image 6027 / 9994
testing image 6028 / 9994
testing image 6029 / 9994
testing image 6030 / 9994
testing image 6031 / 9994
testing image 6032 / 9994
testing image 6033 / 9994
testing image 6034 / 9994
testing image 6035 / 9994
testing image 6036 / 9994
testing image 6037 / 9994
testing image 6038 / 9994
testing image 6039 / 9994
testing image 6040 / 9994
testing image 6041 / 9994
testing image 6042 / 9994
testing image 6043 / 9994
testing image 6044 / 9994
testing image 6045 / 9994
testing image 6046 / 9994
testing image 6047 / 9994
testing image 6048 / 9994
testing image 6049 / 9994
testing image 6050 / 9994
testing image 6051 / 9994
testing image 6052 / 9994
testing image 6053 / 9994
testing image 6054 / 9994
testing image 6055 / 9994
testing image 6056 / 9994
testing image 6057 / 9994
testing image 6058 / 9994
testing image 6059 / 9994
testing image 6060 / 9994
testing image 6061 / 9994
testing image 6062 / 9994
testing image 6063 / 9994
testing image 6064 / 9994
testing image 6065 / 9994
testing image 6066 / 9994
testing image 6067 / 9994
testing image 6068 / 9994
testing image 6069 / 9994
testing image 6070 / 9994
testing image 6071 / 9994
testing image 6072 / 9994
testing image 6073 / 9994
testing image 6074 / 9994
testing image 6075 / 9994
testing image 6076 / 9994
testing image 6077 / 9994
testing image 6078 / 9994
testing image 6079 / 9994
testing image 6080 / 9994
testing image 6081 / 9994
testing image 6082 / 9994
testing image 6083 / 9994
testing image 6084 / 9994
testing image 6085 / 9994
testing image 6086 / 9994
testing image 6087 / 9994
testing image 6088 / 9994
testing image 6089 / 9994
testing image 6090 / 9994
testing image 6091 / 9994
testing image 6092 / 9994
testing image 6093 / 9994
testing image 6094 / 9994
testing image 6095 / 9994
testing image 6096 / 9994
testing image 6097 / 9994
testing image 6098 / 9994
testing image 6099 / 9994
testing image 6100 / 9994
testing image 6101 / 9994
testing image 6102 / 9994
testing image 6103 / 9994
testing image 6104 / 9994
testing image 6105 / 9994
testing image 6106 / 9994
testing image 6107 / 9994
testing image 6108 / 9994
testing image 6109 / 9994
testing image 6110 / 9994
testing image 6111 / 9994
testing image 6112 / 9994
testing image 6113 / 9994
testing image 6114 / 9994
testing image 6115 / 9994
testing image 6116 / 9994
testing image 6117 / 9994
testing image 6118 / 9994
testing image 6119 / 9994
testing image 6120 / 9994
testing image 6121 / 9994
testing image 6122 / 9994
testing image 6123 / 9994
testing image 6124 / 9994
testing image 6125 / 9994
testing image 6126 / 9994
testing image 6127 / 9994
testing image 6128 / 9994
testing image 6129 / 9994
testing image 6130 / 9994
testing image 6131 / 9994
testing image 6132 / 9994
testing image 6133 / 9994
testing image 6134 / 9994
testing image 6135 / 9994
testing image 6136 / 9994
testing image 6137 / 9994
testing image 6138 / 9994
testing image 6139 / 9994
testing image 6140 / 9994
testing image 6141 / 9994
testing image 6142 / 9994
testing image 6143 / 9994
testing image 6144 / 9994
testing image 6145 / 9994
testing image 6146 / 9994
testing image 6147 / 9994
testing image 6148 / 9994
testing image 6149 / 9994
testing image 6150 / 9994
testing image 6151 / 9994
testing image 6152 / 9994
testing image 6153 / 9994
testing image 6154 / 9994
testing image 6155 / 9994
testing image 6156 / 9994
testing image 6157 / 9994
testing image 6158 / 9994
testing image 6159 / 9994
testing image 6160 / 9994
testing image 6161 / 9994
testing image 6162 / 9994
testing image 6163 / 9994
testing image 6164 / 9994
testing image 6165 / 9994
testing image 6166 / 9994
testing image 6167 / 9994
testing image 6168 / 9994
testing image 6169 / 9994
testing image 6170 / 9994
testing image 6171 / 9994
testing image 6172 / 9994
testing image 6173 / 9994
testing image 6174 / 9994
testing image 6175 / 9994
testing image 6176 / 9994
testing image 6177 / 9994
testing image 6178 / 9994
testing image 6179 / 9994
testing image 6180 / 9994
testing image 6181 / 9994
testing image 6182 / 9994
testing image 6183 / 9994
testing image 6184 / 9994
testing image 6185 / 9994
testing image 6186 / 9994
testing image 6187 / 9994
testing image 6188 / 9994
testing image 6189 / 9994
testing image 6190 / 9994
testing image 6191 / 9994
testing image 6192 / 9994
testing image 6193 / 9994
testing image 6194 / 9994
testing image 6195 / 9994
testing image 6196 / 9994
testing image 6197 / 9994
testing image 6198 / 9994
testing image 6199 / 9994
testing image 6200 / 9994
testing image 6201 / 9994
testing image 6202 / 9994
testing image 6203 / 9994
testing image 6204 / 9994
testing image 6205 / 9994
testing image 6206 / 9994
testing image 6207 / 9994
testing image 6208 / 9994
testing image 6209 / 9994
testing image 6210 / 9994
testing image 6211 / 9994
testing image 6212 / 9994
testing image 6213 / 9994
testing image 6214 / 9994
testing image 6215 / 9994
testing image 6216 / 9994
testing image 6217 / 9994
testing image 6218 / 9994
testing image 6219 / 9994
testing image 6220 / 9994
testing image 6221 / 9994
testing image 6222 / 9994
testing image 6223 / 9994
testing image 6224 / 9994
testing image 6225 / 9994
testing image 6226 / 9994
testing image 6227 / 9994
testing image 6228 / 9994
testing image 6229 / 9994
testing image 6230 / 9994
testing image 6231 / 9994
testing image 6232 / 9994
testing image 6233 / 9994
testing image 6234 / 9994
testing image 6235 / 9994
testing image 6236 / 9994
testing image 6237 / 9994
testing image 6238 / 9994
testing image 6239 / 9994
testing image 6240 / 9994
testing image 6241 / 9994
testing image 6242 / 9994
testing image 6243 / 9994
testing image 6244 / 9994
testing image 6245 / 9994
testing image 6246 / 9994
testing image 6247 / 9994
testing image 6248 / 9994
testing image 6249 / 9994
testing image 6250 / 9994
testing image 6251 / 9994
testing image 6252 / 9994
testing image 6253 / 9994
testing image 6254 / 9994
testing image 6255 / 9994
testing image 6256 / 9994
testing image 6257 / 9994
testing image 6258 / 9994
testing image 6259 / 9994
testing image 6260 / 9994
testing image 6261 / 9994
testing image 6262 / 9994
testing image 6263 / 9994
testing image 6264 / 9994
testing image 6265 / 9994
testing image 6266 / 9994
testing image 6267 / 9994
testing image 6268 / 9994
testing image 6269 / 9994
testing image 6270 / 9994
testing image 6271 / 9994
testing image 6272 / 9994
testing image 6273 / 9994
testing image 6274 / 9994
testing image 6275 / 9994
testing image 6276 / 9994
testing image 6277 / 9994
testing image 6278 / 9994
testing image 6279 / 9994
testing image 6280 / 9994
testing image 6281 / 9994
testing image 6282 / 9994
testing image 6283 / 9994
testing image 6284 / 9994
testing image 6285 / 9994
testing image 6286 / 9994
testing image 6287 / 9994
testing image 6288 / 9994
testing image 6289 / 9994
testing image 6290 / 9994
testing image 6291 / 9994
testing image 6292 / 9994
testing image 6293 / 9994
testing image 6294 / 9994
testing image 6295 / 9994
testing image 6296 / 9994
testing image 6297 / 9994
testing image 6298 / 9994
testing image 6299 / 9994
testing image 6300 / 9994
testing image 6301 / 9994
testing image 6302 / 9994
testing image 6303 / 9994
testing image 6304 / 9994
testing image 6305 / 9994
testing image 6306 / 9994
testing image 6307 / 9994
testing image 6308 / 9994
testing image 6309 / 9994
testing image 6310 / 9994
testing image 6311 / 9994
testing image 6312 / 9994
testing image 6313 / 9994
testing image 6314 / 9994
testing image 6315 / 9994
testing image 6316 / 9994
testing image 6317 / 9994
testing image 6318 / 9994
testing image 6319 / 9994
testing image 6320 / 9994
testing image 6321 / 9994
testing image 6322 / 9994
testing image 6323 / 9994
testing image 6324 / 9994
testing image 6325 / 9994
testing image 6326 / 9994
testing image 6327 / 9994
testing image 6328 / 9994
testing image 6329 / 9994
testing image 6330 / 9994
testing image 6331 / 9994
testing image 6332 / 9994
testing image 6333 / 9994
testing image 6334 / 9994
testing image 6335 / 9994
testing image 6336 / 9994
testing image 6337 / 9994
testing image 6338 / 9994
testing image 6339 / 9994
testing image 6340 / 9994
testing image 6341 / 9994
testing image 6342 / 9994
testing image 6343 / 9994
testing image 6344 / 9994
testing image 6345 / 9994
testing image 6346 / 9994
testing image 6347 / 9994
testing image 6348 / 9994
testing image 6349 / 9994
testing image 6350 / 9994
testing image 6351 / 9994
testing image 6352 / 9994
testing image 6353 / 9994
testing image 6354 / 9994
testing image 6355 / 9994
testing image 6356 / 9994
testing image 6357 / 9994
testing image 6358 / 9994
testing image 6359 / 9994
testing image 6360 / 9994
testing image 6361 / 9994
testing image 6362 / 9994
testing image 6363 / 9994
testing image 6364 / 9994
testing image 6365 / 9994
testing image 6366 / 9994
testing image 6367 / 9994
testing image 6368 / 9994
testing image 6369 / 9994
testing image 6370 / 9994
testing image 6371 / 9994
testing image 6372 / 9994
testing image 6373 / 9994
testing image 6374 / 9994
testing image 6375 / 9994
testing image 6376 / 9994
testing image 6377 / 9994
testing image 6378 / 9994
testing image 6379 / 9994
testing image 6380 / 9994
testing image 6381 / 9994
testing image 6382 / 9994
testing image 6383 / 9994
testing image 6384 / 9994
testing image 6385 / 9994
testing image 6386 / 9994
testing image 6387 / 9994
testing image 6388 / 9994
testing image 6389 / 9994
testing image 6390 / 9994
testing image 6391 / 9994
testing image 6392 / 9994
testing image 6393 / 9994
testing image 6394 / 9994
testing image 6395 / 9994
testing image 6396 / 9994
testing image 6397 / 9994
testing image 6398 / 9994
testing image 6399 / 9994
testing image 6400 / 9994
testing image 6401 / 9994
testing image 6402 / 9994
testing image 6403 / 9994
testing image 6404 / 9994
testing image 6405 / 9994
testing image 6406 / 9994
testing image 6407 / 9994
testing image 6408 / 9994
testing image 6409 / 9994
testing image 6410 / 9994
testing image 6411 / 9994
testing image 6412 / 9994
testing image 6413 / 9994
testing image 6414 / 9994
testing image 6415 / 9994
testing image 6416 / 9994
testing image 6417 / 9994
testing image 6418 / 9994
testing image 6419 / 9994
testing image 6420 / 9994
testing image 6421 / 9994
testing image 6422 / 9994
testing image 6423 / 9994
testing image 6424 / 9994
testing image 6425 / 9994
testing image 6426 / 9994
testing image 6427 / 9994
testing image 6428 / 9994
testing image 6429 / 9994
testing image 6430 / 9994
testing image 6431 / 9994
testing image 6432 / 9994
testing image 6433 / 9994
testing image 6434 / 9994
testing image 6435 / 9994
testing image 6436 / 9994
testing image 6437 / 9994
testing image 6438 / 9994
testing image 6439 / 9994
testing image 6440 / 9994
testing image 6441 / 9994
testing image 6442 / 9994
testing image 6443 / 9994
testing image 6444 / 9994
testing image 6445 / 9994
testing image 6446 / 9994
testing image 6447 / 9994
testing image 6448 / 9994
testing image 6449 / 9994
testing image 6450 / 9994
testing image 6451 / 9994
testing image 6452 / 9994
testing image 6453 / 9994
testing image 6454 / 9994
testing image 6455 / 9994
testing image 6456 / 9994
testing image 6457 / 9994
testing image 6458 / 9994
testing image 6459 / 9994
testing image 6460 / 9994
testing image 6461 / 9994
testing image 6462 / 9994
testing image 6463 / 9994
testing image 6464 / 9994
testing image 6465 / 9994
testing image 6466 / 9994
testing image 6467 / 9994
testing image 6468 / 9994
testing image 6469 / 9994
testing image 6470 / 9994
testing image 6471 / 9994
testing image 6472 / 9994
testing image 6473 / 9994
testing image 6474 / 9994
testing image 6475 / 9994
testing image 6476 / 9994
testing image 6477 / 9994
testing image 6478 / 9994
testing image 6479 / 9994
testing image 6480 / 9994
testing image 6481 / 9994
testing image 6482 / 9994
testing image 6483 / 9994
testing image 6484 / 9994
testing image 6485 / 9994
testing image 6486 / 9994
testing image 6487 / 9994
testing image 6488 / 9994
testing image 6489 / 9994
testing image 6490 / 9994
testing image 6491 / 9994
testing image 6492 / 9994
testing image 6493 / 9994
testing image 6494 / 9994
testing image 6495 / 9994
testing image 6496 / 9994
testing image 6497 / 9994
testing image 6498 / 9994
testing image 6499 / 9994
testing image 6500 / 9994
testing image 6501 / 9994
testing image 6502 / 9994
testing image 6503 / 9994
testing image 6504 / 9994
testing image 6505 / 9994
testing image 6506 / 9994
testing image 6507 / 9994
testing image 6508 / 9994
testing image 6509 / 9994
testing image 6510 / 9994
testing image 6511 / 9994
testing image 6512 / 9994
testing image 6513 / 9994
testing image 6514 / 9994
testing image 6515 / 9994
testing image 6516 / 9994
testing image 6517 / 9994
testing image 6518 / 9994
testing image 6519 / 9994
testing image 6520 / 9994
testing image 6521 / 9994
testing image 6522 / 9994
testing image 6523 / 9994
testing image 6524 / 9994
testing image 6525 / 9994
testing image 6526 / 9994
testing image 6527 / 9994
testing image 6528 / 9994
testing image 6529 / 9994
testing image 6530 / 9994
testing image 6531 / 9994
testing image 6532 / 9994
testing image 6533 / 9994
testing image 6534 / 9994
testing image 6535 / 9994
testing image 6536 / 9994
testing image 6537 / 9994
testing image 6538 / 9994
testing image 6539 / 9994
testing image 6540 / 9994
testing image 6541 / 9994
testing image 6542 / 9994
testing image 6543 / 9994
testing image 6544 / 9994
testing image 6545 / 9994
testing image 6546 / 9994
testing image 6547 / 9994
testing image 6548 / 9994
testing image 6549 / 9994
testing image 6550 / 9994
testing image 6551 / 9994
testing image 6552 / 9994
testing image 6553 / 9994
testing image 6554 / 9994
testing image 6555 / 9994
testing image 6556 / 9994
testing image 6557 / 9994
testing image 6558 / 9994
testing image 6559 / 9994
testing image 6560 / 9994
testing image 6561 / 9994
testing image 6562 / 9994
testing image 6563 / 9994
testing image 6564 / 9994
testing image 6565 / 9994
testing image 6566 / 9994
testing image 6567 / 9994
testing image 6568 / 9994
testing image 6569 / 9994
testing image 6570 / 9994
testing image 6571 / 9994
testing image 6572 / 9994
testing image 6573 / 9994
testing image 6574 / 9994
testing image 6575 / 9994
testing image 6576 / 9994
testing image 6577 / 9994
testing image 6578 / 9994
testing image 6579 / 9994
testing image 6580 / 9994
testing image 6581 / 9994
testing image 6582 / 9994
testing image 6583 / 9994
testing image 6584 / 9994
testing image 6585 / 9994
testing image 6586 / 9994
testing image 6587 / 9994
testing image 6588 / 9994
testing image 6589 / 9994
testing image 6590 / 9994
testing image 6591 / 9994
testing image 6592 / 9994
testing image 6593 / 9994
testing image 6594 / 9994
testing image 6595 / 9994
testing image 6596 / 9994
testing image 6597 / 9994
testing image 6598 / 9994
testing image 6599 / 9994
testing image 6600 / 9994
testing image 6601 / 9994
testing image 6602 / 9994
testing image 6603 / 9994
testing image 6604 / 9994
testing image 6605 / 9994
testing image 6606 / 9994
testing image 6607 / 9994
testing image 6608 / 9994
testing image 6609 / 9994
testing image 6610 / 9994
testing image 6611 / 9994
testing image 6612 / 9994
testing image 6613 / 9994
testing image 6614 / 9994
testing image 6615 / 9994
testing image 6616 / 9994
testing image 6617 / 9994
testing image 6618 / 9994
testing image 6619 / 9994
testing image 6620 / 9994
testing image 6621 / 9994
testing image 6622 / 9994
testing image 6623 / 9994
testing image 6624 / 9994
testing image 6625 / 9994
testing image 6626 / 9994
testing image 6627 / 9994
testing image 6628 / 9994
testing image 6629 / 9994
testing image 6630 / 9994
testing image 6631 / 9994
testing image 6632 / 9994
testing image 6633 / 9994
testing image 6634 / 9994
testing image 6635 / 9994
testing image 6636 / 9994
testing image 6637 / 9994
testing image 6638 / 9994
testing image 6639 / 9994
testing image 6640 / 9994
testing image 6641 / 9994
testing image 6642 / 9994
testing image 6643 / 9994
testing image 6644 / 9994
testing image 6645 / 9994
testing image 6646 / 9994
testing image 6647 / 9994
testing image 6648 / 9994
testing image 6649 / 9994
testing image 6650 / 9994
testing image 6651 / 9994
testing image 6652 / 9994
testing image 6653 / 9994
testing image 6654 / 9994
testing image 6655 / 9994
testing image 6656 / 9994
testing image 6657 / 9994
testing image 6658 / 9994
testing image 6659 / 9994
testing image 6660 / 9994
testing image 6661 / 9994
testing image 6662 / 9994
testing image 6663 / 9994
testing image 6664 / 9994
testing image 6665 / 9994
testing image 6666 / 9994
testing image 6667 / 9994
testing image 6668 / 9994
testing image 6669 / 9994
testing image 6670 / 9994
testing image 6671 / 9994
testing image 6672 / 9994
testing image 6673 / 9994
testing image 6674 / 9994
testing image 6675 / 9994
testing image 6676 / 9994
testing image 6677 / 9994
testing image 6678 / 9994
testing image 6679 / 9994
testing image 6680 / 9994
testing image 6681 / 9994
testing image 6682 / 9994
testing image 6683 / 9994
testing image 6684 / 9994
testing image 6685 / 9994
testing image 6686 / 9994
testing image 6687 / 9994
testing image 6688 / 9994
testing image 6689 / 9994
testing image 6690 / 9994
testing image 6691 / 9994
testing image 6692 / 9994
testing image 6693 / 9994
testing image 6694 / 9994
testing image 6695 / 9994
testing image 6696 / 9994
testing image 6697 / 9994
testing image 6698 / 9994
testing image 6699 / 9994
testing image 6700 / 9994
testing image 6701 / 9994
testing image 6702 / 9994
testing image 6703 / 9994
testing image 6704 / 9994
testing image 6705 / 9994
testing image 6706 / 9994
testing image 6707 / 9994
testing image 6708 / 9994
testing image 6709 / 9994
testing image 6710 / 9994
testing image 6711 / 9994
testing image 6712 / 9994
testing image 6713 / 9994
testing image 6714 / 9994
testing image 6715 / 9994
testing image 6716 / 9994
testing image 6717 / 9994
testing image 6718 / 9994
testing image 6719 / 9994
testing image 6720 / 9994
testing image 6721 / 9994
testing image 6722 / 9994
testing image 6723 / 9994
testing image 6724 / 9994
testing image 6725 / 9994
testing image 6726 / 9994
testing image 6727 / 9994
testing image 6728 / 9994
testing image 6729 / 9994
testing image 6730 / 9994
testing image 6731 / 9994
testing image 6732 / 9994
testing image 6733 / 9994
testing image 6734 / 9994
testing image 6735 / 9994
testing image 6736 / 9994
testing image 6737 / 9994
testing image 6738 / 9994
testing image 6739 / 9994
testing image 6740 / 9994
testing image 6741 / 9994
testing image 6742 / 9994
testing image 6743 / 9994
testing image 6744 / 9994
testing image 6745 / 9994
testing image 6746 / 9994
testing image 6747 / 9994
testing image 6748 / 9994
testing image 6749 / 9994
testing image 6750 / 9994
testing image 6751 / 9994
testing image 6752 / 9994
testing image 6753 / 9994
testing image 6754 / 9994
testing image 6755 / 9994
testing image 6756 / 9994
testing image 6757 / 9994
testing image 6758 / 9994
testing image 6759 / 9994
testing image 6760 / 9994
testing image 6761 / 9994
testing image 6762 / 9994
testing image 6763 / 9994
testing image 6764 / 9994
testing image 6765 / 9994
testing image 6766 / 9994
testing image 6767 / 9994
testing image 6768 / 9994
testing image 6769 / 9994
testing image 6770 / 9994
testing image 6771 / 9994
testing image 6772 / 9994
testing image 6773 / 9994
testing image 6774 / 9994
testing image 6775 / 9994
testing image 6776 / 9994
testing image 6777 / 9994
testing image 6778 / 9994
testing image 6779 / 9994
testing image 6780 / 9994
testing image 6781 / 9994
testing image 6782 / 9994
testing image 6783 / 9994
testing image 6784 / 9994
testing image 6785 / 9994
testing image 6786 / 9994
testing image 6787 / 9994
testing image 6788 / 9994
testing image 6789 / 9994
testing image 6790 / 9994
testing image 6791 / 9994
testing image 6792 / 9994
testing image 6793 / 9994
testing image 6794 / 9994
testing image 6795 / 9994
testing image 6796 / 9994
testing image 6797 / 9994
testing image 6798 / 9994
testing image 6799 / 9994
testing image 6800 / 9994
testing image 6801 / 9994
testing image 6802 / 9994
testing image 6803 / 9994
testing image 6804 / 9994
testing image 6805 / 9994
testing image 6806 / 9994
testing image 6807 / 9994
testing image 6808 / 9994
testing image 6809 / 9994
testing image 6810 / 9994
testing image 6811 / 9994
testing image 6812 / 9994
testing image 6813 / 9994
testing image 6814 / 9994
testing image 6815 / 9994
testing image 6816 / 9994
testing image 6817 / 9994
testing image 6818 / 9994
testing image 6819 / 9994
testing image 6820 / 9994
testing image 6821 / 9994
testing image 6822 / 9994
testing image 6823 / 9994
testing image 6824 / 9994
testing image 6825 / 9994
testing image 6826 / 9994
testing image 6827 / 9994
testing image 6828 / 9994
testing image 6829 / 9994
testing image 6830 / 9994
testing image 6831 / 9994
testing image 6832 / 9994
testing image 6833 / 9994
testing image 6834 / 9994
testing image 6835 / 9994
testing image 6836 / 9994
testing image 6837 / 9994
testing image 6838 / 9994
testing image 6839 / 9994
testing image 6840 / 9994
testing image 6841 / 9994
testing image 6842 / 9994
testing image 6843 / 9994
testing image 6844 / 9994
testing image 6845 / 9994
testing image 6846 / 9994
testing image 6847 / 9994
testing image 6848 / 9994
testing image 6849 / 9994
testing image 6850 / 9994
testing image 6851 / 9994
testing image 6852 / 9994
testing image 6853 / 9994
testing image 6854 / 9994
testing image 6855 / 9994
testing image 6856 / 9994
testing image 6857 / 9994
testing image 6858 / 9994
testing image 6859 / 9994
testing image 6860 / 9994
testing image 6861 / 9994
testing image 6862 / 9994
testing image 6863 / 9994
testing image 6864 / 9994
testing image 6865 / 9994
testing image 6866 / 9994
testing image 6867 / 9994
testing image 6868 / 9994
testing image 6869 / 9994
testing image 6870 / 9994
testing image 6871 / 9994
testing image 6872 / 9994
testing image 6873 / 9994
testing image 6874 / 9994
testing image 6875 / 9994
testing image 6876 / 9994
testing image 6877 / 9994
testing image 6878 / 9994
testing image 6879 / 9994
testing image 6880 / 9994
testing image 6881 / 9994
testing image 6882 / 9994
testing image 6883 / 9994
testing image 6884 / 9994
testing image 6885 / 9994
testing image 6886 / 9994
testing image 6887 / 9994
testing image 6888 / 9994
testing image 6889 / 9994
testing image 6890 / 9994
testing image 6891 / 9994
testing image 6892 / 9994
testing image 6893 / 9994
testing image 6894 / 9994
testing image 6895 / 9994
testing image 6896 / 9994
testing image 6897 / 9994
testing image 6898 / 9994
testing image 6899 / 9994
testing image 6900 / 9994
testing image 6901 / 9994
testing image 6902 / 9994
testing image 6903 / 9994
testing image 6904 / 9994
testing image 6905 / 9994
testing image 6906 / 9994
testing image 6907 / 9994
testing image 6908 / 9994
testing image 6909 / 9994
testing image 6910 / 9994
testing image 6911 / 9994
testing image 6912 / 9994
testing image 6913 / 9994
testing image 6914 / 9994
testing image 6915 / 9994
testing image 6916 / 9994
testing image 6917 / 9994
testing image 6918 / 9994
testing image 6919 / 9994
testing image 6920 / 9994
testing image 6921 / 9994
testing image 6922 / 9994
testing image 6923 / 9994
testing image 6924 / 9994
testing image 6925 / 9994
testing image 6926 / 9994
testing image 6927 / 9994
testing image 6928 / 9994
testing image 6929 / 9994
testing image 6930 / 9994
testing image 6931 / 9994
testing image 6932 / 9994
testing image 6933 / 9994
testing image 6934 / 9994
testing image 6935 / 9994
testing image 6936 / 9994
testing image 6937 / 9994
testing image 6938 / 9994
testing image 6939 / 9994
testing image 6940 / 9994
testing image 6941 / 9994
testing image 6942 / 9994
testing image 6943 / 9994
testing image 6944 / 9994
testing image 6945 / 9994
testing image 6946 / 9994
testing image 6947 / 9994
testing image 6948 / 9994
testing image 6949 / 9994
testing image 6950 / 9994
testing image 6951 / 9994
testing image 6952 / 9994
testing image 6953 / 9994
testing image 6954 / 9994
testing image 6955 / 9994
testing image 6956 / 9994
testing image 6957 / 9994
testing image 6958 / 9994
testing image 6959 / 9994
testing image 6960 / 9994
testing image 6961 / 9994
testing image 6962 / 9994
testing image 6963 / 9994
testing image 6964 / 9994
testing image 6965 / 9994
testing image 6966 / 9994
testing image 6967 / 9994
testing image 6968 / 9994
testing image 6969 / 9994
testing image 6970 / 9994
testing image 6971 / 9994
testing image 6972 / 9994
testing image 6973 / 9994
testing image 6974 / 9994
testing image 6975 / 9994
testing image 6976 / 9994
testing image 6977 / 9994
testing image 6978 / 9994
testing image 6979 / 9994
testing image 6980 / 9994
testing image 6981 / 9994
testing image 6982 / 9994
testing image 6983 / 9994
testing image 6984 / 9994
testing image 6985 / 9994
testing image 6986 / 9994
testing image 6987 / 9994
testing image 6988 / 9994
testing image 6989 / 9994
testing image 6990 / 9994
testing image 6991 / 9994
testing image 6992 / 9994
testing image 6993 / 9994
testing image 6994 / 9994
testing image 6995 / 9994
testing image 6996 / 9994
testing image 6997 / 9994
testing image 6998 / 9994
testing image 6999 / 9994
testing image 7000 / 9994
testing image 7001 / 9994
testing image 7002 / 9994
testing image 7003 / 9994
testing image 7004 / 9994
testing image 7005 / 9994
testing image 7006 / 9994
testing image 7007 / 9994
testing image 7008 / 9994
testing image 7009 / 9994
testing image 7010 / 9994
testing image 7011 / 9994
testing image 7012 / 9994
testing image 7013 / 9994
testing image 7014 / 9994
testing image 7015 / 9994
testing image 7016 / 9994
testing image 7017 / 9994
testing image 7018 / 9994
testing image 7019 / 9994
testing image 7020 / 9994
testing image 7021 / 9994
testing image 7022 / 9994
testing image 7023 / 9994
testing image 7024 / 9994
testing image 7025 / 9994
testing image 7026 / 9994
testing image 7027 / 9994
testing image 7028 / 9994
testing image 7029 / 9994
testing image 7030 / 9994
testing image 7031 / 9994
testing image 7032 / 9994
testing image 7033 / 9994
testing image 7034 / 9994
testing image 7035 / 9994
testing image 7036 / 9994
testing image 7037 / 9994
testing image 7038 / 9994
testing image 7039 / 9994
testing image 7040 / 9994
testing image 7041 / 9994
testing image 7042 / 9994
testing image 7043 / 9994
testing image 7044 / 9994
testing image 7045 / 9994
testing image 7046 / 9994
testing image 7047 / 9994
testing image 7048 / 9994
testing image 7049 / 9994
testing image 7050 / 9994
testing image 7051 / 9994
testing image 7052 / 9994
testing image 7053 / 9994
testing image 7054 / 9994
testing image 7055 / 9994
testing image 7056 / 9994
testing image 7057 / 9994
testing image 7058 / 9994
testing image 7059 / 9994
testing image 7060 / 9994
testing image 7061 / 9994
testing image 7062 / 9994
testing image 7063 / 9994
testing image 7064 / 9994
testing image 7065 / 9994
testing image 7066 / 9994
testing image 7067 / 9994
testing image 7068 / 9994
testing image 7069 / 9994
testing image 7070 / 9994
testing image 7071 / 9994
testing image 7072 / 9994
testing image 7073 / 9994
testing image 7074 / 9994
testing image 7075 / 9994
testing image 7076 / 9994
testing image 7077 / 9994
testing image 7078 / 9994
testing image 7079 / 9994
testing image 7080 / 9994
testing image 7081 / 9994
testing image 7082 / 9994
testing image 7083 / 9994
testing image 7084 / 9994
testing image 7085 / 9994
testing image 7086 / 9994
testing image 7087 / 9994
testing image 7088 / 9994
testing image 7089 / 9994
testing image 7090 / 9994
testing image 7091 / 9994
testing image 7092 / 9994
testing image 7093 / 9994
testing image 7094 / 9994
testing image 7095 / 9994
testing image 7096 / 9994
testing image 7097 / 9994
testing image 7098 / 9994
testing image 7099 / 9994
testing image 7100 / 9994
testing image 7101 / 9994
testing image 7102 / 9994
testing image 7103 / 9994
testing image 7104 / 9994
testing image 7105 / 9994
testing image 7106 / 9994
testing image 7107 / 9994
testing image 7108 / 9994
testing image 7109 / 9994
testing image 7110 / 9994
testing image 7111 / 9994
testing image 7112 / 9994
testing image 7113 / 9994
testing image 7114 / 9994
testing image 7115 / 9994
testing image 7116 / 9994
testing image 7117 / 9994
testing image 7118 / 9994
testing image 7119 / 9994
testing image 7120 / 9994
testing image 7121 / 9994
testing image 7122 / 9994
testing image 7123 / 9994
testing image 7124 / 9994
testing image 7125 / 9994
testing image 7126 / 9994
testing image 7127 / 9994
testing image 7128 / 9994
testing image 7129 / 9994
testing image 7130 / 9994
testing image 7131 / 9994
testing image 7132 / 9994
testing image 7133 / 9994
testing image 7134 / 9994
testing image 7135 / 9994
testing image 7136 / 9994
testing image 7137 / 9994
testing image 7138 / 9994
testing image 7139 / 9994
testing image 7140 / 9994
testing image 7141 / 9994
testing image 7142 / 9994
testing image 7143 / 9994
testing image 7144 / 9994
testing image 7145 / 9994
testing image 7146 / 9994
testing image 7147 / 9994
testing image 7148 / 9994
testing image 7149 / 9994
testing image 7150 / 9994
testing image 7151 / 9994
testing image 7152 / 9994
testing image 7153 / 9994
testing image 7154 / 9994
testing image 7155 / 9994
testing image 7156 / 9994
testing image 7157 / 9994
testing image 7158 / 9994
testing image 7159 / 9994
testing image 7160 / 9994
testing image 7161 / 9994
testing image 7162 / 9994
testing image 7163 / 9994
testing image 7164 / 9994
testing image 7165 / 9994
testing image 7166 / 9994
testing image 7167 / 9994
testing image 7168 / 9994
testing image 7169 / 9994
testing image 7170 / 9994
testing image 7171 / 9994
testing image 7172 / 9994
testing image 7173 / 9994
testing image 7174 / 9994
testing image 7175 / 9994
testing image 7176 / 9994
testing image 7177 / 9994
testing image 7178 / 9994
testing image 7179 / 9994
testing image 7180 / 9994
testing image 7181 / 9994
testing image 7182 / 9994
testing image 7183 / 9994
testing image 7184 / 9994
testing image 7185 / 9994
testing image 7186 / 9994
testing image 7187 / 9994
testing image 7188 / 9994
testing image 7189 / 9994
testing image 7190 / 9994
testing image 7191 / 9994
testing image 7192 / 9994
testing image 7193 / 9994
testing image 7194 / 9994
testing image 7195 / 9994
testing image 7196 / 9994
testing image 7197 / 9994
testing image 7198 / 9994
testing image 7199 / 9994
testing image 7200 / 9994
testing image 7201 / 9994
testing image 7202 / 9994
testing image 7203 / 9994
testing image 7204 / 9994
testing image 7205 / 9994
testing image 7206 / 9994
testing image 7207 / 9994
testing image 7208 / 9994
testing image 7209 / 9994
testing image 7210 / 9994
testing image 7211 / 9994
testing image 7212 / 9994
testing image 7213 / 9994
testing image 7214 / 9994
testing image 7215 / 9994
testing image 7216 / 9994
testing image 7217 / 9994
testing image 7218 / 9994
testing image 7219 / 9994
testing image 7220 / 9994
testing image 7221 / 9994
testing image 7222 / 9994
testing image 7223 / 9994
testing image 7224 / 9994
testing image 7225 / 9994
testing image 7226 / 9994
testing image 7227 / 9994
testing image 7228 / 9994
testing image 7229 / 9994
testing image 7230 / 9994
testing image 7231 / 9994
testing image 7232 / 9994
testing image 7233 / 9994
testing image 7234 / 9994
testing image 7235 / 9994
testing image 7236 / 9994
testing image 7237 / 9994
testing image 7238 / 9994
testing image 7239 / 9994
testing image 7240 / 9994
testing image 7241 / 9994
testing image 7242 / 9994
testing image 7243 / 9994
testing image 7244 / 9994
testing image 7245 / 9994
testing image 7246 / 9994
testing image 7247 / 9994
testing image 7248 / 9994
testing image 7249 / 9994
testing image 7250 / 9994
testing image 7251 / 9994
testing image 7252 / 9994
testing image 7253 / 9994
testing image 7254 / 9994
testing image 7255 / 9994
testing image 7256 / 9994
testing image 7257 / 9994
testing image 7258 / 9994
testing image 7259 / 9994
testing image 7260 / 9994
testing image 7261 / 9994
testing image 7262 / 9994
testing image 7263 / 9994
testing image 7264 / 9994
testing image 7265 / 9994
testing image 7266 / 9994
testing image 7267 / 9994
testing image 7268 / 9994
testing image 7269 / 9994
testing image 7270 / 9994
testing image 7271 / 9994
testing image 7272 / 9994
testing image 7273 / 9994
testing image 7274 / 9994
testing image 7275 / 9994
testing image 7276 / 9994
testing image 7277 / 9994
testing image 7278 / 9994
testing image 7279 / 9994
testing image 7280 / 9994
testing image 7281 / 9994
testing image 7282 / 9994
testing image 7283 / 9994
testing image 7284 / 9994
testing image 7285 / 9994
testing image 7286 / 9994
testing image 7287 / 9994
testing image 7288 / 9994
testing image 7289 / 9994
testing image 7290 / 9994
testing image 7291 / 9994
testing image 7292 / 9994
testing image 7293 / 9994
testing image 7294 / 9994
testing image 7295 / 9994
testing image 7296 / 9994
testing image 7297 / 9994
testing image 7298 / 9994
testing image 7299 / 9994
testing image 7300 / 9994
testing image 7301 / 9994
testing image 7302 / 9994
testing image 7303 / 9994
testing image 7304 / 9994
testing image 7305 / 9994
testing image 7306 / 9994
testing image 7307 / 9994
testing image 7308 / 9994
testing image 7309 / 9994
testing image 7310 / 9994
testing image 7311 / 9994
testing image 7312 / 9994
testing image 7313 / 9994
testing image 7314 / 9994
testing image 7315 / 9994
testing image 7316 / 9994
testing image 7317 / 9994
testing image 7318 / 9994
testing image 7319 / 9994
testing image 7320 / 9994
testing image 7321 / 9994
testing image 7322 / 9994
testing image 7323 / 9994
testing image 7324 / 9994
testing image 7325 / 9994
testing image 7326 / 9994
testing image 7327 / 9994
testing image 7328 / 9994
testing image 7329 / 9994
testing image 7330 / 9994
testing image 7331 / 9994
testing image 7332 / 9994
testing image 7333 / 9994
testing image 7334 / 9994
testing image 7335 / 9994
testing image 7336 / 9994
testing image 7337 / 9994
testing image 7338 / 9994
testing image 7339 / 9994
testing image 7340 / 9994
testing image 7341 / 9994
testing image 7342 / 9994
testing image 7343 / 9994
testing image 7344 / 9994
testing image 7345 / 9994
testing image 7346 / 9994
testing image 7347 / 9994
testing image 7348 / 9994
testing image 7349 / 9994
testing image 7350 / 9994
testing image 7351 / 9994
testing image 7352 / 9994
testing image 7353 / 9994
testing image 7354 / 9994
testing image 7355 / 9994
testing image 7356 / 9994
testing image 7357 / 9994
testing image 7358 / 9994
testing image 7359 / 9994
testing image 7360 / 9994
testing image 7361 / 9994
testing image 7362 / 9994
testing image 7363 / 9994
testing image 7364 / 9994
testing image 7365 / 9994
testing image 7366 / 9994
testing image 7367 / 9994
testing image 7368 / 9994
testing image 7369 / 9994
testing image 7370 / 9994
testing image 7371 / 9994
testing image 7372 / 9994
testing image 7373 / 9994
testing image 7374 / 9994
testing image 7375 / 9994
testing image 7376 / 9994
testing image 7377 / 9994
testing image 7378 / 9994
testing image 7379 / 9994
testing image 7380 / 9994
testing image 7381 / 9994
testing image 7382 / 9994
testing image 7383 / 9994
testing image 7384 / 9994
testing image 7385 / 9994
testing image 7386 / 9994
testing image 7387 / 9994
testing image 7388 / 9994
testing image 7389 / 9994
testing image 7390 / 9994
testing image 7391 / 9994
testing image 7392 / 9994
testing image 7393 / 9994
testing image 7394 / 9994
testing image 7395 / 9994
testing image 7396 / 9994
testing image 7397 / 9994
testing image 7398 / 9994
testing image 7399 / 9994
testing image 7400 / 9994
testing image 7401 / 9994
testing image 7402 / 9994
testing image 7403 / 9994
testing image 7404 / 9994
testing image 7405 / 9994
testing image 7406 / 9994
testing image 7407 / 9994
testing image 7408 / 9994
testing image 7409 / 9994
testing image 7410 / 9994
testing image 7411 / 9994
testing image 7412 / 9994
testing image 7413 / 9994
testing image 7414 / 9994
testing image 7415 / 9994
testing image 7416 / 9994
testing image 7417 / 9994
testing image 7418 / 9994
testing image 7419 / 9994
testing image 7420 / 9994
testing image 7421 / 9994
testing image 7422 / 9994
testing image 7423 / 9994
testing image 7424 / 9994
testing image 7425 / 9994
testing image 7426 / 9994
testing image 7427 / 9994
testing image 7428 / 9994
testing image 7429 / 9994
testing image 7430 / 9994
testing image 7431 / 9994
testing image 7432 / 9994
testing image 7433 / 9994
testing image 7434 / 9994
testing image 7435 / 9994
testing image 7436 / 9994
testing image 7437 / 9994
testing image 7438 / 9994
testing image 7439 / 9994
testing image 7440 / 9994
testing image 7441 / 9994
testing image 7442 / 9994
testing image 7443 / 9994
testing image 7444 / 9994
testing image 7445 / 9994
testing image 7446 / 9994
testing image 7447 / 9994
testing image 7448 / 9994
testing image 7449 / 9994
testing image 7450 / 9994
testing image 7451 / 9994
testing image 7452 / 9994
testing image 7453 / 9994
testing image 7454 / 9994
testing image 7455 / 9994
testing image 7456 / 9994
testing image 7457 / 9994
testing image 7458 / 9994
testing image 7459 / 9994
testing image 7460 / 9994
testing image 7461 / 9994
testing image 7462 / 9994
testing image 7463 / 9994
testing image 7464 / 9994
testing image 7465 / 9994
testing image 7466 / 9994
testing image 7467 / 9994
testing image 7468 / 9994
testing image 7469 / 9994
testing image 7470 / 9994
testing image 7471 / 9994
testing image 7472 / 9994
testing image 7473 / 9994
testing image 7474 / 9994
testing image 7475 / 9994
testing image 7476 / 9994
testing image 7477 / 9994
testing image 7478 / 9994
testing image 7479 / 9994
testing image 7480 / 9994
testing image 7481 / 9994
testing image 7482 / 9994
testing image 7483 / 9994
testing image 7484 / 9994
testing image 7485 / 9994
testing image 7486 / 9994
testing image 7487 / 9994
testing image 7488 / 9994
testing image 7489 / 9994
testing image 7490 / 9994
testing image 7491 / 9994
testing image 7492 / 9994
testing image 7493 / 9994
testing image 7494 / 9994
testing image 7495 / 9994
testing image 7496 / 9994
testing image 7497 / 9994
testing image 7498 / 9994
testing image 7499 / 9994
testing image 7500 / 9994
testing image 7501 / 9994
testing image 7502 / 9994
testing image 7503 / 9994
testing image 7504 / 9994
testing image 7505 / 9994
testing image 7506 / 9994
testing image 7507 / 9994
testing image 7508 / 9994
testing image 7509 / 9994
testing image 7510 / 9994
testing image 7511 / 9994
testing image 7512 / 9994
testing image 7513 / 9994
testing image 7514 / 9994
testing image 7515 / 9994
testing image 7516 / 9994
testing image 7517 / 9994
testing image 7518 / 9994
testing image 7519 / 9994
testing image 7520 / 9994
testing image 7521 / 9994
testing image 7522 / 9994
testing image 7523 / 9994
testing image 7524 / 9994
testing image 7525 / 9994
testing image 7526 / 9994
testing image 7527 / 9994
testing image 7528 / 9994
testing image 7529 / 9994
testing image 7530 / 9994
testing image 7531 / 9994
testing image 7532 / 9994
testing image 7533 / 9994
testing image 7534 / 9994
testing image 7535 / 9994
testing image 7536 / 9994
testing image 7537 / 9994
testing image 7538 / 9994
testing image 7539 / 9994
testing image 7540 / 9994
testing image 7541 / 9994
testing image 7542 / 9994
testing image 7543 / 9994
testing image 7544 / 9994
testing image 7545 / 9994
testing image 7546 / 9994
testing image 7547 / 9994
testing image 7548 / 9994
testing image 7549 / 9994
testing image 7550 / 9994
testing image 7551 / 9994
testing image 7552 / 9994
testing image 7553 / 9994
testing image 7554 / 9994
testing image 7555 / 9994
testing image 7556 / 9994
testing image 7557 / 9994
testing image 7558 / 9994
testing image 7559 / 9994
testing image 7560 / 9994
testing image 7561 / 9994
testing image 7562 / 9994
testing image 7563 / 9994
testing image 7564 / 9994
testing image 7565 / 9994
testing image 7566 / 9994
testing image 7567 / 9994
testing image 7568 / 9994
testing image 7569 / 9994
testing image 7570 / 9994
testing image 7571 / 9994
testing image 7572 / 9994
testing image 7573 / 9994
testing image 7574 / 9994
testing image 7575 / 9994
testing image 7576 / 9994
testing image 7577 / 9994
testing image 7578 / 9994
testing image 7579 / 9994
testing image 7580 / 9994
testing image 7581 / 9994
testing image 7582 / 9994
testing image 7583 / 9994
testing image 7584 / 9994
testing image 7585 / 9994
testing image 7586 / 9994
testing image 7587 / 9994
testing image 7588 / 9994
testing image 7589 / 9994
testing image 7590 / 9994
testing image 7591 / 9994
testing image 7592 / 9994
testing image 7593 / 9994
testing image 7594 / 9994
testing image 7595 / 9994
testing image 7596 / 9994
testing image 7597 / 9994
testing image 7598 / 9994
testing image 7599 / 9994
testing image 7600 / 9994
testing image 7601 / 9994
testing image 7602 / 9994
testing image 7603 / 9994
testing image 7604 / 9994
testing image 7605 / 9994
testing image 7606 / 9994
testing image 7607 / 9994
testing image 7608 / 9994
testing image 7609 / 9994
testing image 7610 / 9994
testing image 7611 / 9994
testing image 7612 / 9994
testing image 7613 / 9994
testing image 7614 / 9994
testing image 7615 / 9994
testing image 7616 / 9994
testing image 7617 / 9994
testing image 7618 / 9994
testing image 7619 / 9994
testing image 7620 / 9994
testing image 7621 / 9994
testing image 7622 / 9994
testing image 7623 / 9994
testing image 7624 / 9994
testing image 7625 / 9994
testing image 7626 / 9994
testing image 7627 / 9994
testing image 7628 / 9994
testing image 7629 / 9994
testing image 7630 / 9994
testing image 7631 / 9994
testing image 7632 / 9994
testing image 7633 / 9994
testing image 7634 / 9994
testing image 7635 / 9994
testing image 7636 / 9994
testing image 7637 / 9994
testing image 7638 / 9994
testing image 7639 / 9994
testing image 7640 / 9994
testing image 7641 / 9994
testing image 7642 / 9994
testing image 7643 / 9994
testing image 7644 / 9994
testing image 7645 / 9994
testing image 7646 / 9994
testing image 7647 / 9994
testing image 7648 / 9994
testing image 7649 / 9994
testing image 7650 / 9994
testing image 7651 / 9994
testing image 7652 / 9994
testing image 7653 / 9994
testing image 7654 / 9994
testing image 7655 / 9994
testing image 7656 / 9994
testing image 7657 / 9994
testing image 7658 / 9994
testing image 7659 / 9994
testing image 7660 / 9994
testing image 7661 / 9994
testing image 7662 / 9994
testing image 7663 / 9994
testing image 7664 / 9994
testing image 7665 / 9994
testing image 7666 / 9994
testing image 7667 / 9994
testing image 7668 / 9994
testing image 7669 / 9994
testing image 7670 / 9994
testing image 7671 / 9994
testing image 7672 / 9994
testing image 7673 / 9994
testing image 7674 / 9994
testing image 7675 / 9994
testing image 7676 / 9994
testing image 7677 / 9994
testing image 7678 / 9994
testing image 7679 / 9994
testing image 7680 / 9994
testing image 7681 / 9994
testing image 7682 / 9994
testing image 7683 / 9994
testing image 7684 / 9994
testing image 7685 / 9994
testing image 7686 / 9994
testing image 7687 / 9994
testing image 7688 / 9994
testing image 7689 / 9994
testing image 7690 / 9994
testing image 7691 / 9994
testing image 7692 / 9994
testing image 7693 / 9994
testing image 7694 / 9994
testing image 7695 / 9994
testing image 7696 / 9994
testing image 7697 / 9994
testing image 7698 / 9994
testing image 7699 / 9994
testing image 7700 / 9994
testing image 7701 / 9994
testing image 7702 / 9994
testing image 7703 / 9994
testing image 7704 / 9994
testing image 7705 / 9994
testing image 7706 / 9994
testing image 7707 / 9994
testing image 7708 / 9994
testing image 7709 / 9994
testing image 7710 / 9994
testing image 7711 / 9994
testing image 7712 / 9994
testing image 7713 / 9994
testing image 7714 / 9994
testing image 7715 / 9994
testing image 7716 / 9994
testing image 7717 / 9994
testing image 7718 / 9994
testing image 7719 / 9994
testing image 7720 / 9994
testing image 7721 / 9994
testing image 7722 / 9994
testing image 7723 / 9994
testing image 7724 / 9994
testing image 7725 / 9994
testing image 7726 / 9994
testing image 7727 / 9994
testing image 7728 / 9994
testing image 7729 / 9994
testing image 7730 / 9994
testing image 7731 / 9994
testing image 7732 / 9994
testing image 7733 / 9994
testing image 7734 / 9994
testing image 7735 / 9994
testing image 7736 / 9994
testing image 7737 / 9994
testing image 7738 / 9994
testing image 7739 / 9994
testing image 7740 / 9994
testing image 7741 / 9994
testing image 7742 / 9994
testing image 7743 / 9994
testing image 7744 / 9994
testing image 7745 / 9994
testing image 7746 / 9994
testing image 7747 / 9994
testing image 7748 / 9994
testing image 7749 / 9994
testing image 7750 / 9994
testing image 7751 / 9994
testing image 7752 / 9994
testing image 7753 / 9994
testing image 7754 / 9994
testing image 7755 / 9994
testing image 7756 / 9994
testing image 7757 / 9994
testing image 7758 / 9994
testing image 7759 / 9994
testing image 7760 / 9994
testing image 7761 / 9994
testing image 7762 / 9994
testing image 7763 / 9994
testing image 7764 / 9994
testing image 7765 / 9994
testing image 7766 / 9994
testing image 7767 / 9994
testing image 7768 / 9994
testing image 7769 / 9994
testing image 7770 / 9994
testing image 7771 / 9994
testing image 7772 / 9994
testing image 7773 / 9994
testing image 7774 / 9994
testing image 7775 / 9994
testing image 7776 / 9994
testing image 7777 / 9994
testing image 7778 / 9994
testing image 7779 / 9994
testing image 7780 / 9994
testing image 7781 / 9994
testing image 7782 / 9994
testing image 7783 / 9994
testing image 7784 / 9994
testing image 7785 / 9994
testing image 7786 / 9994
testing image 7787 / 9994
testing image 7788 / 9994
testing image 7789 / 9994
testing image 7790 / 9994
testing image 7791 / 9994
testing image 7792 / 9994
testing image 7793 / 9994
testing image 7794 / 9994
testing image 7795 / 9994
testing image 7796 / 9994
testing image 7797 / 9994
testing image 7798 / 9994
testing image 7799 / 9994
testing image 7800 / 9994
testing image 7801 / 9994
testing image 7802 / 9994
testing image 7803 / 9994
testing image 7804 / 9994
testing image 7805 / 9994
testing image 7806 / 9994
testing image 7807 / 9994
testing image 7808 / 9994
testing image 7809 / 9994
testing image 7810 / 9994
testing image 7811 / 9994
testing image 7812 / 9994
testing image 7813 / 9994
testing image 7814 / 9994
testing image 7815 / 9994
testing image 7816 / 9994
testing image 7817 / 9994
testing image 7818 / 9994
testing image 7819 / 9994
testing image 7820 / 9994
testing image 7821 / 9994
testing image 7822 / 9994
testing image 7823 / 9994
testing image 7824 / 9994
testing image 7825 / 9994
testing image 7826 / 9994
testing image 7827 / 9994
testing image 7828 / 9994
testing image 7829 / 9994
testing image 7830 / 9994
testing image 7831 / 9994
testing image 7832 / 9994
testing image 7833 / 9994
testing image 7834 / 9994
testing image 7835 / 9994
testing image 7836 / 9994
testing image 7837 / 9994
testing image 7838 / 9994
testing image 7839 / 9994
testing image 7840 / 9994
testing image 7841 / 9994
testing image 7842 / 9994
testing image 7843 / 9994
testing image 7844 / 9994
testing image 7845 / 9994
testing image 7846 / 9994
testing image 7847 / 9994
testing image 7848 / 9994
testing image 7849 / 9994
testing image 7850 / 9994
testing image 7851 / 9994
testing image 7852 / 9994
testing image 7853 / 9994
testing image 7854 / 9994
testing image 7855 / 9994
testing image 7856 / 9994
testing image 7857 / 9994
testing image 7858 / 9994
testing image 7859 / 9994
testing image 7860 / 9994
testing image 7861 / 9994
testing image 7862 / 9994
testing image 7863 / 9994
testing image 7864 / 9994
testing image 7865 / 9994
testing image 7866 / 9994
testing image 7867 / 9994
testing image 7868 / 9994
testing image 7869 / 9994
testing image 7870 / 9994
testing image 7871 / 9994
testing image 7872 / 9994
testing image 7873 / 9994
testing image 7874 / 9994
testing image 7875 / 9994
testing image 7876 / 9994
testing image 7877 / 9994
testing image 7878 / 9994
testing image 7879 / 9994
testing image 7880 / 9994
testing image 7881 / 9994
testing image 7882 / 9994
testing image 7883 / 9994
testing image 7884 / 9994
testing image 7885 / 9994
testing image 7886 / 9994
testing image 7887 / 9994
testing image 7888 / 9994
testing image 7889 / 9994
testing image 7890 / 9994
testing image 7891 / 9994
testing image 7892 / 9994
testing image 7893 / 9994
testing image 7894 / 9994
testing image 7895 / 9994
testing image 7896 / 9994
testing image 7897 / 9994
testing image 7898 / 9994
testing image 7899 / 9994
testing image 7900 / 9994
testing image 7901 / 9994
testing image 7902 / 9994
testing image 7903 / 9994
testing image 7904 / 9994
testing image 7905 / 9994
testing image 7906 / 9994
testing image 7907 / 9994
testing image 7908 / 9994
testing image 7909 / 9994
testing image 7910 / 9994
testing image 7911 / 9994
testing image 7912 / 9994
testing image 7913 / 9994
testing image 7914 / 9994
testing image 7915 / 9994
testing image 7916 / 9994
testing image 7917 / 9994
testing image 7918 / 9994
testing image 7919 / 9994
testing image 7920 / 9994
testing image 7921 / 9994
testing image 7922 / 9994
testing image 7923 / 9994
testing image 7924 / 9994
testing image 7925 / 9994
testing image 7926 / 9994
testing image 7927 / 9994
testing image 7928 / 9994
testing image 7929 / 9994
testing image 7930 / 9994
testing image 7931 / 9994
testing image 7932 / 9994
testing image 7933 / 9994
testing image 7934 / 9994
testing image 7935 / 9994
testing image 7936 / 9994
testing image 7937 / 9994
testing image 7938 / 9994
testing image 7939 / 9994
testing image 7940 / 9994
testing image 7941 / 9994
testing image 7942 / 9994
testing image 7943 / 9994
testing image 7944 / 9994
testing image 7945 / 9994
testing image 7946 / 9994
testing image 7947 / 9994
testing image 7948 / 9994
testing image 7949 / 9994
testing image 7950 / 9994
testing image 7951 / 9994
testing image 7952 / 9994
testing image 7953 / 9994
testing image 7954 / 9994
testing image 7955 / 9994
testing image 7956 / 9994
testing image 7957 / 9994
testing image 7958 / 9994
testing image 7959 / 9994
testing image 7960 / 9994
testing image 7961 / 9994
testing image 7962 / 9994
testing image 7963 / 9994
testing image 7964 / 9994
testing image 7965 / 9994
testing image 7966 / 9994
testing image 7967 / 9994
testing image 7968 / 9994
testing image 7969 / 9994
testing image 7970 / 9994
testing image 7971 / 9994
testing image 7972 / 9994
testing image 7973 / 9994
testing image 7974 / 9994
testing image 7975 / 9994
testing image 7976 / 9994
testing image 7977 / 9994
testing image 7978 / 9994
testing image 7979 / 9994
testing image 7980 / 9994
testing image 7981 / 9994
testing image 7982 / 9994
testing image 7983 / 9994
testing image 7984 / 9994
testing image 7985 / 9994
testing image 7986 / 9994
testing image 7987 / 9994
testing image 7988 / 9994
testing image 7989 / 9994
testing image 7990 / 9994
testing image 7991 / 9994
testing image 7992 / 9994
testing image 7993 / 9994
testing image 7994 / 9994
testing image 7995 / 9994
testing image 7996 / 9994
testing image 7997 / 9994
testing image 7998 / 9994
testing image 7999 / 9994
testing image 8000 / 9994
testing image 8001 / 9994
testing image 8002 / 9994
testing image 8003 / 9994
testing image 8004 / 9994
testing image 8005 / 9994
testing image 8006 / 9994
testing image 8007 / 9994
testing image 8008 / 9994
testing image 8009 / 9994
testing image 8010 / 9994
testing image 8011 / 9994
testing image 8012 / 9994
testing image 8013 / 9994
testing image 8014 / 9994
testing image 8015 / 9994
testing image 8016 / 9994
testing image 8017 / 9994
testing image 8018 / 9994
testing image 8019 / 9994
testing image 8020 / 9994
testing image 8021 / 9994
testing image 8022 / 9994
testing image 8023 / 9994
testing image 8024 / 9994
testing image 8025 / 9994
testing image 8026 / 9994
testing image 8027 / 9994
testing image 8028 / 9994
testing image 8029 / 9994
testing image 8030 / 9994
testing image 8031 / 9994
testing image 8032 / 9994
testing image 8033 / 9994
testing image 8034 / 9994
testing image 8035 / 9994
testing image 8036 / 9994
testing image 8037 / 9994
testing image 8038 / 9994
testing image 8039 / 9994
testing image 8040 / 9994
testing image 8041 / 9994
testing image 8042 / 9994
testing image 8043 / 9994
testing image 8044 / 9994
testing image 8045 / 9994
testing image 8046 / 9994
testing image 8047 / 9994
testing image 8048 / 9994
testing image 8049 / 9994
testing image 8050 / 9994
testing image 8051 / 9994
testing image 8052 / 9994
testing image 8053 / 9994
testing image 8054 / 9994
testing image 8055 / 9994
testing image 8056 / 9994
testing image 8057 / 9994
testing image 8058 / 9994
testing image 8059 / 9994
testing image 8060 / 9994
testing image 8061 / 9994
testing image 8062 / 9994
testing image 8063 / 9994
testing image 8064 / 9994
testing image 8065 / 9994
testing image 8066 / 9994
testing image 8067 / 9994
testing image 8068 / 9994
testing image 8069 / 9994
testing image 8070 / 9994
testing image 8071 / 9994
testing image 8072 / 9994
testing image 8073 / 9994
testing image 8074 / 9994
testing image 8075 / 9994
testing image 8076 / 9994
testing image 8077 / 9994
testing image 8078 / 9994
testing image 8079 / 9994
testing image 8080 / 9994
testing image 8081 / 9994
testing image 8082 / 9994
testing image 8083 / 9994
testing image 8084 / 9994
testing image 8085 / 9994
testing image 8086 / 9994
testing image 8087 / 9994
testing image 8088 / 9994
testing image 8089 / 9994
testing image 8090 / 9994
testing image 8091 / 9994
testing image 8092 / 9994
testing image 8093 / 9994
testing image 8094 / 9994
testing image 8095 / 9994
testing image 8096 / 9994
testing image 8097 / 9994
testing image 8098 / 9994
testing image 8099 / 9994
testing image 8100 / 9994
testing image 8101 / 9994
testing image 8102 / 9994
testing image 8103 / 9994
testing image 8104 / 9994
testing image 8105 / 9994
testing image 8106 / 9994
testing image 8107 / 9994
testing image 8108 / 9994
testing image 8109 / 9994
testing image 8110 / 9994
testing image 8111 / 9994
testing image 8112 / 9994
testing image 8113 / 9994
testing image 8114 / 9994
testing image 8115 / 9994
testing image 8116 / 9994
testing image 8117 / 9994
testing image 8118 / 9994
testing image 8119 / 9994
testing image 8120 / 9994
testing image 8121 / 9994
testing image 8122 / 9994
testing image 8123 / 9994
testing image 8124 / 9994
testing image 8125 / 9994
testing image 8126 / 9994
testing image 8127 / 9994
testing image 8128 / 9994
testing image 8129 / 9994
testing image 8130 / 9994
testing image 8131 / 9994
testing image 8132 / 9994
testing image 8133 / 9994
testing image 8134 / 9994
testing image 8135 / 9994
testing image 8136 / 9994
testing image 8137 / 9994
testing image 8138 / 9994
testing image 8139 / 9994
testing image 8140 / 9994
testing image 8141 / 9994
testing image 8142 / 9994
testing image 8143 / 9994
testing image 8144 / 9994
testing image 8145 / 9994
testing image 8146 / 9994
testing image 8147 / 9994
testing image 8148 / 9994
testing image 8149 / 9994
testing image 8150 / 9994
testing image 8151 / 9994
testing image 8152 / 9994
testing image 8153 / 9994
testing image 8154 / 9994
testing image 8155 / 9994
testing image 8156 / 9994
testing image 8157 / 9994
testing image 8158 / 9994
testing image 8159 / 9994
testing image 8160 / 9994
testing image 8161 / 9994
testing image 8162 / 9994
testing image 8163 / 9994
testing image 8164 / 9994
testing image 8165 / 9994
testing image 8166 / 9994
testing image 8167 / 9994
testing image 8168 / 9994
testing image 8169 / 9994
testing image 8170 / 9994
testing image 8171 / 9994
testing image 8172 / 9994
testing image 8173 / 9994
testing image 8174 / 9994
testing image 8175 / 9994
testing image 8176 / 9994
testing image 8177 / 9994
testing image 8178 / 9994
testing image 8179 / 9994
testing image 8180 / 9994
testing image 8181 / 9994
testing image 8182 / 9994
testing image 8183 / 9994
testing image 8184 / 9994
testing image 8185 / 9994
testing image 8186 / 9994
testing image 8187 / 9994
testing image 8188 / 9994
testing image 8189 / 9994
testing image 8190 / 9994
testing image 8191 / 9994
testing image 8192 / 9994
testing image 8193 / 9994
testing image 8194 / 9994
testing image 8195 / 9994
testing image 8196 / 9994
testing image 8197 / 9994
testing image 8198 / 9994
testing image 8199 / 9994
testing image 8200 / 9994
testing image 8201 / 9994
testing image 8202 / 9994
testing image 8203 / 9994
testing image 8204 / 9994
testing image 8205 / 9994
testing image 8206 / 9994
testing image 8207 / 9994
testing image 8208 / 9994
testing image 8209 / 9994
testing image 8210 / 9994
testing image 8211 / 9994
testing image 8212 / 9994
testing image 8213 / 9994
testing image 8214 / 9994
testing image 8215 / 9994
testing image 8216 / 9994
testing image 8217 / 9994
testing image 8218 / 9994
testing image 8219 / 9994
testing image 8220 / 9994
testing image 8221 / 9994
testing image 8222 / 9994
testing image 8223 / 9994
testing image 8224 / 9994
testing image 8225 / 9994
testing image 8226 / 9994
testing image 8227 / 9994
testing image 8228 / 9994
testing image 8229 / 9994
testing image 8230 / 9994
testing image 8231 / 9994
testing image 8232 / 9994
testing image 8233 / 9994
testing image 8234 / 9994
testing image 8235 / 9994
testing image 8236 / 9994
testing image 8237 / 9994
testing image 8238 / 9994
testing image 8239 / 9994
testing image 8240 / 9994
testing image 8241 / 9994
testing image 8242 / 9994
testing image 8243 / 9994
testing image 8244 / 9994
testing image 8245 / 9994
testing image 8246 / 9994
testing image 8247 / 9994
testing image 8248 / 9994
testing image 8249 / 9994
testing image 8250 / 9994
testing image 8251 / 9994
testing image 8252 / 9994
testing image 8253 / 9994
testing image 8254 / 9994
testing image 8255 / 9994
testing image 8256 / 9994
testing image 8257 / 9994
testing image 8258 / 9994
testing image 8259 / 9994
testing image 8260 / 9994
testing image 8261 / 9994
testing image 8262 / 9994
testing image 8263 / 9994
testing image 8264 / 9994
testing image 8265 / 9994
testing image 8266 / 9994
testing image 8267 / 9994
testing image 8268 / 9994
testing image 8269 / 9994
testing image 8270 / 9994
testing image 8271 / 9994
testing image 8272 / 9994
testing image 8273 / 9994
testing image 8274 / 9994
testing image 8275 / 9994
testing image 8276 / 9994
testing image 8277 / 9994
testing image 8278 / 9994
testing image 8279 / 9994
testing image 8280 / 9994
testing image 8281 / 9994
testing image 8282 / 9994
testing image 8283 / 9994
testing image 8284 / 9994
testing image 8285 / 9994
testing image 8286 / 9994
testing image 8287 / 9994
testing image 8288 / 9994
testing image 8289 / 9994
testing image 8290 / 9994
testing image 8291 / 9994
testing image 8292 / 9994
testing image 8293 / 9994
testing image 8294 / 9994
testing image 8295 / 9994
testing image 8296 / 9994
testing image 8297 / 9994
testing image 8298 / 9994
testing image 8299 / 9994
testing image 8300 / 9994
testing image 8301 / 9994
testing image 8302 / 9994
testing image 8303 / 9994
testing image 8304 / 9994
testing image 8305 / 9994
testing image 8306 / 9994
testing image 8307 / 9994
testing image 8308 / 9994
testing image 8309 / 9994
testing image 8310 / 9994
testing image 8311 / 9994
testing image 8312 / 9994
testing image 8313 / 9994
testing image 8314 / 9994
testing image 8315 / 9994
testing image 8316 / 9994
testing image 8317 / 9994
testing image 8318 / 9994
testing image 8319 / 9994
testing image 8320 / 9994
testing image 8321 / 9994
testing image 8322 / 9994
testing image 8323 / 9994
testing image 8324 / 9994
testing image 8325 / 9994
testing image 8326 / 9994
testing image 8327 / 9994
testing image 8328 / 9994
testing image 8329 / 9994
testing image 8330 / 9994
testing image 8331 / 9994
testing image 8332 / 9994
testing image 8333 / 9994
testing image 8334 / 9994
testing image 8335 / 9994
testing image 8336 / 9994
testing image 8337 / 9994
testing image 8338 / 9994
testing image 8339 / 9994
testing image 8340 / 9994
testing image 8341 / 9994
testing image 8342 / 9994
testing image 8343 / 9994
testing image 8344 / 9994
testing image 8345 / 9994
testing image 8346 / 9994
testing image 8347 / 9994
testing image 8348 / 9994
testing image 8349 / 9994
testing image 8350 / 9994
testing image 8351 / 9994
testing image 8352 / 9994
testing image 8353 / 9994
testing image 8354 / 9994
testing image 8355 / 9994
testing image 8356 / 9994
testing image 8357 / 9994
testing image 8358 / 9994
testing image 8359 / 9994
testing image 8360 / 9994
testing image 8361 / 9994
testing image 8362 / 9994
testing image 8363 / 9994
testing image 8364 / 9994
testing image 8365 / 9994
testing image 8366 / 9994
testing image 8367 / 9994
testing image 8368 / 9994
testing image 8369 / 9994
testing image 8370 / 9994
testing image 8371 / 9994
testing image 8372 / 9994
testing image 8373 / 9994
testing image 8374 / 9994
testing image 8375 / 9994
testing image 8376 / 9994
testing image 8377 / 9994
testing image 8378 / 9994
testing image 8379 / 9994
testing image 8380 / 9994
testing image 8381 / 9994
testing image 8382 / 9994
testing image 8383 / 9994
testing image 8384 / 9994
testing image 8385 / 9994
testing image 8386 / 9994
testing image 8387 / 9994
testing image 8388 / 9994
testing image 8389 / 9994
testing image 8390 / 9994
testing image 8391 / 9994
testing image 8392 / 9994
testing image 8393 / 9994
testing image 8394 / 9994
testing image 8395 / 9994
testing image 8396 / 9994
testing image 8397 / 9994
testing image 8398 / 9994
testing image 8399 / 9994
testing image 8400 / 9994
testing image 8401 / 9994
testing image 8402 / 9994
testing image 8403 / 9994
testing image 8404 / 9994
testing image 8405 / 9994
testing image 8406 / 9994
testing image 8407 / 9994
testing image 8408 / 9994
testing image 8409 / 9994
testing image 8410 / 9994
testing image 8411 / 9994
testing image 8412 / 9994
testing image 8413 / 9994
testing image 8414 / 9994
testing image 8415 / 9994
testing image 8416 / 9994
testing image 8417 / 9994
testing image 8418 / 9994
testing image 8419 / 9994
testing image 8420 / 9994
testing image 8421 / 9994
testing image 8422 / 9994
testing image 8423 / 9994
testing image 8424 / 9994
testing image 8425 / 9994
testing image 8426 / 9994
testing image 8427 / 9994
testing image 8428 / 9994
testing image 8429 / 9994
testing image 8430 / 9994
testing image 8431 / 9994
testing image 8432 / 9994
testing image 8433 / 9994
testing image 8434 / 9994
testing image 8435 / 9994
testing image 8436 / 9994
testing image 8437 / 9994
testing image 8438 / 9994
testing image 8439 / 9994
testing image 8440 / 9994
testing image 8441 / 9994
testing image 8442 / 9994
testing image 8443 / 9994
testing image 8444 / 9994
testing image 8445 / 9994
testing image 8446 / 9994
testing image 8447 / 9994
testing image 8448 / 9994
testing image 8449 / 9994
testing image 8450 / 9994
testing image 8451 / 9994
testing image 8452 / 9994
testing image 8453 / 9994
testing image 8454 / 9994
testing image 8455 / 9994
testing image 8456 / 9994
testing image 8457 / 9994
testing image 8458 / 9994
testing image 8459 / 9994
testing image 8460 / 9994
testing image 8461 / 9994
testing image 8462 / 9994
testing image 8463 / 9994
testing image 8464 / 9994
testing image 8465 / 9994
testing image 8466 / 9994
testing image 8467 / 9994
testing image 8468 / 9994
testing image 8469 / 9994
testing image 8470 / 9994
testing image 8471 / 9994
testing image 8472 / 9994
testing image 8473 / 9994
testing image 8474 / 9994
testing image 8475 / 9994
testing image 8476 / 9994
testing image 8477 / 9994
testing image 8478 / 9994
testing image 8479 / 9994
testing image 8480 / 9994
testing image 8481 / 9994
testing image 8482 / 9994
testing image 8483 / 9994
testing image 8484 / 9994
testing image 8485 / 9994
testing image 8486 / 9994
testing image 8487 / 9994
testing image 8488 / 9994
testing image 8489 / 9994
testing image 8490 / 9994
testing image 8491 / 9994
testing image 8492 / 9994
testing image 8493 / 9994
testing image 8494 / 9994
testing image 8495 / 9994
testing image 8496 / 9994
testing image 8497 / 9994
testing image 8498 / 9994
testing image 8499 / 9994
testing image 8500 / 9994
testing image 8501 / 9994
testing image 8502 / 9994
testing image 8503 / 9994
testing image 8504 / 9994
testing image 8505 / 9994
testing image 8506 / 9994
testing image 8507 / 9994
testing image 8508 / 9994
testing image 8509 / 9994
testing image 8510 / 9994
testing image 8511 / 9994
testing image 8512 / 9994
testing image 8513 / 9994
testing image 8514 / 9994
testing image 8515 / 9994
testing image 8516 / 9994
testing image 8517 / 9994
testing image 8518 / 9994
testing image 8519 / 9994
testing image 8520 / 9994
testing image 8521 / 9994
testing image 8522 / 9994
testing image 8523 / 9994
testing image 8524 / 9994
testing image 8525 / 9994
testing image 8526 / 9994
testing image 8527 / 9994
testing image 8528 / 9994
testing image 8529 / 9994
testing image 8530 / 9994
testing image 8531 / 9994
testing image 8532 / 9994
testing image 8533 / 9994
testing image 8534 / 9994
testing image 8535 / 9994
testing image 8536 / 9994
testing image 8537 / 9994
testing image 8538 / 9994
testing image 8539 / 9994
testing image 8540 / 9994
testing image 8541 / 9994
testing image 8542 / 9994
testing image 8543 / 9994
testing image 8544 / 9994
testing image 8545 / 9994
testing image 8546 / 9994
testing image 8547 / 9994
testing image 8548 / 9994
testing image 8549 / 9994
testing image 8550 / 9994
testing image 8551 / 9994
testing image 8552 / 9994
testing image 8553 / 9994
testing image 8554 / 9994
testing image 8555 / 9994
testing image 8556 / 9994
testing image 8557 / 9994
testing image 8558 / 9994
testing image 8559 / 9994
testing image 8560 / 9994
testing image 8561 / 9994
testing image 8562 / 9994
testing image 8563 / 9994
testing image 8564 / 9994
testing image 8565 / 9994
testing image 8566 / 9994
testing image 8567 / 9994
testing image 8568 / 9994
testing image 8569 / 9994
testing image 8570 / 9994
testing image 8571 / 9994
testing image 8572 / 9994
testing image 8573 / 9994
testing image 8574 / 9994
testing image 8575 / 9994
testing image 8576 / 9994
testing image 8577 / 9994
testing image 8578 / 9994
testing image 8579 / 9994
testing image 8580 / 9994
testing image 8581 / 9994
testing image 8582 / 9994
testing image 8583 / 9994
testing image 8584 / 9994
testing image 8585 / 9994
testing image 8586 / 9994
testing image 8587 / 9994
testing image 8588 / 9994
testing image 8589 / 9994
testing image 8590 / 9994
testing image 8591 / 9994
testing image 8592 / 9994
testing image 8593 / 9994
testing image 8594 / 9994
testing image 8595 / 9994
testing image 8596 / 9994
testing image 8597 / 9994
testing image 8598 / 9994
testing image 8599 / 9994
testing image 8600 / 9994
testing image 8601 / 9994
testing image 8602 / 9994
testing image 8603 / 9994
testing image 8604 / 9994
testing image 8605 / 9994
testing image 8606 / 9994
testing image 8607 / 9994
testing image 8608 / 9994
testing image 8609 / 9994
testing image 8610 / 9994
testing image 8611 / 9994
testing image 8612 / 9994
testing image 8613 / 9994
testing image 8614 / 9994
testing image 8615 / 9994
testing image 8616 / 9994
testing image 8617 / 9994
testing image 8618 / 9994
testing image 8619 / 9994
testing image 8620 / 9994
testing image 8621 / 9994
testing image 8622 / 9994
testing image 8623 / 9994
testing image 8624 / 9994
testing image 8625 / 9994
testing image 8626 / 9994
testing image 8627 / 9994
testing image 8628 / 9994
testing image 8629 / 9994
testing image 8630 / 9994
testing image 8631 / 9994
testing image 8632 / 9994
testing image 8633 / 9994
testing image 8634 / 9994
testing image 8635 / 9994
testing image 8636 / 9994
testing image 8637 / 9994
testing image 8638 / 9994
testing image 8639 / 9994
testing image 8640 / 9994
testing image 8641 / 9994
testing image 8642 / 9994
testing image 8643 / 9994
testing image 8644 / 9994
testing image 8645 / 9994
testing image 8646 / 9994
testing image 8647 / 9994
testing image 8648 / 9994
testing image 8649 / 9994
testing image 8650 / 9994
testing image 8651 / 9994
testing image 8652 / 9994
testing image 8653 / 9994
testing image 8654 / 9994
testing image 8655 / 9994
testing image 8656 / 9994
testing image 8657 / 9994
testing image 8658 / 9994
testing image 8659 / 9994
testing image 8660 / 9994
testing image 8661 / 9994
testing image 8662 / 9994
testing image 8663 / 9994
testing image 8664 / 9994
testing image 8665 / 9994
testing image 8666 / 9994
testing image 8667 / 9994
testing image 8668 / 9994
testing image 8669 / 9994
testing image 8670 / 9994
testing image 8671 / 9994
testing image 8672 / 9994
testing image 8673 / 9994
testing image 8674 / 9994
testing image 8675 / 9994
testing image 8676 / 9994
testing image 8677 / 9994
testing image 8678 / 9994
testing image 8679 / 9994
testing image 8680 / 9994
testing image 8681 / 9994
testing image 8682 / 9994
testing image 8683 / 9994
testing image 8684 / 9994
testing image 8685 / 9994
testing image 8686 / 9994
testing image 8687 / 9994
testing image 8688 / 9994
testing image 8689 / 9994
testing image 8690 / 9994
testing image 8691 / 9994
testing image 8692 / 9994
testing image 8693 / 9994
testing image 8694 / 9994
testing image 8695 / 9994
testing image 8696 / 9994
testing image 8697 / 9994
testing image 8698 / 9994
testing image 8699 / 9994
testing image 8700 / 9994
testing image 8701 / 9994
testing image 8702 / 9994
testing image 8703 / 9994
testing image 8704 / 9994
testing image 8705 / 9994
testing image 8706 / 9994
testing image 8707 / 9994
testing image 8708 / 9994
testing image 8709 / 9994
testing image 8710 / 9994
testing image 8711 / 9994
testing image 8712 / 9994
testing image 8713 / 9994
testing image 8714 / 9994
testing image 8715 / 9994
testing image 8716 / 9994
testing image 8717 / 9994
testing image 8718 / 9994
testing image 8719 / 9994
testing image 8720 / 9994
testing image 8721 / 9994
testing image 8722 / 9994
testing image 8723 / 9994
testing image 8724 / 9994
testing image 8725 / 9994
testing image 8726 / 9994
testing image 8727 / 9994
testing image 8728 / 9994
testing image 8729 / 9994
testing image 8730 / 9994
testing image 8731 / 9994
testing image 8732 / 9994
testing image 8733 / 9994
testing image 8734 / 9994
testing image 8735 / 9994
testing image 8736 / 9994
testing image 8737 / 9994
testing image 8738 / 9994
testing image 8739 / 9994
testing image 8740 / 9994
testing image 8741 / 9994
testing image 8742 / 9994
testing image 8743 / 9994
testing image 8744 / 9994
testing image 8745 / 9994
testing image 8746 / 9994
testing image 8747 / 9994
testing image 8748 / 9994
testing image 8749 / 9994
testing image 8750 / 9994
testing image 8751 / 9994
testing image 8752 / 9994
testing image 8753 / 9994
testing image 8754 / 9994
testing image 8755 / 9994
testing image 8756 / 9994
testing image 8757 / 9994
testing image 8758 / 9994
testing image 8759 / 9994
testing image 8760 / 9994
testing image 8761 / 9994
testing image 8762 / 9994
testing image 8763 / 9994
testing image 8764 / 9994
testing image 8765 / 9994
testing image 8766 / 9994
testing image 8767 / 9994
testing image 8768 / 9994
testing image 8769 / 9994
testing image 8770 / 9994
testing image 8771 / 9994
testing image 8772 / 9994
testing image 8773 / 9994
testing image 8774 / 9994
testing image 8775 / 9994
testing image 8776 / 9994
testing image 8777 / 9994
testing image 8778 / 9994
testing image 8779 / 9994
testing image 8780 / 9994
testing image 8781 / 9994
testing image 8782 / 9994
testing image 8783 / 9994
testing image 8784 / 9994
testing image 8785 / 9994
testing image 8786 / 9994
testing image 8787 / 9994
testing image 8788 / 9994
testing image 8789 / 9994
testing image 8790 / 9994
testing image 8791 / 9994
testing image 8792 / 9994
testing image 8793 / 9994
testing image 8794 / 9994
testing image 8795 / 9994
testing image 8796 / 9994
testing image 8797 / 9994
testing image 8798 / 9994
testing image 8799 / 9994
testing image 8800 / 9994
testing image 8801 / 9994
testing image 8802 / 9994
testing image 8803 / 9994
testing image 8804 / 9994
testing image 8805 / 9994
testing image 8806 / 9994
testing image 8807 / 9994
testing image 8808 / 9994
testing image 8809 / 9994
testing image 8810 / 9994
testing image 8811 / 9994
testing image 8812 / 9994
testing image 8813 / 9994
testing image 8814 / 9994
testing image 8815 / 9994
testing image 8816 / 9994
testing image 8817 / 9994
testing image 8818 / 9994
testing image 8819 / 9994
testing image 8820 / 9994
testing image 8821 / 9994
testing image 8822 / 9994
testing image 8823 / 9994
testing image 8824 / 9994
testing image 8825 / 9994
testing image 8826 / 9994
testing image 8827 / 9994
testing image 8828 / 9994
testing image 8829 / 9994
testing image 8830 / 9994
testing image 8831 / 9994
testing image 8832 / 9994
testing image 8833 / 9994
testing image 8834 / 9994
testing image 8835 / 9994
testing image 8836 / 9994
testing image 8837 / 9994
testing image 8838 / 9994
testing image 8839 / 9994
testing image 8840 / 9994
testing image 8841 / 9994
testing image 8842 / 9994
testing image 8843 / 9994
testing image 8844 / 9994
testing image 8845 / 9994
testing image 8846 / 9994
testing image 8847 / 9994
testing image 8848 / 9994
testing image 8849 / 9994
testing image 8850 / 9994
testing image 8851 / 9994
testing image 8852 / 9994
testing image 8853 / 9994
testing image 8854 / 9994
testing image 8855 / 9994
testing image 8856 / 9994
testing image 8857 / 9994
testing image 8858 / 9994
testing image 8859 / 9994
testing image 8860 / 9994
testing image 8861 / 9994
testing image 8862 / 9994
testing image 8863 / 9994
testing image 8864 / 9994
testing image 8865 / 9994
testing image 8866 / 9994
testing image 8867 / 9994
testing image 8868 / 9994
testing image 8869 / 9994
testing image 8870 / 9994
testing image 8871 / 9994
testing image 8872 / 9994
testing image 8873 / 9994
testing image 8874 / 9994
testing image 8875 / 9994
testing image 8876 / 9994
testing image 8877 / 9994
testing image 8878 / 9994
testing image 8879 / 9994
testing image 8880 / 9994
testing image 8881 / 9994
testing image 8882 / 9994
testing image 8883 / 9994
testing image 8884 / 9994
testing image 8885 / 9994
testing image 8886 / 9994
testing image 8887 / 9994
testing image 8888 / 9994
testing image 8889 / 9994
testing image 8890 / 9994
testing image 8891 / 9994
testing image 8892 / 9994
testing image 8893 / 9994
testing image 8894 / 9994
testing image 8895 / 9994
testing image 8896 / 9994
testing image 8897 / 9994
testing image 8898 / 9994
testing image 8899 / 9994
testing image 8900 / 9994
testing image 8901 / 9994
testing image 8902 / 9994
testing image 8903 / 9994
testing image 8904 / 9994
testing image 8905 / 9994
testing image 8906 / 9994
testing image 8907 / 9994
testing image 8908 / 9994
testing image 8909 / 9994
testing image 8910 / 9994
testing image 8911 / 9994
testing image 8912 / 9994
testing image 8913 / 9994
testing image 8914 / 9994
testing image 8915 / 9994
testing image 8916 / 9994
testing image 8917 / 9994
testing image 8918 / 9994
testing image 8919 / 9994
testing image 8920 / 9994
testing image 8921 / 9994
testing image 8922 / 9994
testing image 8923 / 9994
testing image 8924 / 9994
testing image 8925 / 9994
testing image 8926 / 9994
testing image 8927 / 9994
testing image 8928 / 9994
testing image 8929 / 9994
testing image 8930 / 9994
testing image 8931 / 9994
testing image 8932 / 9994
testing image 8933 / 9994
testing image 8934 / 9994
testing image 8935 / 9994
testing image 8936 / 9994
testing image 8937 / 9994
testing image 8938 / 9994
testing image 8939 / 9994
testing image 8940 / 9994
testing image 8941 / 9994
testing image 8942 / 9994
testing image 8943 / 9994
testing image 8944 / 9994
testing image 8945 / 9994
testing image 8946 / 9994
testing image 8947 / 9994
testing image 8948 / 9994
testing image 8949 / 9994
testing image 8950 / 9994
testing image 8951 / 9994
testing image 8952 / 9994
testing image 8953 / 9994
testing image 8954 / 9994
testing image 8955 / 9994
testing image 8956 / 9994
testing image 8957 / 9994
testing image 8958 / 9994
testing image 8959 / 9994
testing image 8960 / 9994
testing image 8961 / 9994
testing image 8962 / 9994
testing image 8963 / 9994
testing image 8964 / 9994
testing image 8965 / 9994
testing image 8966 / 9994
testing image 8967 / 9994
testing image 8968 / 9994
testing image 8969 / 9994
testing image 8970 / 9994
testing image 8971 / 9994
testing image 8972 / 9994
testing image 8973 / 9994
testing image 8974 / 9994
testing image 8975 / 9994
testing image 8976 / 9994
testing image 8977 / 9994
testing image 8978 / 9994
testing image 8979 / 9994
testing image 8980 / 9994
testing image 8981 / 9994
testing image 8982 / 9994
testing image 8983 / 9994
testing image 8984 / 9994
testing image 8985 / 9994
testing image 8986 / 9994
testing image 8987 / 9994
testing image 8988 / 9994
testing image 8989 / 9994
testing image 8990 / 9994
testing image 8991 / 9994
testing image 8992 / 9994
testing image 8993 / 9994
testing image 8994 / 9994
testing image 8995 / 9994
testing image 8996 / 9994
testing image 8997 / 9994
testing image 8998 / 9994
testing image 8999 / 9994
testing image 9000 / 9994
testing image 9001 / 9994
testing image 9002 / 9994
testing image 9003 / 9994
testing image 9004 / 9994
testing image 9005 / 9994
testing image 9006 / 9994
testing image 9007 / 9994
testing image 9008 / 9994
testing image 9009 / 9994
testing image 9010 / 9994
testing image 9011 / 9994
testing image 9012 / 9994
testing image 9013 / 9994
testing image 9014 / 9994
testing image 9015 / 9994
testing image 9016 / 9994
testing image 9017 / 9994
testing image 9018 / 9994
testing image 9019 / 9994
testing image 9020 / 9994
testing image 9021 / 9994
testing image 9022 / 9994
testing image 9023 / 9994
testing image 9024 / 9994
testing image 9025 / 9994
testing image 9026 / 9994
testing image 9027 / 9994
testing image 9028 / 9994
testing image 9029 / 9994
testing image 9030 / 9994
testing image 9031 / 9994
testing image 9032 / 9994
testing image 9033 / 9994
testing image 9034 / 9994
testing image 9035 / 9994
testing image 9036 / 9994
testing image 9037 / 9994
testing image 9038 / 9994
testing image 9039 / 9994
testing image 9040 / 9994
testing image 9041 / 9994
testing image 9042 / 9994
testing image 9043 / 9994
testing image 9044 / 9994
testing image 9045 / 9994
testing image 9046 / 9994
testing image 9047 / 9994
testing image 9048 / 9994
testing image 9049 / 9994
testing image 9050 / 9994
testing image 9051 / 9994
testing image 9052 / 9994
testing image 9053 / 9994
testing image 9054 / 9994
testing image 9055 / 9994
testing image 9056 / 9994
testing image 9057 / 9994
testing image 9058 / 9994
testing image 9059 / 9994
testing image 9060 / 9994
testing image 9061 / 9994
testing image 9062 / 9994
testing image 9063 / 9994
testing image 9064 / 9994
testing image 9065 / 9994
testing image 9066 / 9994
testing image 9067 / 9994
testing image 9068 / 9994
testing image 9069 / 9994
testing image 9070 / 9994
testing image 9071 / 9994
testing image 9072 / 9994
testing image 9073 / 9994
testing image 9074 / 9994
testing image 9075 / 9994
testing image 9076 / 9994
testing image 9077 / 9994
testing image 9078 / 9994
testing image 9079 / 9994
testing image 9080 / 9994
testing image 9081 / 9994
testing image 9082 / 9994
testing image 9083 / 9994
testing image 9084 / 9994
testing image 9085 / 9994
testing image 9086 / 9994
testing image 9087 / 9994
testing image 9088 / 9994
testing image 9089 / 9994
testing image 9090 / 9994
testing image 9091 / 9994
testing image 9092 / 9994
testing image 9093 / 9994
testing image 9094 / 9994
testing image 9095 / 9994
testing image 9096 / 9994
testing image 9097 / 9994
testing image 9098 / 9994
testing image 9099 / 9994
testing image 9100 / 9994
testing image 9101 / 9994
testing image 9102 / 9994
testing image 9103 / 9994
testing image 9104 / 9994
testing image 9105 / 9994
testing image 9106 / 9994
testing image 9107 / 9994
testing image 9108 / 9994
testing image 9109 / 9994
testing image 9110 / 9994
testing image 9111 / 9994
testing image 9112 / 9994
testing image 9113 / 9994
testing image 9114 / 9994
testing image 9115 / 9994
testing image 9116 / 9994
testing image 9117 / 9994
testing image 9118 / 9994
testing image 9119 / 9994
testing image 9120 / 9994
testing image 9121 / 9994
testing image 9122 / 9994
testing image 9123 / 9994
testing image 9124 / 9994
testing image 9125 / 9994
testing image 9126 / 9994
testing image 9127 / 9994
testing image 9128 / 9994
testing image 9129 / 9994
testing image 9130 / 9994
testing image 9131 / 9994
testing image 9132 / 9994
testing image 9133 / 9994
testing image 9134 / 9994
testing image 9135 / 9994
testing image 9136 / 9994
testing image 9137 / 9994
testing image 9138 / 9994
testing image 9139 / 9994
testing image 9140 / 9994
testing image 9141 / 9994
testing image 9142 / 9994
testing image 9143 / 9994
testing image 9144 / 9994
testing image 9145 / 9994
testing image 9146 / 9994
testing image 9147 / 9994
testing image 9148 / 9994
testing image 9149 / 9994
testing image 9150 / 9994
testing image 9151 / 9994
testing image 9152 / 9994
testing image 9153 / 9994
testing image 9154 / 9994
testing image 9155 / 9994
testing image 9156 / 9994
testing image 9157 / 9994
testing image 9158 / 9994
testing image 9159 / 9994
testing image 9160 / 9994
testing image 9161 / 9994
testing image 9162 / 9994
testing image 9163 / 9994
testing image 9164 / 9994
testing image 9165 / 9994
testing image 9166 / 9994
testing image 9167 / 9994
testing image 9168 / 9994
testing image 9169 / 9994
testing image 9170 / 9994
testing image 9171 / 9994
testing image 9172 / 9994
testing image 9173 / 9994
testing image 9174 / 9994
testing image 9175 / 9994
testing image 9176 / 9994
testing image 9177 / 9994
testing image 9178 / 9994
testing image 9179 / 9994
testing image 9180 / 9994
testing image 9181 / 9994
testing image 9182 / 9994
testing image 9183 / 9994
testing image 9184 / 9994
testing image 9185 / 9994
testing image 9186 / 9994
testing image 9187 / 9994
testing image 9188 / 9994
testing image 9189 / 9994
testing image 9190 / 9994
testing image 9191 / 9994
testing image 9192 / 9994
testing image 9193 / 9994
testing image 9194 / 9994
testing image 9195 / 9994
testing image 9196 / 9994
testing image 9197 / 9994
testing image 9198 / 9994
testing image 9199 / 9994
testing image 9200 / 9994
testing image 9201 / 9994
testing image 9202 / 9994
testing image 9203 / 9994
testing image 9204 / 9994
testing image 9205 / 9994
testing image 9206 / 9994
testing image 9207 / 9994
testing image 9208 / 9994
testing image 9209 / 9994
testing image 9210 / 9994
testing image 9211 / 9994
testing image 9212 / 9994
testing image 9213 / 9994
testing image 9214 / 9994
testing image 9215 / 9994
testing image 9216 / 9994
testing image 9217 / 9994
testing image 9218 / 9994
testing image 9219 / 9994
testing image 9220 / 9994
testing image 9221 / 9994
testing image 9222 / 9994
testing image 9223 / 9994
testing image 9224 / 9994
testing image 9225 / 9994
testing image 9226 / 9994
testing image 9227 / 9994
testing image 9228 / 9994
testing image 9229 / 9994
testing image 9230 / 9994
testing image 9231 / 9994
testing image 9232 / 9994
testing image 9233 / 9994
testing image 9234 / 9994
testing image 9235 / 9994
testing image 9236 / 9994
testing image 9237 / 9994
testing image 9238 / 9994
testing image 9239 / 9994
testing image 9240 / 9994
testing image 9241 / 9994
testing image 9242 / 9994
testing image 9243 / 9994
testing image 9244 / 9994
testing image 9245 / 9994
testing image 9246 / 9994
testing image 9247 / 9994
testing image 9248 / 9994
testing image 9249 / 9994
testing image 9250 / 9994
testing image 9251 / 9994
testing image 9252 / 9994
testing image 9253 / 9994
testing image 9254 / 9994
testing image 9255 / 9994
testing image 9256 / 9994
testing image 9257 / 9994
testing image 9258 / 9994
testing image 9259 / 9994
testing image 9260 / 9994
testing image 9261 / 9994
testing image 9262 / 9994
testing image 9263 / 9994
testing image 9264 / 9994
testing image 9265 / 9994
testing image 9266 / 9994
testing image 9267 / 9994
testing image 9268 / 9994
testing image 9269 / 9994
testing image 9270 / 9994
testing image 9271 / 9994
testing image 9272 / 9994
testing image 9273 / 9994
testing image 9274 / 9994
testing image 9275 / 9994
testing image 9276 / 9994
testing image 9277 / 9994
testing image 9278 / 9994
testing image 9279 / 9994
testing image 9280 / 9994
testing image 9281 / 9994
testing image 9282 / 9994
testing image 9283 / 9994
testing image 9284 / 9994
testing image 9285 / 9994
testing image 9286 / 9994
testing image 9287 / 9994
testing image 9288 / 9994
testing image 9289 / 9994
testing image 9290 / 9994
testing image 9291 / 9994
testing image 9292 / 9994
testing image 9293 / 9994
testing image 9294 / 9994
testing image 9295 / 9994
testing image 9296 / 9994
testing image 9297 / 9994
testing image 9298 / 9994
testing image 9299 / 9994
testing image 9300 / 9994
testing image 9301 / 9994
testing image 9302 / 9994
testing image 9303 / 9994
testing image 9304 / 9994
testing image 9305 / 9994
testing image 9306 / 9994
testing image 9307 / 9994
testing image 9308 / 9994
testing image 9309 / 9994
testing image 9310 / 9994
testing image 9311 / 9994
testing image 9312 / 9994
testing image 9313 / 9994
testing image 9314 / 9994
testing image 9315 / 9994
testing image 9316 / 9994
testing image 9317 / 9994
testing image 9318 / 9994
testing image 9319 / 9994
testing image 9320 / 9994
testing image 9321 / 9994
testing image 9322 / 9994
testing image 9323 / 9994
testing image 9324 / 9994
testing image 9325 / 9994
testing image 9326 / 9994
testing image 9327 / 9994
testing image 9328 / 9994
testing image 9329 / 9994
testing image 9330 / 9994
testing image 9331 / 9994
testing image 9332 / 9994
testing image 9333 / 9994
testing image 9334 / 9994
testing image 9335 / 9994
testing image 9336 / 9994
testing image 9337 / 9994
testing image 9338 / 9994
testing image 9339 / 9994
testing image 9340 / 9994
testing image 9341 / 9994
testing image 9342 / 9994
testing image 9343 / 9994
testing image 9344 / 9994
testing image 9345 / 9994
testing image 9346 / 9994
testing image 9347 / 9994
testing image 9348 / 9994
testing image 9349 / 9994
testing image 9350 / 9994
testing image 9351 / 9994
testing image 9352 / 9994
testing image 9353 / 9994
testing image 9354 / 9994
testing image 9355 / 9994
testing image 9356 / 9994
testing image 9357 / 9994
testing image 9358 / 9994
testing image 9359 / 9994
testing image 9360 / 9994
testing image 9361 / 9994
testing image 9362 / 9994
testing image 9363 / 9994
testing image 9364 / 9994
testing image 9365 / 9994
testing image 9366 / 9994
testing image 9367 / 9994
testing image 9368 / 9994
testing image 9369 / 9994
testing image 9370 / 9994
testing image 9371 / 9994
testing image 9372 / 9994
testing image 9373 / 9994
testing image 9374 / 9994
testing image 9375 / 9994
testing image 9376 / 9994
testing image 9377 / 9994
testing image 9378 / 9994
testing image 9379 / 9994
testing image 9380 / 9994
testing image 9381 / 9994
testing image 9382 / 9994
testing image 9383 / 9994
testing image 9384 / 9994
testing image 9385 / 9994
testing image 9386 / 9994
testing image 9387 / 9994
testing image 9388 / 9994
testing image 9389 / 9994
testing image 9390 / 9994
testing image 9391 / 9994
testing image 9392 / 9994
testing image 9393 / 9994
testing image 9394 / 9994
testing image 9395 / 9994
testing image 9396 / 9994
testing image 9397 / 9994
testing image 9398 / 9994
testing image 9399 / 9994
testing image 9400 / 9994
testing image 9401 / 9994
testing image 9402 / 9994
testing image 9403 / 9994
testing image 9404 / 9994
testing image 9405 / 9994
testing image 9406 / 9994
testing image 9407 / 9994
testing image 9408 / 9994
testing image 9409 / 9994
testing image 9410 / 9994
testing image 9411 / 9994
testing image 9412 / 9994
testing image 9413 / 9994
testing image 9414 / 9994
testing image 9415 / 9994
testing image 9416 / 9994
testing image 9417 / 9994
testing image 9418 / 9994
testing image 9419 / 9994
testing image 9420 / 9994
testing image 9421 / 9994
testing image 9422 / 9994
testing image 9423 / 9994
testing image 9424 / 9994
testing image 9425 / 9994
testing image 9426 / 9994
testing image 9427 / 9994
testing image 9428 / 9994
testing image 9429 / 9994
testing image 9430 / 9994
testing image 9431 / 9994
testing image 9432 / 9994
testing image 9433 / 9994
testing image 9434 / 9994
testing image 9435 / 9994
testing image 9436 / 9994
testing image 9437 / 9994
testing image 9438 / 9994
testing image 9439 / 9994
testing image 9440 / 9994
testing image 9441 / 9994
testing image 9442 / 9994
testing image 9443 / 9994
testing image 9444 / 9994
testing image 9445 / 9994
testing image 9446 / 9994
testing image 9447 / 9994
testing image 9448 / 9994
testing image 9449 / 9994
testing image 9450 / 9994
testing image 9451 / 9994
testing image 9452 / 9994
testing image 9453 / 9994
testing image 9454 / 9994
testing image 9455 / 9994
testing image 9456 / 9994
testing image 9457 / 9994
testing image 9458 / 9994
testing image 9459 / 9994
testing image 9460 / 9994
testing image 9461 / 9994
testing image 9462 / 9994
testing image 9463 / 9994
testing image 9464 / 9994
testing image 9465 / 9994
testing image 9466 / 9994
testing image 9467 / 9994
testing image 9468 / 9994
testing image 9469 / 9994
testing image 9470 / 9994
testing image 9471 / 9994
testing image 9472 / 9994
testing image 9473 / 9994
testing image 9474 / 9994
testing image 9475 / 9994
testing image 9476 / 9994
testing image 9477 / 9994
testing image 9478 / 9994
testing image 9479 / 9994
testing image 9480 / 9994
testing image 9481 / 9994
testing image 9482 / 9994
testing image 9483 / 9994
testing image 9484 / 9994
testing image 9485 / 9994
testing image 9486 / 9994
testing image 9487 / 9994
testing image 9488 / 9994
testing image 9489 / 9994
testing image 9490 / 9994
testing image 9491 / 9994
testing image 9492 / 9994
testing image 9493 / 9994
testing image 9494 / 9994
testing image 9495 / 9994
testing image 9496 / 9994
testing image 9497 / 9994
testing image 9498 / 9994
testing image 9499 / 9994
testing image 9500 / 9994
testing image 9501 / 9994
testing image 9502 / 9994
testing image 9503 / 9994
testing image 9504 / 9994
testing image 9505 / 9994
testing image 9506 / 9994
testing image 9507 / 9994
testing image 9508 / 9994
testing image 9509 / 9994
testing image 9510 / 9994
testing image 9511 / 9994
testing image 9512 / 9994
testing image 9513 / 9994
testing image 9514 / 9994
testing image 9515 / 9994
testing image 9516 / 9994
testing image 9517 / 9994
testing image 9518 / 9994
testing image 9519 / 9994
testing image 9520 / 9994
testing image 9521 / 9994
testing image 9522 / 9994
testing image 9523 / 9994
testing image 9524 / 9994
testing image 9525 / 9994
testing image 9526 / 9994
testing image 9527 / 9994
testing image 9528 / 9994
testing image 9529 / 9994
testing image 9530 / 9994
testing image 9531 / 9994
testing image 9532 / 9994
testing image 9533 / 9994
testing image 9534 / 9994
testing image 9535 / 9994
testing image 9536 / 9994
testing image 9537 / 9994
testing image 9538 / 9994
testing image 9539 / 9994
testing image 9540 / 9994
testing image 9541 / 9994
testing image 9542 / 9994
testing image 9543 / 9994
testing image 9544 / 9994
testing image 9545 / 9994
testing image 9546 / 9994
testing image 9547 / 9994
testing image 9548 / 9994
testing image 9549 / 9994
testing image 9550 / 9994
testing image 9551 / 9994
testing image 9552 / 9994
testing image 9553 / 9994
testing image 9554 / 9994
testing image 9555 / 9994
testing image 9556 / 9994
testing image 9557 / 9994
testing image 9558 / 9994
testing image 9559 / 9994
testing image 9560 / 9994
testing image 9561 / 9994
testing image 9562 / 9994
testing image 9563 / 9994
testing image 9564 / 9994
testing image 9565 / 9994
testing image 9566 / 9994
testing image 9567 / 9994
testing image 9568 / 9994
testing image 9569 / 9994
testing image 9570 / 9994
testing image 9571 / 9994
testing image 9572 / 9994
testing image 9573 / 9994
testing image 9574 / 9994
testing image 9575 / 9994
testing image 9576 / 9994
testing image 9577 / 9994
testing image 9578 / 9994
testing image 9579 / 9994
testing image 9580 / 9994
testing image 9581 / 9994
testing image 9582 / 9994
testing image 9583 / 9994
testing image 9584 / 9994
testing image 9585 / 9994
testing image 9586 / 9994
testing image 9587 / 9994
testing image 9588 / 9994
testing image 9589 / 9994
testing image 9590 / 9994
testing image 9591 / 9994
testing image 9592 / 9994
testing image 9593 / 9994
testing image 9594 / 9994
testing image 9595 / 9994
testing image 9596 / 9994
testing image 9597 / 9994
testing image 9598 / 9994
testing image 9599 / 9994
testing image 9600 / 9994
testing image 9601 / 9994
testing image 9602 / 9994
testing image 9603 / 9994
testing image 9604 / 9994
testing image 9605 / 9994
testing image 9606 / 9994
testing image 9607 / 9994
testing image 9608 / 9994
testing image 9609 / 9994
testing image 9610 / 9994
testing image 9611 / 9994
testing image 9612 / 9994
testing image 9613 / 9994
testing image 9614 / 9994
testing image 9615 / 9994
testing image 9616 / 9994
testing image 9617 / 9994
testing image 9618 / 9994
testing image 9619 / 9994
testing image 9620 / 9994
testing image 9621 / 9994
testing image 9622 / 9994
testing image 9623 / 9994
testing image 9624 / 9994
testing image 9625 / 9994
testing image 9626 / 9994
testing image 9627 / 9994
testing image 9628 / 9994
testing image 9629 / 9994
testing image 9630 / 9994
testing image 9631 / 9994
testing image 9632 / 9994
testing image 9633 / 9994
testing image 9634 / 9994
testing image 9635 / 9994
testing image 9636 / 9994
testing image 9637 / 9994
testing image 9638 / 9994
testing image 9639 / 9994
testing image 9640 / 9994
testing image 9641 / 9994
testing image 9642 / 9994
testing image 9643 / 9994
testing image 9644 / 9994
testing image 9645 / 9994
testing image 9646 / 9994
testing image 9647 / 9994
testing image 9648 / 9994
testing image 9649 / 9994
testing image 9650 / 9994
testing image 9651 / 9994
testing image 9652 / 9994
testing image 9653 / 9994
testing image 9654 / 9994
testing image 9655 / 9994
testing image 9656 / 9994
testing image 9657 / 9994
testing image 9658 / 9994
testing image 9659 / 9994
testing image 9660 / 9994
testing image 9661 / 9994
testing image 9662 / 9994
testing image 9663 / 9994
testing image 9664 / 9994
testing image 9665 / 9994
testing image 9666 / 9994
testing image 9667 / 9994
testing image 9668 / 9994
testing image 9669 / 9994
testing image 9670 / 9994
testing image 9671 / 9994
testing image 9672 / 9994
testing image 9673 / 9994
testing image 9674 / 9994
testing image 9675 / 9994
testing image 9676 / 9994
testing image 9677 / 9994
testing image 9678 / 9994
testing image 9679 / 9994
testing image 9680 / 9994
testing image 9681 / 9994
testing image 9682 / 9994
testing image 9683 / 9994
testing image 9684 / 9994
testing image 9685 / 9994
testing image 9686 / 9994
testing image 9687 / 9994
testing image 9688 / 9994
testing image 9689 / 9994
testing image 9690 / 9994
testing image 9691 / 9994
testing image 9692 / 9994
testing image 9693 / 9994
testing image 9694 / 9994
testing image 9695 / 9994
testing image 9696 / 9994
testing image 9697 / 9994
testing image 9698 / 9994
testing image 9699 / 9994
testing image 9700 / 9994
testing image 9701 / 9994
testing image 9702 / 9994
testing image 9703 / 9994
testing image 9704 / 9994
testing image 9705 / 9994
testing image 9706 / 9994
testing image 9707 / 9994
testing image 9708 / 9994
testing image 9709 / 9994
testing image 9710 / 9994
testing image 9711 / 9994
testing image 9712 / 9994
testing image 9713 / 9994
testing image 9714 / 9994
testing image 9715 / 9994
testing image 9716 / 9994
testing image 9717 / 9994
testing image 9718 / 9994
testing image 9719 / 9994
testing image 9720 / 9994
testing image 9721 / 9994
testing image 9722 / 9994
testing image 9723 / 9994
testing image 9724 / 9994
testing image 9725 / 9994
testing image 9726 / 9994
testing image 9727 / 9994
testing image 9728 / 9994
testing image 9729 / 9994
testing image 9730 / 9994
testing image 9731 / 9994
testing image 9732 / 9994
testing image 9733 / 9994
testing image 9734 / 9994
testing image 9735 / 9994
testing image 9736 / 9994
testing image 9737 / 9994
testing image 9738 / 9994
testing image 9739 / 9994
testing image 9740 / 9994
testing image 9741 / 9994
testing image 9742 / 9994
testing image 9743 / 9994
testing image 9744 / 9994
testing image 9745 / 9994
testing image 9746 / 9994
testing image 9747 / 9994
testing image 9748 / 9994
testing image 9749 / 9994
testing image 9750 / 9994
testing image 9751 / 9994
testing image 9752 / 9994
testing image 9753 / 9994
testing image 9754 / 9994
testing image 9755 / 9994
testing image 9756 / 9994
testing image 9757 / 9994
testing image 9758 / 9994
testing image 9759 / 9994
testing image 9760 / 9994
testing image 9761 / 9994
testing image 9762 / 9994
testing image 9763 / 9994
testing image 9764 / 9994
testing image 9765 / 9994
testing image 9766 / 9994
testing image 9767 / 9994
testing image 9768 / 9994
testing image 9769 / 9994
testing image 9770 / 9994
testing image 9771 / 9994
testing image 9772 / 9994
testing image 9773 / 9994
testing image 9774 / 9994
testing image 9775 / 9994
testing image 9776 / 9994
testing image 9777 / 9994
testing image 9778 / 9994
testing image 9779 / 9994
testing image 9780 / 9994
testing image 9781 / 9994
testing image 9782 / 9994
testing image 9783 / 9994
testing image 9784 / 9994
testing image 9785 / 9994
testing image 9786 / 9994
testing image 9787 / 9994
testing image 9788 / 9994
testing image 9789 / 9994
testing image 9790 / 9994
testing image 9791 / 9994
testing image 9792 / 9994
testing image 9793 / 9994
testing image 9794 / 9994
testing image 9795 / 9994
testing image 9796 / 9994
testing image 9797 / 9994
testing image 9798 / 9994
testing image 9799 / 9994
testing image 9800 / 9994
testing image 9801 / 9994
testing image 9802 / 9994
testing image 9803 / 9994
testing image 9804 / 9994
testing image 9805 / 9994
testing image 9806 / 9994
testing image 9807 / 9994
testing image 9808 / 9994
testing image 9809 / 9994
testing image 9810 / 9994
testing image 9811 / 9994
testing image 9812 / 9994
testing image 9813 / 9994
testing image 9814 / 9994
testing image 9815 / 9994
testing image 9816 / 9994
testing image 9817 / 9994
testing image 9818 / 9994
testing image 9819 / 9994
testing image 9820 / 9994
testing image 9821 / 9994
testing image 9822 / 9994
testing image 9823 / 9994
testing image 9824 / 9994
testing image 9825 / 9994
testing image 9826 / 9994
testing image 9827 / 9994
testing image 9828 / 9994
testing image 9829 / 9994
testing image 9830 / 9994
testing image 9831 / 9994
testing image 9832 / 9994
testing image 9833 / 9994
testing image 9834 / 9994
testing image 9835 / 9994
testing image 9836 / 9994
testing image 9837 / 9994
testing image 9838 / 9994
testing image 9839 / 9994
testing image 9840 / 9994
testing image 9841 / 9994
testing image 9842 / 9994
testing image 9843 / 9994
testing image 9844 / 9994
testing image 9845 / 9994
testing image 9846 / 9994
testing image 9847 / 9994
testing image 9848 / 9994
testing image 9849 / 9994
testing image 9850 / 9994
testing image 9851 / 9994
testing image 9852 / 9994
testing image 9853 / 9994
testing image 9854 / 9994
testing image 9855 / 9994
testing image 9856 / 9994
testing image 9857 / 9994
testing image 9858 / 9994
testing image 9859 / 9994
testing image 9860 / 9994
testing image 9861 / 9994
testing image 9862 / 9994
testing image 9863 / 9994
testing image 9864 / 9994
testing image 9865 / 9994
testing image 9866 / 9994
testing image 9867 / 9994
testing image 9868 / 9994
testing image 9869 / 9994
testing image 9870 / 9994
testing image 9871 / 9994
testing image 9872 / 9994
testing image 9873 / 9994
testing image 9874 / 9994
testing image 9875 / 9994
testing image 9876 / 9994
testing image 9877 / 9994
testing image 9878 / 9994
testing image 9879 / 9994
testing image 9880 / 9994
testing image 9881 / 9994
testing image 9882 / 9994
testing image 9883 / 9994
testing image 9884 / 9994
testing image 9885 / 9994
testing image 9886 / 9994
testing image 9887 / 9994
testing image 9888 / 9994
testing image 9889 / 9994
testing image 9890 / 9994
testing image 9891 / 9994
testing image 9892 / 9994
testing image 9893 / 9994
testing image 9894 / 9994
testing image 9895 / 9994
testing image 9896 / 9994
testing image 9897 / 9994
testing image 9898 / 9994
testing image 9899 / 9994
testing image 9900 / 9994
testing image 9901 / 9994
testing image 9902 / 9994
testing image 9903 / 9994
testing image 9904 / 9994
testing image 9905 / 9994
testing image 9906 / 9994
testing image 9907 / 9994
testing image 9908 / 9994
testing image 9909 / 9994
testing image 9910 / 9994
testing image 9911 / 9994
testing image 9912 / 9994
testing image 9913 / 9994
testing image 9914 / 9994
testing image 9915 / 9994
testing image 9916 / 9994
testing image 9917 / 9994
testing image 9918 / 9994
testing image 9919 / 9994
testing image 9920 / 9994
testing image 9921 / 9994
testing image 9922 / 9994
testing image 9923 / 9994
testing image 9924 / 9994
testing image 9925 / 9994
testing image 9926 / 9994
testing image 9927 / 9994
testing image 9928 / 9994
testing image 9929 / 9994
testing image 9930 / 9994
testing image 9931 / 9994
testing image 9932 / 9994
testing image 9933 / 9994
testing image 9934 / 9994
testing image 9935 / 9994
testing image 9936 / 9994
testing image 9937 / 9994
testing image 9938 / 9994
testing image 9939 / 9994
testing image 9940 / 9994
testing image 9941 / 9994
testing image 9942 / 9994
testing image 9943 / 9994
testing image 9944 / 9994
testing image 9945 / 9994
testing image 9946 / 9994
testing image 9947 / 9994
testing image 9948 / 9994
testing image 9949 / 9994
testing image 9950 / 9994
testing image 9951 / 9994
testing image 9952 / 9994
testing image 9953 / 9994
testing image 9954 / 9994
testing image 9955 / 9994
testing image 9956 / 9994
testing image 9957 / 9994
testing image 9958 / 9994
testing image 9959 / 9994
testing image 9960 / 9994
testing image 9961 / 9994
testing image 9962 / 9994
testing image 9963 / 9994
testing image 9964 / 9994
testing image 9965 / 9994
testing image 9966 / 9994
testing image 9967 / 9994
testing image 9968 / 9994
testing image 9969 / 9994
testing image 9970 / 9994
testing image 9971 / 9994
testing image 9972 / 9994
testing image 9973 / 9994
testing image 9974 / 9994
testing image 9975 / 9994
testing image 9976 / 9994
testing image 9977 / 9994
testing image 9978 / 9994
testing image 9979 / 9994
testing image 9980 / 9994
testing image 9981 / 9994
testing image 9982 / 9994
testing image 9983 / 9994
testing image 9984 / 9994
testing image 9985 / 9994
testing image 9986 / 9994
testing image 9987 / 9994
testing image 9988 / 9994
testing image 9989 / 9994
testing image 9990 / 9994
testing image 9991 / 9994
testing image 9992 / 9994
testing image 9993 / 9994
Final results on the whole test set
[email protected] = 0.336128
[email protected] = 0.266534
[email protected] = 0.191731
[email protected] = 0.117461
[email protected] = 0.042309
overall IoU = 0.479988
This file has been truncated, but you can view the full file.
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcuda.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcurand.so locally
WARNING:tensorflow:<tensorflow.python.ops.rnn_cell.BasicLSTMCell object at 0x7fb34405be50>: Using a concatenated state is slower and will soon be deprecated. Use state_is_tuple=True.
Collecting variables to train:
word_embedding/embedding:0
lstm_lang/RNN/MultiRNNCell/Cell0/BasicLSTMCell/Linear/Matrix:0
lstm_lang/RNN/MultiRNNCell/Cell0/BasicLSTMCell/Linear/Bias:0
classifier/mlp_l1/weights:0
classifier/mlp_l1/biases:0
classifier/mlp_l2/weights:0
classifier/mlp_l2/biases:0
Done.
Collecting variables for regularization:
lstm_lang/RNN/MultiRNNCell/Cell0/BasicLSTMCell/Linear/Matrix:0
classifier/mlp_l1/weights:0
classifier/mlp_l2/weights:0
Done.
Variable learning rate multiplication:
word_embedding/embedding:0: 1.000000
lstm_lang/RNN/MultiRNNCell/Cell0/BasicLSTMCell/Linear/Matrix:0: 1.000000
lstm_lang/RNN/MultiRNNCell/Cell0/BasicLSTMCell/Linear/Bias:0: 1.000000
classifier/mlp_l1/weights:0: 1.000000
classifier/mlp_l1/biases:0: 1.000000
classifier/mlp_l2/weights:0: 1.000000
classifier/mlp_l2/biases:0: 1.000000
Done.
found 4040 batches under ./exp-referit/data/train_batch_det/ with prefix "referit_train_det"
I tensorflow/core/common_runtime/gpu/gpu_init.cc:102] Found device 0 with properties:
name: Tesla K40c
major: 3 minor: 5 memoryClockRate (GHz) 0.745
pciBusID 0000:88:00.0
Total memory: 12.00GiB
Free memory: 11.90GiB
I tensorflow/core/common_runtime/gpu/gpu_init.cc:126] DMA: 0
I tensorflow/core/common_runtime/gpu/gpu_init.cc:136] 0: Y
I tensorflow/core/common_runtime/gpu/gpu_device.cc:806] Creating TensorFlow device (/gpu:0) -> (device: 0, name: Tesla K40c, pci bus id: 0000:88:00.0)
data reader: epoch = 0, batch = 0 / 4040
iter = 0, cls_loss (cur) = 0.704010, cls_loss (avg) = 0.007040, lr = 0.010000
iter = 0, accuracy (cur) = 0.420000 (all), 1.000000 (pos), 0.000000 (neg)
iter = 0, accuracy (avg) = 0.004200 (all), 0.010000 (pos), 0.000000 (neg)
data reader: epoch = 0, batch = 1 / 4040
iter = 1, cls_loss (cur) = 0.708250, cls_loss (avg) = 0.014052, lr = 0.010000
iter = 1, accuracy (cur) = 0.420000 (all), 0.093750 (pos), 1.000000 (neg)
iter = 1, accuracy (avg) = 0.008358 (all), 0.010838 (pos), 0.010000 (neg)
data reader: epoch = 0, batch = 2 / 4040
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 1803 get requests, put_count=1696 evicted_count=1000 eviction_rate=0.589623 and unsatisfied allocation rate=0.66944
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:256] Raising pool_size_limit_ from 100 to 110
iter = 2, cls_loss (cur) = 0.682844, cls_loss (avg) = 0.020740, lr = 0.010000
iter = 2, accuracy (cur) = 0.540000 (all), 0.533333 (pos), 0.550000 (neg)
iter = 2, accuracy (avg) = 0.013674 (all), 0.016062 (pos), 0.015400 (neg)
data reader: epoch = 0, batch = 3 / 4040
iter = 3, cls_loss (cur) = 0.671874, cls_loss (avg) = 0.027251, lr = 0.010000
iter = 3, accuracy (cur) = 0.540000 (all), 0.807692 (pos), 0.250000 (neg)
iter = 3, accuracy (avg) = 0.018938 (all), 0.023979 (pos), 0.017746 (neg)
data reader: epoch = 0, batch = 4 / 4040
iter = 4, cls_loss (cur) = 0.664269, cls_loss (avg) = 0.033622, lr = 0.010000
iter = 4, accuracy (cur) = 0.580000 (all), 0.923077 (pos), 0.208333 (neg)
iter = 4, accuracy (avg) = 0.024548 (all), 0.032970 (pos), 0.019652 (neg)
data reader: epoch = 0, batch = 5 / 4040
iter = 5, cls_loss (cur) = 0.693595, cls_loss (avg) = 0.040221, lr = 0.010000
iter = 5, accuracy (cur) = 0.560000 (all), 0.947368 (pos), 0.322581 (neg)
iter = 5, accuracy (avg) = 0.029903 (all), 0.042114 (pos), 0.022681 (neg)
data reader: epoch = 0, batch = 6 / 4040
iter = 6, cls_loss (cur) = 0.626969, cls_loss (avg) = 0.046089, lr = 0.010000
iter = 6, accuracy (cur) = 0.720000 (all), 0.807692 (pos), 0.625000 (neg)
iter = 6, accuracy (avg) = 0.036804 (all), 0.049770 (pos), 0.028704 (neg)
data reader: epoch = 0, batch = 7 / 4040
iter = 7, cls_loss (cur) = 0.677577, cls_loss (avg) = 0.052404, lr = 0.010000
iter = 7, accuracy (cur) = 0.540000 (all), 0.695652 (pos), 0.407407 (neg)
iter = 7, accuracy (avg) = 0.041836 (all), 0.056228 (pos), 0.032491 (neg)
data reader: epoch = 0, batch = 8 / 4040
iter = 8, cls_loss (cur) = 0.655785, cls_loss (avg) = 0.058438, lr = 0.010000
iter = 8, accuracy (cur) = 0.720000 (all), 0.727273 (pos), 0.714286 (neg)
iter = 8, accuracy (avg) = 0.048617 (all), 0.062939 (pos), 0.039309 (neg)
data reader: epoch = 0, batch = 9 / 4040
iter = 9, cls_loss (cur) = 0.614681, cls_loss (avg) = 0.064000, lr = 0.010000
iter = 9, accuracy (cur) = 0.820000 (all), 0.703704 (pos), 0.956522 (neg)
iter = 9, accuracy (avg) = 0.056331 (all), 0.069346 (pos), 0.048481 (neg)
data reader: epoch = 0, batch = 10 / 4040
iter = 10, cls_loss (cur) = 0.679452, cls_loss (avg) = 0.070154, lr = 0.010000
iter = 10, accuracy (cur) = 0.580000 (all), 0.500000 (pos), 0.653846 (neg)
iter = 10, accuracy (avg) = 0.061568 (all), 0.073653 (pos), 0.054535 (neg)
data reader: epoch = 0, batch = 11 / 4040
iter = 11, cls_loss (cur) = 0.638077, cls_loss (avg) = 0.075834, lr = 0.010000
iter = 11, accuracy (cur) = 0.660000 (all), 0.666667 (pos), 0.653846 (neg)
iter = 11, accuracy (avg) = 0.067552 (all), 0.079583 (pos), 0.060528 (neg)
data reader: epoch = 0, batch = 12 / 4040
iter = 12, cls_loss (cur) = 0.633346, cls_loss (avg) = 0.081409, lr = 0.010000
iter = 12, accuracy (cur) = 0.720000 (all), 0.642857 (pos), 0.818182 (neg)
iter = 12, accuracy (avg) = 0.074077 (all), 0.085216 (pos), 0.068105 (neg)
data reader: epoch = 0, batch = 13 / 4040
iter = 13, cls_loss (cur) = 0.640836, cls_loss (avg) = 0.087003, lr = 0.010000
iter = 13, accuracy (cur) = 0.700000 (all), 0.620690 (pos), 0.809524 (neg)
iter = 13, accuracy (avg) = 0.080336 (all), 0.090571 (pos), 0.075519 (neg)
data reader: epoch = 0, batch = 14 / 4040
iter = 14, cls_loss (cur) = 0.652784, cls_loss (avg) = 0.092661, lr = 0.010000
iter = 14, accuracy (cur) = 0.660000 (all), 0.583333 (pos), 0.730769 (neg)
iter = 14, accuracy (avg) = 0.086133 (all), 0.095498 (pos), 0.082071 (neg)
data reader: epoch = 0, batch = 15 / 4040
iter = 15, cls_loss (cur) = 0.631273, cls_loss (avg) = 0.098047, lr = 0.010000
iter = 15, accuracy (cur) = 0.640000 (all), 0.615385 (pos), 0.666667 (neg)
iter = 15, accuracy (avg) = 0.091671 (all), 0.100697 (pos), 0.087917 (neg)
data reader: epoch = 0, batch = 16 / 4040
iter = 16, cls_loss (cur) = 0.578116, cls_loss (avg) = 0.102848, lr = 0.010000
iter = 16, accuracy (cur) = 0.780000 (all), 0.909091 (pos), 0.678571 (neg)
iter = 16, accuracy (avg) = 0.098555 (all), 0.108781 (pos), 0.093824 (neg)
data reader: epoch = 0, batch = 17 / 4040
iter = 17, cls_loss (cur) = 0.618522, cls_loss (avg) = 0.108004, lr = 0.010000
iter = 17, accuracy (cur) = 0.680000 (all), 0.761905 (pos), 0.620690 (neg)
iter = 17, accuracy (avg) = 0.104369 (all), 0.115312 (pos), 0.099093 (neg)
data reader: epoch = 0, batch = 18 / 4040
iter = 18, cls_loss (cur) = 0.652371, cls_loss (avg) = 0.113448, lr = 0.010000
iter = 18, accuracy (cur) = 0.620000 (all), 0.733333 (pos), 0.571429 (neg)
iter = 18, accuracy (avg) = 0.109525 (all), 0.121492 (pos), 0.103816 (neg)
data reader: epoch = 0, batch = 19 / 4040
iter = 19, cls_loss (cur) = 0.644488, cls_loss (avg) = 0.118759, lr = 0.010000
iter = 19, accuracy (cur) = 0.680000 (all), 0.600000 (pos), 0.733333 (neg)
iter = 19, accuracy (avg) = 0.115230 (all), 0.126278 (pos), 0.110111 (neg)
data reader: epoch = 0, batch = 20 / 4040
iter = 20, cls_loss (cur) = 0.618447, cls_loss (avg) = 0.123755, lr = 0.010000
iter = 20, accuracy (cur) = 0.660000 (all), 0.520000 (pos), 0.800000 (neg)
iter = 20, accuracy (avg) = 0.120678 (all), 0.130215 (pos), 0.117010 (neg)
data reader: epoch = 0, batch = 21 / 4040
iter = 21, cls_loss (cur) = 0.607834, cls_loss (avg) = 0.128596, lr = 0.010000
iter = 21, accuracy (cur) = 0.760000 (all), 0.640000 (pos), 0.880000 (neg)
iter = 21, accuracy (avg) = 0.127071 (all), 0.135313 (pos), 0.124640 (neg)
data reader: epoch = 0, batch = 22 / 4040
iter = 22, cls_loss (cur) = 0.628391, cls_loss (avg) = 0.133594, lr = 0.010000
iter = 22, accuracy (cur) = 0.660000 (all), 0.520000 (pos), 0.800000 (neg)
iter = 22, accuracy (avg) = 0.132400 (all), 0.139159 (pos), 0.131394 (neg)
data reader: epoch = 0, batch = 23 / 4040
iter = 23, cls_loss (cur) = 0.643117, cls_loss (avg) = 0.138689, lr = 0.010000
iter = 23, accuracy (cur) = 0.640000 (all), 0.478261 (pos), 0.777778 (neg)
iter = 23, accuracy (avg) = 0.137476 (all), 0.142551 (pos), 0.137857 (neg)
data reader: epoch = 0, batch = 24 / 4040
iter = 24, cls_loss (cur) = 0.600247, cls_loss (avg) = 0.143305, lr = 0.010000
iter = 24, accuracy (cur) = 0.740000 (all), 0.500000 (pos), 0.961538 (neg)
iter = 24, accuracy (avg) = 0.143501 (all), 0.146125 (pos), 0.146094 (neg)
data reader: epoch = 0, batch = 25 / 4040
iter = 25, cls_loss (cur) = 0.595782, cls_loss (avg) = 0.147830, lr = 0.010000
iter = 25, accuracy (cur) = 0.700000 (all), 0.352941 (pos), 0.878788 (neg)
iter = 25, accuracy (avg) = 0.149066 (all), 0.148193 (pos), 0.153421 (neg)
data reader: epoch = 0, batch = 26 / 4040
iter = 26, cls_loss (cur) = 0.610449, cls_loss (avg) = 0.152456, lr = 0.010000
iter = 26, accuracy (cur) = 0.680000 (all), 0.423077 (pos), 0.958333 (neg)
iter = 26, accuracy (avg) = 0.154376 (all), 0.150942 (pos), 0.161470 (neg)
data reader: epoch = 0, batch = 27 / 4040
iter = 27, cls_loss (cur) = 0.609338, cls_loss (avg) = 0.157025, lr = 0.010000
iter = 27, accuracy (cur) = 0.640000 (all), 0.400000 (pos), 0.880000 (neg)
iter = 27, accuracy (avg) = 0.159232 (all), 0.153433 (pos), 0.168656 (neg)
data reader: epoch = 0, batch = 28 / 4040
iter = 28, cls_loss (cur) = 0.638276, cls_loss (avg) = 0.161837, lr = 0.010000
iter = 28, accuracy (cur) = 0.620000 (all), 0.428571 (pos), 0.863636 (neg)
iter = 28, accuracy (avg) = 0.163840 (all), 0.156184 (pos), 0.175605 (neg)
data reader: epoch = 0, batch = 29 / 4040
iter = 29, cls_loss (cur) = 0.619102, cls_loss (avg) = 0.166410, lr = 0.010000
iter = 29, accuracy (cur) = 0.620000 (all), 0.551724 (pos), 0.714286 (neg)
iter = 29, accuracy (avg) = 0.168401 (all), 0.160139 (pos), 0.180992 (neg)
data reader: epoch = 0, batch = 30 / 4040
iter = 30, cls_loss (cur) = 0.579502, cls_loss (avg) = 0.170541, lr = 0.010000
iter = 30, accuracy (cur) = 0.680000 (all), 0.615385 (pos), 0.750000 (neg)
iter = 30, accuracy (avg) = 0.173517 (all), 0.164692 (pos), 0.186682 (neg)
data reader: epoch = 0, batch = 31 / 4040
iter = 31, cls_loss (cur) = 0.521728, cls_loss (avg) = 0.174053, lr = 0.010000
iter = 31, accuracy (cur) = 0.800000 (all), 0.800000 (pos), 0.800000 (neg)
iter = 31, accuracy (avg) = 0.179782 (all), 0.171045 (pos), 0.192815 (neg)
data reader: epoch = 0, batch = 32 / 4040
iter = 32, cls_loss (cur) = 0.565409, cls_loss (avg) = 0.177966, lr = 0.010000
iter = 32, accuracy (cur) = 0.740000 (all), 0.809524 (pos), 0.689655 (neg)
iter = 32, accuracy (avg) = 0.185384 (all), 0.177430 (pos), 0.197784 (neg)
data reader: epoch = 0, batch = 33 / 4040
iter = 33, cls_loss (cur) = 0.597874, cls_loss (avg) = 0.182165, lr = 0.010000
iter = 33, accuracy (cur) = 0.720000 (all), 0.700000 (pos), 0.733333 (neg)
iter = 33, accuracy (avg) = 0.190730 (all), 0.182655 (pos), 0.203139 (neg)
data reader: epoch = 0, batch = 34 / 4040
iter = 34, cls_loss (cur) = 0.639726, cls_loss (avg) = 0.186741, lr = 0.010000
iter = 34, accuracy (cur) = 0.520000 (all), 0.518519 (pos), 0.521739 (neg)
iter = 34, accuracy (avg) = 0.194023 (all), 0.186014 (pos), 0.206325 (neg)
data reader: epoch = 0, batch = 35 / 4040
iter = 35, cls_loss (cur) = 0.727502, cls_loss (avg) = 0.192149, lr = 0.010000
iter = 35, accuracy (cur) = 0.540000 (all), 0.529412 (pos), 0.545455 (neg)
iter = 35, accuracy (avg) = 0.197483 (all), 0.189448 (pos), 0.209717 (neg)
data reader: epoch = 0, batch = 36 / 4040
iter = 36, cls_loss (cur) = 0.626897, cls_loss (avg) = 0.196496, lr = 0.010000
iter = 36, accuracy (cur) = 0.620000 (all), 0.541667 (pos), 0.692308 (neg)
iter = 36, accuracy (avg) = 0.201708 (all), 0.192970 (pos), 0.214542 (neg)
data reader: epoch = 0, batch = 37 / 4040
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 2404 get requests, put_count=2574 evicted_count=1000 eviction_rate=0.3885 and unsatisfied allocation rate=0.354825
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:256] Raising pool_size_limit_ from 256 to 281
iter = 37, cls_loss (cur) = 0.595828, cls_loss (avg) = 0.200489, lr = 0.010000
iter = 37, accuracy (cur) = 0.740000 (all), 0.600000 (pos), 0.833333 (neg)
iter = 37, accuracy (avg) = 0.207091 (all), 0.197040 (pos), 0.220730 (neg)
data reader: epoch = 0, batch = 38 / 4040
iter = 38, cls_loss (cur) = 0.645895, cls_loss (avg) = 0.204943, lr = 0.010000
iter = 38, accuracy (cur) = 0.580000 (all), 0.483871 (pos), 0.736842 (neg)
iter = 38, accuracy (avg) = 0.210820 (all), 0.199909 (pos), 0.225892 (neg)
data reader: epoch = 0, batch = 39 / 4040
iter = 39, cls_loss (cur) = 0.627620, cls_loss (avg) = 0.209170, lr = 0.010000
iter = 39, accuracy (cur) = 0.600000 (all), 0.347826 (pos), 0.814815 (neg)
iter = 39, accuracy (avg) = 0.214712 (all), 0.201388 (pos), 0.231781 (neg)
data reader: epoch = 0, batch = 40 / 4040
iter = 40, cls_loss (cur) = 0.644449, cls_loss (avg) = 0.213523, lr = 0.010000
iter = 40, accuracy (cur) = 0.660000 (all), 0.500000 (pos), 0.944444 (neg)
iter = 40, accuracy (avg) = 0.219165 (all), 0.204374 (pos), 0.238907 (neg)
data reader: epoch = 0, batch = 41 / 4040
iter = 41, cls_loss (cur) = 0.563158, cls_loss (avg) = 0.217019, lr = 0.010000
iter = 41, accuracy (cur) = 0.700000 (all), 0.705882 (pos), 0.696970 (neg)
iter = 41, accuracy (avg) = 0.223973 (all), 0.209389 (pos), 0.243488 (neg)
data reader: epoch = 0, batch = 42 / 4040
iter = 42, cls_loss (cur) = 0.588427, cls_loss (avg) = 0.220733, lr = 0.010000
iter = 42, accuracy (cur) = 0.660000 (all), 0.480000 (pos), 0.840000 (neg)
iter = 42, accuracy (avg) = 0.228333 (all), 0.212095 (pos), 0.249453 (neg)
data reader: epoch = 0, batch = 43 / 4040
iter = 43, cls_loss (cur) = 0.594174, cls_loss (avg) = 0.224468, lr = 0.010000
iter = 43, accuracy (cur) = 0.620000 (all), 0.583333 (pos), 0.653846 (neg)
iter = 43, accuracy (avg) = 0.232250 (all), 0.215808 (pos), 0.253497 (neg)
data reader: epoch = 0, batch = 44 / 4040
iter = 44, cls_loss (cur) = 0.576101, cls_loss (avg) = 0.227984, lr = 0.010000
iter = 44, accuracy (cur) = 0.680000 (all), 0.558824 (pos), 0.937500 (neg)
iter = 44, accuracy (avg) = 0.236728 (all), 0.219238 (pos), 0.260337 (neg)
data reader: epoch = 0, batch = 45 / 4040
iter = 45, cls_loss (cur) = 0.523912, cls_loss (avg) = 0.230943, lr = 0.010000
iter = 45, accuracy (cur) = 0.760000 (all), 0.625000 (pos), 0.884615 (neg)
iter = 45, accuracy (avg) = 0.241960 (all), 0.223295 (pos), 0.266580 (neg)
data reader: epoch = 0, batch = 46 / 4040
iter = 46, cls_loss (cur) = 0.650453, cls_loss (avg) = 0.235139, lr = 0.010000
iter = 46, accuracy (cur) = 0.620000 (all), 0.571429 (pos), 0.655172 (neg)
iter = 46, accuracy (avg) = 0.245741 (all), 0.226777 (pos), 0.270466 (neg)
data reader: epoch = 0, batch = 47 / 4040
iter = 47, cls_loss (cur) = 0.524790, cls_loss (avg) = 0.238035, lr = 0.010000
iter = 47, accuracy (cur) = 0.780000 (all), 0.769231 (pos), 0.791667 (neg)
iter = 47, accuracy (avg) = 0.251083 (all), 0.232201 (pos), 0.275678 (neg)
data reader: epoch = 0, batch = 48 / 4040
iter = 48, cls_loss (cur) = 0.578643, cls_loss (avg) = 0.241441, lr = 0.010000
iter = 48, accuracy (cur) = 0.700000 (all), 0.636364 (pos), 0.750000 (neg)
iter = 48, accuracy (avg) = 0.255572 (all), 0.236243 (pos), 0.280421 (neg)
data reader: epoch = 0, batch = 49 / 4040
iter = 49, cls_loss (cur) = 0.621666, cls_loss (avg) = 0.245243, lr = 0.010000
iter = 49, accuracy (cur) = 0.620000 (all), 0.555556 (pos), 0.695652 (neg)
iter = 49, accuracy (avg) = 0.259217 (all), 0.239436 (pos), 0.284573 (neg)
data reader: epoch = 0, batch = 50 / 4040
iter = 50, cls_loss (cur) = 0.622120, cls_loss (avg) = 0.249012, lr = 0.010000
iter = 50, accuracy (cur) = 0.640000 (all), 0.590909 (pos), 0.678571 (neg)
iter = 50, accuracy (avg) = 0.263025 (all), 0.242951 (pos), 0.288513 (neg)
data reader: epoch = 0, batch = 51 / 4040
iter = 51, cls_loss (cur) = 0.583544, cls_loss (avg) = 0.252357, lr = 0.010000
iter = 51, accuracy (cur) = 0.700000 (all), 0.541667 (pos), 0.846154 (neg)
iter = 51, accuracy (avg) = 0.267394 (all), 0.245938 (pos), 0.294090 (neg)
data reader: epoch = 0, batch = 52 / 4040
iter = 52, cls_loss (cur) = 0.571088, cls_loss (avg) = 0.255545, lr = 0.010000
iter = 52, accuracy (cur) = 0.720000 (all), 0.666667 (pos), 0.782609 (neg)
iter = 52, accuracy (avg) = 0.271920 (all), 0.250145 (pos), 0.298975 (neg)
data reader: epoch = 0, batch = 53 / 4040
iter = 53, cls_loss (cur) = 0.553679, cls_loss (avg) = 0.258526, lr = 0.010000
iter = 53, accuracy (cur) = 0.680000 (all), 0.565217 (pos), 0.777778 (neg)
iter = 53, accuracy (avg) = 0.276001 (all), 0.253296 (pos), 0.303763 (neg)
data reader: epoch = 0, batch = 54 / 4040
iter = 54, cls_loss (cur) = 0.667883, cls_loss (avg) = 0.262620, lr = 0.010000
iter = 54, accuracy (cur) = 0.580000 (all), 0.619048 (pos), 0.551724 (neg)
iter = 54, accuracy (avg) = 0.279041 (all), 0.256953 (pos), 0.306243 (neg)
data reader: epoch = 0, batch = 55 / 4040
iter = 55, cls_loss (cur) = 0.535277, cls_loss (avg) = 0.265346, lr = 0.010000
iter = 55, accuracy (cur) = 0.780000 (all), 0.730769 (pos), 0.833333 (neg)
iter = 55, accuracy (avg) = 0.284051 (all), 0.261692 (pos), 0.311513 (neg)
data reader: epoch = 0, batch = 56 / 4040
iter = 56, cls_loss (cur) = 0.680614, cls_loss (avg) = 0.269499, lr = 0.010000
iter = 56, accuracy (cur) = 0.540000 (all), 0.391304 (pos), 0.666667 (neg)
iter = 56, accuracy (avg) = 0.286610 (all), 0.262988 (pos), 0.315065 (neg)
data reader: epoch = 0, batch = 57 / 4040
iter = 57, cls_loss (cur) = 0.560522, cls_loss (avg) = 0.272409, lr = 0.010000
iter = 57, accuracy (cur) = 0.720000 (all), 0.600000 (pos), 0.900000 (neg)
iter = 57, accuracy (avg) = 0.290944 (all), 0.266358 (pos), 0.320914 (neg)
data reader: epoch = 0, batch = 58 / 4040
iter = 58, cls_loss (cur) = 0.625674, cls_loss (avg) = 0.275942, lr = 0.010000
iter = 58, accuracy (cur) = 0.660000 (all), 0.538462 (pos), 0.791667 (neg)
iter = 58, accuracy (avg) = 0.294635 (all), 0.269079 (pos), 0.325622 (neg)
data reader: epoch = 0, batch = 59 / 4040
iter = 59, cls_loss (cur) = 0.566710, cls_loss (avg) = 0.278849, lr = 0.010000
iter = 59, accuracy (cur) = 0.700000 (all), 0.555556 (pos), 0.781250 (neg)
iter = 59, accuracy (avg) = 0.298688 (all), 0.271944 (pos), 0.330178 (neg)
data reader: epoch = 0, batch = 60 / 4040
iter = 60, cls_loss (cur) = 0.577999, cls_loss (avg) = 0.281841, lr = 0.010000
iter = 60, accuracy (cur) = 0.680000 (all), 0.586207 (pos), 0.809524 (neg)
iter = 60, accuracy (avg) = 0.302501 (all), 0.275086 (pos), 0.334972 (neg)
data reader: epoch = 0, batch = 61 / 4040
iter = 61, cls_loss (cur) = 0.607843, cls_loss (avg) = 0.285101, lr = 0.010000
iter = 61, accuracy (cur) = 0.660000 (all), 0.551724 (pos), 0.809524 (neg)
iter = 61, accuracy (avg) = 0.306076 (all), 0.277853 (pos), 0.339717 (neg)
data reader: epoch = 0, batch = 62 / 4040
iter = 62, cls_loss (cur) = 0.596767, cls_loss (avg) = 0.288218, lr = 0.010000
iter = 62, accuracy (cur) = 0.680000 (all), 0.608696 (pos), 0.740741 (neg)
iter = 62, accuracy (avg) = 0.309816 (all), 0.281161 (pos), 0.343727 (neg)
data reader: epoch = 0, batch = 63 / 4040
iter = 63, cls_loss (cur) = 0.526227, cls_loss (avg) = 0.290598, lr = 0.010000
iter = 63, accuracy (cur) = 0.800000 (all), 0.700000 (pos), 0.866667 (neg)
iter = 63, accuracy (avg) = 0.314718 (all), 0.285350 (pos), 0.348957 (neg)
data reader: epoch = 0, batch = 64 / 4040
iter = 64, cls_loss (cur) = 0.550827, cls_loss (avg) = 0.293200, lr = 0.010000
iter = 64, accuracy (cur) = 0.700000 (all), 0.727273 (pos), 0.678571 (neg)
iter = 64, accuracy (avg) = 0.318570 (all), 0.289769 (pos), 0.352253 (neg)
data reader: epoch = 0, batch = 65 / 4040
iter = 65, cls_loss (cur) = 0.552565, cls_loss (avg) = 0.295794, lr = 0.010000
iter = 65, accuracy (cur) = 0.740000 (all), 0.733333 (pos), 0.750000 (neg)
iter = 65, accuracy (avg) = 0.322785 (all), 0.294204 (pos), 0.356230 (neg)
data reader: epoch = 0, batch = 66 / 4040
iter = 66, cls_loss (cur) = 0.558617, cls_loss (avg) = 0.298422, lr = 0.010000
iter = 66, accuracy (cur) = 0.700000 (all), 0.653846 (pos), 0.750000 (neg)
iter = 66, accuracy (avg) = 0.326557 (all), 0.297801 (pos), 0.360168 (neg)
data reader: epoch = 0, batch = 67 / 4040
iter = 67, cls_loss (cur) = 0.551803, cls_loss (avg) = 0.300956, lr = 0.010000
iter = 67, accuracy (cur) = 0.700000 (all), 0.529412 (pos), 0.787879 (neg)
iter = 67, accuracy (avg) = 0.330291 (all), 0.300117 (pos), 0.364445 (neg)
data reader: epoch = 0, batch = 68 / 4040
iter = 68, cls_loss (cur) = 0.614145, cls_loss (avg) = 0.304088, lr = 0.010000
iter = 68, accuracy (cur) = 0.640000 (all), 0.434783 (pos), 0.814815 (neg)
iter = 68, accuracy (avg) = 0.333388 (all), 0.301464 (pos), 0.368949 (neg)
data reader: epoch = 0, batch = 69 / 4040
iter = 69, cls_loss (cur) = 0.595407, cls_loss (avg) = 0.307001, lr = 0.010000
iter = 69, accuracy (cur) = 0.620000 (all), 0.571429 (pos), 0.733333 (neg)
iter = 69, accuracy (avg) = 0.336254 (all), 0.304163 (pos), 0.372593 (neg)
data reader: epoch = 0, batch = 70 / 4040
iter = 70, cls_loss (cur) = 0.659171, cls_loss (avg) = 0.310523, lr = 0.010000
iter = 70, accuracy (cur) = 0.600000 (all), 0.434783 (pos), 0.740741 (neg)
iter = 70, accuracy (avg) = 0.338892 (all), 0.305469 (pos), 0.376274 (neg)
data reader: epoch = 0, batch = 71 / 4040
iter = 71, cls_loss (cur) = 0.621206, cls_loss (avg) = 0.313629, lr = 0.010000
iter = 71, accuracy (cur) = 0.640000 (all), 0.428571 (pos), 0.909091 (neg)
iter = 71, accuracy (avg) = 0.341903 (all), 0.306700 (pos), 0.381602 (neg)
data reader: epoch = 0, batch = 72 / 4040
iter = 72, cls_loss (cur) = 0.548109, cls_loss (avg) = 0.315974, lr = 0.010000
iter = 72, accuracy (cur) = 0.700000 (all), 0.590909 (pos), 0.785714 (neg)
iter = 72, accuracy (avg) = 0.345484 (all), 0.309543 (pos), 0.385643 (neg)
data reader: epoch = 0, batch = 73 / 4040
iter = 73, cls_loss (cur) = 0.667744, cls_loss (avg) = 0.319492, lr = 0.010000
iter = 73, accuracy (cur) = 0.560000 (all), 0.500000 (pos), 0.615385 (neg)
iter = 73, accuracy (avg) = 0.347629 (all), 0.311447 (pos), 0.387941 (neg)
data reader: epoch = 0, batch = 74 / 4040
iter = 74, cls_loss (cur) = 0.514700, cls_loss (avg) = 0.321444, lr = 0.010000
iter = 74, accuracy (cur) = 0.780000 (all), 0.727273 (pos), 0.821429 (neg)
iter = 74, accuracy (avg) = 0.351953 (all), 0.315605 (pos), 0.392276 (neg)
data reader: epoch = 0, batch = 75 / 4040
iter = 75, cls_loss (cur) = 0.601478, cls_loss (avg) = 0.324244, lr = 0.010000
iter = 75, accuracy (cur) = 0.680000 (all), 0.600000 (pos), 0.733333 (neg)
iter = 75, accuracy (avg) = 0.355233 (all), 0.318449 (pos), 0.395686 (neg)
data reader: epoch = 0, batch = 76 / 4040
iter = 76, cls_loss (cur) = 0.654221, cls_loss (avg) = 0.327544, lr = 0.010000
iter = 76, accuracy (cur) = 0.640000 (all), 0.480000 (pos), 0.800000 (neg)
iter = 76, accuracy (avg) = 0.358081 (all), 0.320065 (pos), 0.399729 (neg)
data reader: epoch = 0, batch = 77 / 4040
iter = 77, cls_loss (cur) = 0.594400, cls_loss (avg) = 0.330213, lr = 0.010000
iter = 77, accuracy (cur) = 0.680000 (all), 0.571429 (pos), 0.758621 (neg)
iter = 77, accuracy (avg) = 0.361300 (all), 0.322578 (pos), 0.403318 (neg)
data reader: epoch = 0, batch = 78 / 4040
iter = 78, cls_loss (cur) = 0.611462, cls_loss (avg) = 0.333025, lr = 0.010000
iter = 78, accuracy (cur) = 0.680000 (all), 0.642857 (pos), 0.727273 (neg)
iter = 78, accuracy (avg) = 0.364487 (all), 0.325781 (pos), 0.406558 (neg)
data reader: epoch = 0, batch = 79 / 4040
iter = 79, cls_loss (cur) = 0.641487, cls_loss (avg) = 0.336110, lr = 0.010000
iter = 79, accuracy (cur) = 0.620000 (all), 0.384615 (pos), 0.875000 (neg)
iter = 79, accuracy (avg) = 0.367042 (all), 0.326370 (pos), 0.411242 (neg)
data reader: epoch = 0, batch = 80 / 4040
iter = 80, cls_loss (cur) = 0.591736, cls_loss (avg) = 0.338666, lr = 0.010000
iter = 80, accuracy (cur) = 0.640000 (all), 0.500000 (pos), 0.769231 (neg)
iter = 80, accuracy (avg) = 0.369772 (all), 0.328106 (pos), 0.414822 (neg)
data reader: epoch = 0, batch = 81 / 4040
iter = 81, cls_loss (cur) = 0.603406, cls_loss (avg) = 0.341313, lr = 0.010000
iter = 81, accuracy (cur) = 0.620000 (all), 0.538462 (pos), 0.708333 (neg)
iter = 81, accuracy (avg) = 0.372274 (all), 0.330209 (pos), 0.417757 (neg)
data reader: epoch = 0, batch = 82 / 4040
iter = 82, cls_loss (cur) = 0.638032, cls_loss (avg) = 0.344281, lr = 0.010000
iter = 82, accuracy (cur) = 0.680000 (all), 0.560000 (pos), 0.800000 (neg)
iter = 82, accuracy (avg) = 0.375351 (all), 0.332507 (pos), 0.421580 (neg)
data reader: epoch = 0, batch = 83 / 4040
iter = 83, cls_loss (cur) = 0.524784, cls_loss (avg) = 0.346086, lr = 0.010000
iter = 83, accuracy (cur) = 0.780000 (all), 0.625000 (pos), 0.923077 (neg)
iter = 83, accuracy (avg) = 0.379398 (all), 0.335432 (pos), 0.426595 (neg)
data reader: epoch = 0, batch = 84 / 4040
iter = 84, cls_loss (cur) = 0.575073, cls_loss (avg) = 0.348375, lr = 0.010000
iter = 84, accuracy (cur) = 0.680000 (all), 0.615385 (pos), 0.750000 (neg)
iter = 84, accuracy (avg) = 0.382404 (all), 0.338232 (pos), 0.429829 (neg)
data reader: epoch = 0, batch = 85 / 4040
iter = 85, cls_loss (cur) = 0.485951, cls_loss (avg) = 0.349751, lr = 0.010000
iter = 85, accuracy (cur) = 0.760000 (all), 0.761905 (pos), 0.758621 (neg)
iter = 85, accuracy (avg) = 0.386180 (all), 0.342469 (pos), 0.433117 (neg)
data reader: epoch = 0, batch = 86 / 4040
iter = 86, cls_loss (cur) = 0.675718, cls_loss (avg) = 0.353011, lr = 0.010000
iter = 86, accuracy (cur) = 0.580000 (all), 0.409091 (pos), 0.714286 (neg)
iter = 86, accuracy (avg) = 0.388118 (all), 0.343135 (pos), 0.435928 (neg)
data reader: epoch = 0, batch = 87 / 4040
iter = 87, cls_loss (cur) = 0.576735, cls_loss (avg) = 0.355248, lr = 0.010000
iter = 87, accuracy (cur) = 0.700000 (all), 0.653846 (pos), 0.750000 (neg)
iter = 87, accuracy (avg) = 0.391237 (all), 0.346242 (pos), 0.439069 (neg)
data reader: epoch = 0, batch = 88 / 4040
iter = 88, cls_loss (cur) = 0.562228, cls_loss (avg) = 0.357318, lr = 0.010000
iter = 88, accuracy (cur) = 0.760000 (all), 0.615385 (pos), 0.916667 (neg)
iter = 88, accuracy (avg) = 0.394925 (all), 0.348933 (pos), 0.443845 (neg)
data reader: epoch = 0, batch = 89 / 4040
iter = 89, cls_loss (cur) = 0.583932, cls_loss (avg) = 0.359584, lr = 0.010000
iter = 89, accuracy (cur) = 0.700000 (all), 0.600000 (pos), 0.850000 (neg)
iter = 89, accuracy (avg) = 0.397975 (all), 0.351444 (pos), 0.447907 (neg)
data reader: epoch = 0, batch = 90 / 4040
iter = 90, cls_loss (cur) = 0.634015, cls_loss (avg) = 0.362328, lr = 0.010000
iter = 90, accuracy (cur) = 0.580000 (all), 0.409091 (pos), 0.714286 (neg)
iter = 90, accuracy (avg) = 0.399796 (all), 0.352020 (pos), 0.450570 (neg)
data reader: epoch = 0, batch = 91 / 4040
iter = 91, cls_loss (cur) = 0.578546, cls_loss (avg) = 0.364491, lr = 0.010000
iter = 91, accuracy (cur) = 0.680000 (all), 0.590909 (pos), 0.750000 (neg)
iter = 91, accuracy (avg) = 0.402598 (all), 0.354409 (pos), 0.453565 (neg)
data reader: epoch = 0, batch = 92 / 4040
iter = 92, cls_loss (cur) = 0.566981, cls_loss (avg) = 0.366515, lr = 0.010000
iter = 92, accuracy (cur) = 0.660000 (all), 0.642857 (pos), 0.681818 (neg)
iter = 92, accuracy (avg) = 0.405172 (all), 0.357294 (pos), 0.455847 (neg)
data reader: epoch = 0, batch = 93 / 4040
iter = 93, cls_loss (cur) = 0.621296, cls_loss (avg) = 0.369063, lr = 0.010000
iter = 93, accuracy (cur) = 0.620000 (all), 0.551724 (pos), 0.714286 (neg)
iter = 93, accuracy (avg) = 0.407320 (all), 0.359238 (pos), 0.458432 (neg)
data reader: epoch = 0, batch = 94 / 4040
iter = 94, cls_loss (cur) = 0.565867, cls_loss (avg) = 0.371031, lr = 0.010000
iter = 94, accuracy (cur) = 0.680000 (all), 0.578947 (pos), 0.741935 (neg)
iter = 94, accuracy (avg) = 0.410047 (all), 0.361435 (pos), 0.461267 (neg)
data reader: epoch = 0, batch = 95 / 4040
iter = 95, cls_loss (cur) = 0.572435, cls_loss (avg) = 0.373045, lr = 0.010000
iter = 95, accuracy (cur) = 0.660000 (all), 0.583333 (pos), 0.730769 (neg)
iter = 95, accuracy (avg) = 0.412546 (all), 0.363654 (pos), 0.463962 (neg)
data reader: epoch = 0, batch = 96 / 4040
iter = 96, cls_loss (cur) = 0.613580, cls_loss (avg) = 0.375451, lr = 0.010000
iter = 96, accuracy (cur) = 0.600000 (all), 0.545455 (pos), 0.642857 (neg)
iter = 96, accuracy (avg) = 0.414421 (all), 0.365472 (pos), 0.465751 (neg)
data reader: epoch = 0, batch = 97 / 4040
iter = 97, cls_loss (cur) = 0.670064, cls_loss (avg) = 0.378397, lr = 0.010000
iter = 97, accuracy (cur) = 0.620000 (all), 0.466667 (pos), 0.850000 (neg)
iter = 97, accuracy (avg) = 0.416477 (all), 0.366484 (pos), 0.469593 (neg)
data reader: epoch = 0, batch = 98 / 4040
iter = 98, cls_loss (cur) = 0.531617, cls_loss (avg) = 0.379929, lr = 0.010000
iter = 98, accuracy (cur) = 0.740000 (all), 0.625000 (pos), 0.846154 (neg)
iter = 98, accuracy (avg) = 0.419712 (all), 0.369069 (pos), 0.473359 (neg)
data reader: epoch = 0, batch = 99 / 4040
iter = 99, cls_loss (cur) = 0.572785, cls_loss (avg) = 0.381858, lr = 0.010000
iter = 99, accuracy (cur) = 0.720000 (all), 0.608696 (pos), 0.814815 (neg)
iter = 99, accuracy (avg) = 0.422715 (all), 0.371466 (pos), 0.476773 (neg)
data reader: epoch = 0, batch = 100 / 4040
iter = 100, cls_loss (cur) = 0.607573, cls_loss (avg) = 0.384115, lr = 0.010000
iter = 100, accuracy (cur) = 0.680000 (all), 0.566667 (pos), 0.850000 (neg)
iter = 100, accuracy (avg) = 0.425288 (all), 0.373418 (pos), 0.480506 (neg)
data reader: epoch = 0, batch = 101 / 4040
iter = 101, cls_loss (cur) = 0.525263, cls_loss (avg) = 0.385526, lr = 0.010000
iter = 101, accuracy (cur) = 0.800000 (all), 0.727273 (pos), 0.857143 (neg)
iter = 101, accuracy (avg) = 0.429035 (all), 0.376956 (pos), 0.484272 (neg)
data reader: epoch = 0, batch = 102 / 4040
iter = 102, cls_loss (cur) = 0.564312, cls_loss (avg) = 0.387314, lr = 0.010000
iter = 102, accuracy (cur) = 0.740000 (all), 0.695652 (pos), 0.777778 (neg)
iter = 102, accuracy (avg) = 0.432144 (all), 0.380143 (pos), 0.487207 (neg)
data reader: epoch = 0, batch = 103 / 4040
iter = 103, cls_loss (cur) = 0.677946, cls_loss (avg) = 0.390220, lr = 0.010000
iter = 103, accuracy (cur) = 0.600000 (all), 0.433333 (pos), 0.850000 (neg)
iter = 103, accuracy (avg) = 0.433823 (all), 0.380675 (pos), 0.490835 (neg)
data reader: epoch = 0, batch = 104 / 4040
iter = 104, cls_loss (cur) = 0.591378, cls_loss (avg) = 0.392232, lr = 0.010000
iter = 104, accuracy (cur) = 0.660000 (all), 0.576923 (pos), 0.750000 (neg)
iter = 104, accuracy (avg) = 0.436085 (all), 0.382637 (pos), 0.493427 (neg)
data reader: epoch = 0, batch = 105 / 4040
iter = 105, cls_loss (cur) = 0.580072, cls_loss (avg) = 0.394110, lr = 0.010000
iter = 105, accuracy (cur) = 0.680000 (all), 0.560000 (pos), 0.800000 (neg)
iter = 105, accuracy (avg) = 0.438524 (all), 0.384411 (pos), 0.496492 (neg)
data reader: epoch = 0, batch = 106 / 4040
iter = 106, cls_loss (cur) = 0.583696, cls_loss (avg) = 0.396006, lr = 0.010000
iter = 106, accuracy (cur) = 0.620000 (all), 0.640000 (pos), 0.600000 (neg)
iter = 106, accuracy (avg) = 0.440339 (all), 0.386967 (pos), 0.497527 (neg)
data reader: epoch = 0, batch = 107 / 4040
iter = 107, cls_loss (cur) = 0.573849, cls_loss (avg) = 0.397785, lr = 0.010000
iter = 107, accuracy (cur) = 0.720000 (all), 0.700000 (pos), 0.733333 (neg)
iter = 107, accuracy (avg) = 0.443135 (all), 0.390097 (pos), 0.499885 (neg)
data reader: epoch = 0, batch = 108 / 4040
iter = 108, cls_loss (cur) = 0.631917, cls_loss (avg) = 0.400126, lr = 0.010000
iter = 108, accuracy (cur) = 0.600000 (all), 0.538462 (pos), 0.666667 (neg)
iter = 108, accuracy (avg) = 0.444704 (all), 0.391581 (pos), 0.501553 (neg)
data reader: epoch = 0, batch = 109 / 4040
iter = 109, cls_loss (cur) = 0.642044, cls_loss (avg) = 0.402545, lr = 0.010000
iter = 109, accuracy (cur) = 0.660000 (all), 0.600000 (pos), 0.750000 (neg)
iter = 109, accuracy (avg) = 0.446857 (all), 0.393665 (pos), 0.504038 (neg)
data reader: epoch = 0, batch = 110 / 4040
iter = 110, cls_loss (cur) = 0.568012, cls_loss (avg) = 0.404200, lr = 0.010000
iter = 110, accuracy (cur) = 0.660000 (all), 0.590909 (pos), 0.714286 (neg)
iter = 110, accuracy (avg) = 0.448988 (all), 0.395638 (pos), 0.506140 (neg)
data reader: epoch = 0, batch = 111 / 4040
iter = 111, cls_loss (cur) = 0.532455, cls_loss (avg) = 0.405482, lr = 0.010000
iter = 111, accuracy (cur) = 0.760000 (all), 0.636364 (pos), 0.857143 (neg)
iter = 111, accuracy (avg) = 0.452098 (all), 0.398045 (pos), 0.509650 (neg)
data reader: epoch = 0, batch = 112 / 4040
iter = 112, cls_loss (cur) = 0.551050, cls_loss (avg) = 0.406938, lr = 0.010000
iter = 112, accuracy (cur) = 0.660000 (all), 0.590909 (pos), 0.714286 (neg)
iter = 112, accuracy (avg) = 0.454177 (all), 0.399973 (pos), 0.511697 (neg)
data reader: epoch = 0, batch = 113 / 4040
iter = 113, cls_loss (cur) = 0.568864, cls_loss (avg) = 0.408557, lr = 0.010000
iter = 113, accuracy (cur) = 0.700000 (all), 0.571429 (pos), 0.863636 (neg)
iter = 113, accuracy (avg) = 0.456636 (all), 0.401688 (pos), 0.515216 (neg)
data reader: epoch = 0, batch = 114 / 4040
iter = 114, cls_loss (cur) = 0.552247, cls_loss (avg) = 0.409994, lr = 0.010000
iter = 114, accuracy (cur) = 0.700000 (all), 0.620690 (pos), 0.809524 (neg)
iter = 114, accuracy (avg) = 0.459069 (all), 0.403878 (pos), 0.518159 (neg)
data reader: epoch = 0, batch = 115 / 4040
iter = 115, cls_loss (cur) = 0.625005, cls_loss (avg) = 0.412144, lr = 0.010000
iter = 115, accuracy (cur) = 0.640000 (all), 0.611111 (pos), 0.656250 (neg)
iter = 115, accuracy (avg) = 0.460879 (all), 0.405950 (pos), 0.519540 (neg)
data reader: epoch = 0, batch = 116 / 4040
iter = 116, cls_loss (cur) = 0.487931, cls_loss (avg) = 0.412902, lr = 0.010000
iter = 116, accuracy (cur) = 0.760000 (all), 0.807692 (pos), 0.708333 (neg)
iter = 116, accuracy (avg) = 0.463870 (all), 0.409968 (pos), 0.521428 (neg)
data reader: epoch = 0, batch = 117 / 4040
iter = 117, cls_loss (cur) = 0.559873, cls_loss (avg) = 0.414372, lr = 0.010000
iter = 117, accuracy (cur) = 0.680000 (all), 0.500000 (pos), 0.875000 (neg)
iter = 117, accuracy (avg) = 0.466031 (all), 0.410868 (pos), 0.524964 (neg)
data reader: epoch = 0, batch = 118 / 4040
iter = 118, cls_loss (cur) = 0.591835, cls_loss (avg) = 0.416147, lr = 0.010000
iter = 118, accuracy (cur) = 0.720000 (all), 0.538462 (pos), 0.916667 (neg)
iter = 118, accuracy (avg) = 0.468571 (all), 0.412144 (pos), 0.528881 (neg)
data reader: epoch = 0, batch = 119 / 4040
iter = 119, cls_loss (cur) = 0.599072, cls_loss (avg) = 0.417976, lr = 0.010000
iter = 119, accuracy (cur) = 0.640000 (all), 0.633333 (pos), 0.650000 (neg)
iter = 119, accuracy (avg) = 0.470285 (all), 0.414356 (pos), 0.530092 (neg)
data reader: epoch = 0, batch = 120 / 4040
iter = 120, cls_loss (cur) = 0.607175, cls_loss (avg) = 0.419868, lr = 0.010000
iter = 120, accuracy (cur) = 0.600000 (all), 0.551724 (pos), 0.666667 (neg)
iter = 120, accuracy (avg) = 0.471582 (all), 0.415730 (pos), 0.531458 (neg)
data reader: epoch = 0, batch = 121 / 4040
iter = 121, cls_loss (cur) = 0.522447, cls_loss (avg) = 0.420894, lr = 0.010000
iter = 121, accuracy (cur) = 0.720000 (all), 0.760000 (pos), 0.680000 (neg)
iter = 121, accuracy (avg) = 0.474066 (all), 0.419172 (pos), 0.532943 (neg)
data reader: epoch = 0, batch = 122 / 4040
iter = 122, cls_loss (cur) = 0.619214, cls_loss (avg) = 0.422877, lr = 0.010000
iter = 122, accuracy (cur) = 0.640000 (all), 0.409091 (pos), 0.821429 (neg)
iter = 122, accuracy (avg) = 0.475726 (all), 0.419072 (pos), 0.535828 (neg)
data reader: epoch = 0, batch = 123 / 4040
iter = 123, cls_loss (cur) = 0.548216, cls_loss (avg) = 0.424130, lr = 0.010000
iter = 123, accuracy (cur) = 0.720000 (all), 0.652174 (pos), 0.777778 (neg)
iter = 123, accuracy (avg) = 0.478168 (all), 0.421403 (pos), 0.538247 (neg)
data reader: epoch = 0, batch = 124 / 4040
iter = 124, cls_loss (cur) = 0.621100, cls_loss (avg) = 0.426100, lr = 0.010000
iter = 124, accuracy (cur) = 0.600000 (all), 0.419355 (pos), 0.894737 (neg)
iter = 124, accuracy (avg) = 0.479387 (all), 0.421382 (pos), 0.541812 (neg)
data reader: epoch = 0, batch = 125 / 4040
iter = 125, cls_loss (cur) = 0.490611, cls_loss (avg) = 0.426745, lr = 0.010000
iter = 125, accuracy (cur) = 0.800000 (all), 0.863636 (pos), 0.750000 (neg)
iter = 125, accuracy (avg) = 0.482593 (all), 0.425805 (pos), 0.543894 (neg)
data reader: epoch = 0, batch = 126 / 4040
iter = 126, cls_loss (cur) = 0.612028, cls_loss (avg) = 0.428598, lr = 0.010000
iter = 126, accuracy (cur) = 0.660000 (all), 0.545455 (pos), 0.750000 (neg)
iter = 126, accuracy (avg) = 0.484367 (all), 0.427001 (pos), 0.545955 (neg)
data reader: epoch = 0, batch = 127 / 4040
iter = 127, cls_loss (cur) = 0.548970, cls_loss (avg) = 0.429802, lr = 0.010000
iter = 127, accuracy (cur) = 0.680000 (all), 0.652174 (pos), 0.703704 (neg)
iter = 127, accuracy (avg) = 0.486323 (all), 0.429253 (pos), 0.547533 (neg)
data reader: epoch = 0, batch = 128 / 4040
iter = 128, cls_loss (cur) = 0.530710, cls_loss (avg) = 0.430811, lr = 0.010000
iter = 128, accuracy (cur) = 0.740000 (all), 0.541667 (pos), 0.923077 (neg)
iter = 128, accuracy (avg) = 0.488860 (all), 0.430377 (pos), 0.551288 (neg)
data reader: epoch = 0, batch = 129 / 4040
iter = 129, cls_loss (cur) = 0.567502, cls_loss (avg) = 0.432178, lr = 0.010000
iter = 129, accuracy (cur) = 0.620000 (all), 0.518519 (pos), 0.739130 (neg)
iter = 129, accuracy (avg) = 0.490171 (all), 0.431258 (pos), 0.553167 (neg)
data reader: epoch = 0, batch = 130 / 4040
iter = 130, cls_loss (cur) = 0.592615, cls_loss (avg) = 0.433782, lr = 0.010000
iter = 130, accuracy (cur) = 0.660000 (all), 0.678571 (pos), 0.636364 (neg)
iter = 130, accuracy (avg) = 0.491870 (all), 0.433732 (pos), 0.553999 (neg)
data reader: epoch = 0, batch = 131 / 4040
iter = 131, cls_loss (cur) = 0.579109, cls_loss (avg) = 0.435235, lr = 0.010000
iter = 131, accuracy (cur) = 0.700000 (all), 0.681818 (pos), 0.714286 (neg)
iter = 131, accuracy (avg) = 0.493951 (all), 0.436212 (pos), 0.555601 (neg)
data reader: epoch = 0, batch = 132 / 4040
iter = 132, cls_loss (cur) = 0.548521, cls_loss (avg) = 0.436368, lr = 0.010000
iter = 132, accuracy (cur) = 0.740000 (all), 0.640000 (pos), 0.840000 (neg)
iter = 132, accuracy (avg) = 0.496412 (all), 0.438250 (pos), 0.558445 (neg)
data reader: epoch = 0, batch = 133 / 4040
iter = 133, cls_loss (cur) = 0.430996, cls_loss (avg) = 0.436314, lr = 0.010000
iter = 133, accuracy (cur) = 0.840000 (all), 0.724138 (pos), 1.000000 (neg)
iter = 133, accuracy (avg) = 0.499847 (all), 0.441109 (pos), 0.562861 (neg)
data reader: epoch = 0, batch = 134 / 4040
iter = 134, cls_loss (cur) = 0.669061, cls_loss (avg) = 0.438642, lr = 0.010000
iter = 134, accuracy (cur) = 0.560000 (all), 0.464286 (pos), 0.681818 (neg)
iter = 134, accuracy (avg) = 0.500449 (all), 0.441341 (pos), 0.564051 (neg)
data reader: epoch = 0, batch = 135 / 4040
iter = 135, cls_loss (cur) = 0.642281, cls_loss (avg) = 0.440678, lr = 0.010000
iter = 135, accuracy (cur) = 0.640000 (all), 0.566667 (pos), 0.750000 (neg)
iter = 135, accuracy (avg) = 0.501844 (all), 0.442594 (pos), 0.565910 (neg)
data reader: epoch = 0, batch = 136 / 4040
iter = 136, cls_loss (cur) = 0.579857, cls_loss (avg) = 0.442070, lr = 0.010000
iter = 136, accuracy (cur) = 0.660000 (all), 0.518519 (pos), 0.826087 (neg)
iter = 136, accuracy (avg) = 0.503426 (all), 0.443353 (pos), 0.568512 (neg)
data reader: epoch = 0, batch = 137 / 4040
iter = 137, cls_loss (cur) = 0.619147, cls_loss (avg) = 0.443841, lr = 0.010000
iter = 137, accuracy (cur) = 0.660000 (all), 0.518519 (pos), 0.826087 (neg)
iter = 137, accuracy (avg) = 0.504992 (all), 0.444105 (pos), 0.571088 (neg)
data reader: epoch = 0, batch = 138 / 4040
iter = 138, cls_loss (cur) = 0.652408, cls_loss (avg) = 0.445926, lr = 0.010000
iter = 138, accuracy (cur) = 0.580000 (all), 0.458333 (pos), 0.692308 (neg)
iter = 138, accuracy (avg) = 0.505742 (all), 0.444247 (pos), 0.572300 (neg)
data reader: epoch = 0, batch = 139 / 4040
iter = 139, cls_loss (cur) = 0.619313, cls_loss (avg) = 0.447660, lr = 0.010000
iter = 139, accuracy (cur) = 0.680000 (all), 0.772727 (pos), 0.607143 (neg)
iter = 139, accuracy (avg) = 0.507484 (all), 0.447532 (pos), 0.572648 (neg)
data reader: epoch = 0, batch = 140 / 4040
iter = 140, cls_loss (cur) = 0.616753, cls_loss (avg) = 0.449351, lr = 0.010000
iter = 140, accuracy (cur) = 0.680000 (all), 0.607143 (pos), 0.772727 (neg)
iter = 140, accuracy (avg) = 0.509210 (all), 0.449128 (pos), 0.574649 (neg)
data reader: epoch = 0, batch = 141 / 4040
iter = 141, cls_loss (cur) = 0.671166, cls_loss (avg) = 0.451569, lr = 0.010000
iter = 141, accuracy (cur) = 0.540000 (all), 0.590909 (pos), 0.500000 (neg)
iter = 141, accuracy (avg) = 0.509517 (all), 0.450546 (pos), 0.573902 (neg)
data reader: epoch = 0, batch = 142 / 4040
iter = 142, cls_loss (cur) = 0.594513, cls_loss (avg) = 0.452999, lr = 0.010000
iter = 142, accuracy (cur) = 0.580000 (all), 0.416667 (pos), 0.730769 (neg)
iter = 142, accuracy (avg) = 0.510222 (all), 0.450207 (pos), 0.575471 (neg)
data reader: epoch = 0, batch = 143 / 4040
iter = 143, cls_loss (cur) = 0.545946, cls_loss (avg) = 0.453928, lr = 0.010000
iter = 143, accuracy (cur) = 0.700000 (all), 0.680000 (pos), 0.720000 (neg)
iter = 143, accuracy (avg) = 0.512120 (all), 0.452505 (pos), 0.576916 (neg)
data reader: epoch = 0, batch = 144 / 4040
iter = 144, cls_loss (cur) = 0.621024, cls_loss (avg) = 0.455599, lr = 0.010000
iter = 144, accuracy (cur) = 0.680000 (all), 0.600000 (pos), 0.760000 (neg)
iter = 144, accuracy (avg) = 0.513799 (all), 0.453980 (pos), 0.578747 (neg)
data reader: epoch = 0, batch = 145 / 4040
iter = 145, cls_loss (cur) = 0.527580, cls_loss (avg) = 0.456319, lr = 0.010000
iter = 145, accuracy (cur) = 0.780000 (all), 0.692308 (pos), 0.875000 (neg)
iter = 145, accuracy (avg) = 0.516461 (all), 0.456363 (pos), 0.581710 (neg)
data reader: epoch = 0, batch = 146 / 4040
iter = 146, cls_loss (cur) = 0.576286, cls_loss (avg) = 0.457519, lr = 0.010000
iter = 146, accuracy (cur) = 0.740000 (all), 0.560000 (pos), 0.920000 (neg)
iter = 146, accuracy (avg) = 0.518696 (all), 0.457400 (pos), 0.585093 (neg)
data reader: epoch = 0, batch = 147 / 4040
iter = 147, cls_loss (cur) = 0.529656, cls_loss (avg) = 0.458240, lr = 0.010000
iter = 147, accuracy (cur) = 0.720000 (all), 0.678571 (pos), 0.772727 (neg)
iter = 147, accuracy (avg) = 0.520709 (all), 0.459611 (pos), 0.586969 (neg)
data reader: epoch = 0, batch = 148 / 4040
iter = 148, cls_loss (cur) = 0.556896, cls_loss (avg) = 0.459227, lr = 0.010000
iter = 148, accuracy (cur) = 0.700000 (all), 0.629630 (pos), 0.782609 (neg)
iter = 148, accuracy (avg) = 0.522502 (all), 0.461312 (pos), 0.588925 (neg)
data reader: epoch = 0, batch = 149 / 4040
iter = 149, cls_loss (cur) = 0.594844, cls_loss (avg) = 0.460583, lr = 0.010000
iter = 149, accuracy (cur) = 0.700000 (all), 0.608696 (pos), 0.777778 (neg)
iter = 149, accuracy (avg) = 0.524277 (all), 0.462786 (pos), 0.590814 (neg)
data reader: epoch = 0, batch = 150 / 4040
iter = 150, cls_loss (cur) = 0.551955, cls_loss (avg) = 0.461497, lr = 0.010000
iter = 150, accuracy (cur) = 0.740000 (all), 0.714286 (pos), 0.772727 (neg)
iter = 150, accuracy (avg) = 0.526434 (all), 0.465301 (pos), 0.592633 (neg)
data reader: epoch = 0, batch = 151 / 4040
iter = 151, cls_loss (cur) = 0.577606, cls_loss (avg) = 0.462658, lr = 0.010000
iter = 151, accuracy (cur) = 0.720000 (all), 0.791667 (pos), 0.653846 (neg)
iter = 151, accuracy (avg) = 0.528370 (all), 0.468564 (pos), 0.593245 (neg)
data reader: epoch = 0, batch = 152 / 4040
iter = 152, cls_loss (cur) = 0.547068, cls_loss (avg) = 0.463502, lr = 0.010000
iter = 152, accuracy (cur) = 0.720000 (all), 0.629630 (pos), 0.826087 (neg)
iter = 152, accuracy (avg) = 0.530286 (all), 0.470175 (pos), 0.595574 (neg)
data reader: epoch = 0, batch = 153 / 4040
iter = 153, cls_loss (cur) = 0.601542, cls_loss (avg) = 0.464882, lr = 0.010000
iter = 153, accuracy (cur) = 0.680000 (all), 0.625000 (pos), 0.730769 (neg)
iter = 153, accuracy (avg) = 0.531784 (all), 0.471723 (pos), 0.596926 (neg)
data reader: epoch = 0, batch = 154 / 4040
iter = 154, cls_loss (cur) = 0.597195, cls_loss (avg) = 0.466205, lr = 0.010000
iter = 154, accuracy (cur) = 0.660000 (all), 0.409091 (pos), 0.857143 (neg)
iter = 154, accuracy (avg) = 0.533066 (all), 0.471097 (pos), 0.599528 (neg)
data reader: epoch = 0, batch = 155 / 4040
iter = 155, cls_loss (cur) = 0.496409, cls_loss (avg) = 0.466507, lr = 0.010000
iter = 155, accuracy (cur) = 0.760000 (all), 0.629630 (pos), 0.913043 (neg)
iter = 155, accuracy (avg) = 0.535335 (all), 0.472682 (pos), 0.602663 (neg)
data reader: epoch = 0, batch = 156 / 4040
iter = 156, cls_loss (cur) = 0.620430, cls_loss (avg) = 0.468047, lr = 0.010000
iter = 156, accuracy (cur) = 0.640000 (all), 0.562500 (pos), 0.777778 (neg)
iter = 156, accuracy (avg) = 0.536382 (all), 0.473580 (pos), 0.604414 (neg)
data reader: epoch = 0, batch = 157 / 4040
iter = 157, cls_loss (cur) = 0.537379, cls_loss (avg) = 0.468740, lr = 0.010000
iter = 157, accuracy (cur) = 0.720000 (all), 0.666667 (pos), 0.769231 (neg)
iter = 157, accuracy (avg) = 0.538218 (all), 0.475511 (pos), 0.606062 (neg)
data reader: epoch = 0, batch = 158 / 4040
iter = 158, cls_loss (cur) = 0.593433, cls_loss (avg) = 0.469987, lr = 0.010000
iter = 158, accuracy (cur) = 0.700000 (all), 0.666667 (pos), 0.739130 (neg)
iter = 158, accuracy (avg) = 0.539836 (all), 0.477423 (pos), 0.607393 (neg)
data reader: epoch = 0, batch = 159 / 4040
iter = 159, cls_loss (cur) = 0.549745, cls_loss (avg) = 0.470784, lr = 0.010000
iter = 159, accuracy (cur) = 0.720000 (all), 0.681818 (pos), 0.750000 (neg)
iter = 159, accuracy (avg) = 0.541637 (all), 0.479467 (pos), 0.608819 (neg)
data reader: epoch = 0, batch = 160 / 4040
iter = 160, cls_loss (cur) = 0.593492, cls_loss (avg) = 0.472011, lr = 0.010000
iter = 160, accuracy (cur) = 0.620000 (all), 0.642857 (pos), 0.590909 (neg)
iter = 160, accuracy (avg) = 0.542421 (all), 0.481101 (pos), 0.608640 (neg)
data reader: epoch = 0, batch = 161 / 4040
iter = 161, cls_loss (cur) = 0.582785, cls_loss (avg) = 0.473119, lr = 0.010000
iter = 161, accuracy (cur) = 0.660000 (all), 0.642857 (pos), 0.681818 (neg)
iter = 161, accuracy (avg) = 0.543597 (all), 0.482718 (pos), 0.609372 (neg)
data reader: epoch = 0, batch = 162 / 4040
iter = 162, cls_loss (cur) = 0.489141, cls_loss (avg) = 0.473279, lr = 0.010000
iter = 162, accuracy (cur) = 0.700000 (all), 0.565217 (pos), 0.814815 (neg)
iter = 162, accuracy (avg) = 0.545161 (all), 0.483543 (pos), 0.611426 (neg)
data reader: epoch = 0, batch = 163 / 4040
iter = 163, cls_loss (cur) = 0.487994, cls_loss (avg) = 0.473427, lr = 0.010000
iter = 163, accuracy (cur) = 0.780000 (all), 0.700000 (pos), 0.900000 (neg)
iter = 163, accuracy (avg) = 0.547509 (all), 0.485708 (pos), 0.614312 (neg)
data reader: epoch = 0, batch = 164 / 4040
iter = 164, cls_loss (cur) = 0.591462, cls_loss (avg) = 0.474607, lr = 0.010000
iter = 164, accuracy (cur) = 0.660000 (all), 0.538462 (pos), 0.791667 (neg)
iter = 164, accuracy (avg) = 0.548634 (all), 0.486235 (pos), 0.616085 (neg)
data reader: epoch = 0, batch = 165 / 4040
iter = 165, cls_loss (cur) = 0.604886, cls_loss (avg) = 0.475910, lr = 0.010000
iter = 165, accuracy (cur) = 0.680000 (all), 0.652174 (pos), 0.703704 (neg)
iter = 165, accuracy (avg) = 0.549948 (all), 0.487895 (pos), 0.616962 (neg)
data reader: epoch = 0, batch = 166 / 4040
iter = 166, cls_loss (cur) = 0.579452, cls_loss (avg) = 0.476945, lr = 0.010000
iter = 166, accuracy (cur) = 0.660000 (all), 0.629630 (pos), 0.695652 (neg)
iter = 166, accuracy (avg) = 0.551048 (all), 0.489312 (pos), 0.617748 (neg)
data reader: epoch = 0, batch = 167 / 4040
iter = 167, cls_loss (cur) = 0.534826, cls_loss (avg) = 0.477524, lr = 0.010000
iter = 167, accuracy (cur) = 0.700000 (all), 0.689655 (pos), 0.714286 (neg)
iter = 167, accuracy (avg) = 0.552538 (all), 0.491315 (pos), 0.618714 (neg)
data reader: epoch = 0, batch = 168 / 4040
iter = 168, cls_loss (cur) = 0.554114, cls_loss (avg) = 0.478290, lr = 0.010000
iter = 168, accuracy (cur) = 0.660000 (all), 0.520000 (pos), 0.800000 (neg)
iter = 168, accuracy (avg) = 0.553612 (all), 0.491602 (pos), 0.620527 (neg)
data reader: epoch = 0, batch = 169 / 4040
iter = 169, cls_loss (cur) = 0.613027, cls_loss (avg) = 0.479637, lr = 0.010000
iter = 169, accuracy (cur) = 0.640000 (all), 0.600000 (pos), 0.680000 (neg)
iter = 169, accuracy (avg) = 0.554476 (all), 0.492686 (pos), 0.621121 (neg)
data reader: epoch = 0, batch = 170 / 4040
iter = 170, cls_loss (cur) = 0.493743, cls_loss (avg) = 0.479778, lr = 0.010000
iter = 170, accuracy (cur) = 0.780000 (all), 0.769231 (pos), 0.791667 (neg)
iter = 170, accuracy (avg) = 0.556731 (all), 0.495452 (pos), 0.622827 (neg)
data reader: epoch = 0, batch = 171 / 4040
iter = 171, cls_loss (cur) = 0.451835, cls_loss (avg) = 0.479499, lr = 0.010000
iter = 171, accuracy (cur) = 0.780000 (all), 0.833333 (pos), 0.730769 (neg)
iter = 171, accuracy (avg) = 0.558964 (all), 0.498830 (pos), 0.623906 (neg)
data reader: epoch = 0, batch = 172 / 4040
iter = 172, cls_loss (cur) = 0.553432, cls_loss (avg) = 0.480238, lr = 0.010000
iter = 172, accuracy (cur) = 0.700000 (all), 0.695652 (pos), 0.703704 (neg)
iter = 172, accuracy (avg) = 0.560375 (all), 0.500799 (pos), 0.624704 (neg)
data reader: epoch = 0, batch = 173 / 4040
iter = 173, cls_loss (cur) = 0.521558, cls_loss (avg) = 0.480651, lr = 0.010000
iter = 173, accuracy (cur) = 0.760000 (all), 0.600000 (pos), 0.866667 (neg)
iter = 173, accuracy (avg) = 0.562371 (all), 0.501791 (pos), 0.627124 (neg)
data reader: epoch = 0, batch = 174 / 4040
iter = 174, cls_loss (cur) = 0.609317, cls_loss (avg) = 0.481938, lr = 0.010000
iter = 174, accuracy (cur) = 0.620000 (all), 0.357143 (pos), 0.954545 (neg)
iter = 174, accuracy (avg) = 0.562947 (all), 0.500344 (pos), 0.630398 (neg)
data reader: epoch = 0, batch = 175 / 4040
iter = 175, cls_loss (cur) = 0.622071, cls_loss (avg) = 0.483339, lr = 0.010000
iter = 175, accuracy (cur) = 0.680000 (all), 0.608696 (pos), 0.740741 (neg)
iter = 175, accuracy (avg) = 0.564118 (all), 0.501428 (pos), 0.631502 (neg)
data reader: epoch = 0, batch = 176 / 4040
iter = 176, cls_loss (cur) = 0.611543, cls_loss (avg) = 0.484621, lr = 0.010000
iter = 176, accuracy (cur) = 0.620000 (all), 0.363636 (pos), 0.821429 (neg)
iter = 176, accuracy (avg) = 0.564676 (all), 0.500050 (pos), 0.633401 (neg)
data reader: epoch = 0, batch = 177 / 4040
iter = 177, cls_loss (cur) = 0.551619, cls_loss (avg) = 0.485291, lr = 0.010000
iter = 177, accuracy (cur) = 0.740000 (all), 0.478261 (pos), 0.962963 (neg)
iter = 177, accuracy (avg) = 0.566430 (all), 0.499832 (pos), 0.636696 (neg)
data reader: epoch = 0, batch = 178 / 4040
iter = 178, cls_loss (cur) = 0.526803, cls_loss (avg) = 0.485706, lr = 0.010000
iter = 178, accuracy (cur) = 0.740000 (all), 0.666667 (pos), 0.807692 (neg)
iter = 178, accuracy (avg) = 0.568165 (all), 0.501500 (pos), 0.638406 (neg)
data reader: epoch = 0, batch = 179 / 4040
iter = 179, cls_loss (cur) = 0.547940, cls_loss (avg) = 0.486329, lr = 0.010000
iter = 179, accuracy (cur) = 0.740000 (all), 0.666667 (pos), 0.826087 (neg)
iter = 179, accuracy (avg) = 0.569884 (all), 0.503152 (pos), 0.640283 (neg)
data reader: epoch = 0, batch = 180 / 4040
iter = 180, cls_loss (cur) = 0.592582, cls_loss (avg) = 0.487391, lr = 0.010000
iter = 180, accuracy (cur) = 0.680000 (all), 0.500000 (pos), 0.875000 (neg)
iter = 180, accuracy (avg) = 0.570985 (all), 0.503120 (pos), 0.642630 (neg)
data reader: epoch = 0, batch = 181 / 4040
iter = 181, cls_loss (cur) = 0.619316, cls_loss (avg) = 0.488711, lr = 0.010000
iter = 181, accuracy (cur) = 0.640000 (all), 0.636364 (pos), 0.642857 (neg)
iter = 181, accuracy (avg) = 0.571675 (all), 0.504453 (pos), 0.642633 (neg)
data reader: epoch = 0, batch = 182 / 4040
iter = 182, cls_loss (cur) = 0.680415, cls_loss (avg) = 0.490628, lr = 0.010000
iter = 182, accuracy (cur) = 0.520000 (all), 0.384615 (pos), 0.666667 (neg)
iter = 182, accuracy (avg) = 0.571158 (all), 0.503254 (pos), 0.642873 (neg)
data reader: epoch = 0, batch = 183 / 4040
iter = 183, cls_loss (cur) = 0.582454, cls_loss (avg) = 0.491546, lr = 0.010000
iter = 183, accuracy (cur) = 0.660000 (all), 0.541667 (pos), 0.769231 (neg)
iter = 183, accuracy (avg) = 0.572047 (all), 0.503639 (pos), 0.644137 (neg)
data reader: epoch = 0, batch = 184 / 4040
iter = 184, cls_loss (cur) = 0.556972, cls_loss (avg) = 0.492200, lr = 0.010000
iter = 184, accuracy (cur) = 0.720000 (all), 0.450000 (pos), 0.900000 (neg)
iter = 184, accuracy (avg) = 0.573526 (all), 0.503102 (pos), 0.646695 (neg)
data reader: epoch = 0, batch = 185 / 4040
iter = 185, cls_loss (cur) = 0.522064, cls_loss (avg) = 0.492499, lr = 0.010000
iter = 185, accuracy (cur) = 0.780000 (all), 0.600000 (pos), 0.960000 (neg)
iter = 185, accuracy (avg) = 0.575591 (all), 0.504071 (pos), 0.649828 (neg)
data reader: epoch = 0, batch = 186 / 4040
iter = 186, cls_loss (cur) = 0.542236, cls_loss (avg) = 0.492996, lr = 0.010000
iter = 186, accuracy (cur) = 0.760000 (all), 0.680000 (pos), 0.840000 (neg)
iter = 186, accuracy (avg) = 0.577435 (all), 0.505830 (pos), 0.651730 (neg)
data reader: epoch = 0, batch = 187 / 4040
iter = 187, cls_loss (cur) = 0.590602, cls_loss (avg) = 0.493972, lr = 0.010000
iter = 187, accuracy (cur) = 0.640000 (all), 0.482759 (pos), 0.857143 (neg)
iter = 187, accuracy (avg) = 0.578061 (all), 0.505600 (pos), 0.653784 (neg)
data reader: epoch = 0, batch = 188 / 4040
iter = 188, cls_loss (cur) = 0.592327, cls_loss (avg) = 0.494956, lr = 0.010000
iter = 188, accuracy (cur) = 0.680000 (all), 0.666667 (pos), 0.692308 (neg)
iter = 188, accuracy (avg) = 0.579080 (all), 0.507210 (pos), 0.654169 (neg)
data reader: epoch = 0, batch = 189 / 4040
iter = 189, cls_loss (cur) = 0.504039, cls_loss (avg) = 0.495047, lr = 0.010000
iter = 189, accuracy (cur) = 0.740000 (all), 0.791667 (pos), 0.692308 (neg)
iter = 189, accuracy (avg) = 0.580689 (all), 0.510055 (pos), 0.654551 (neg)
data reader: epoch = 0, batch = 190 / 4040
iter = 190, cls_loss (cur) = 0.538282, cls_loss (avg) = 0.495479, lr = 0.010000
iter = 190, accuracy (cur) = 0.720000 (all), 0.560000 (pos), 0.880000 (neg)
iter = 190, accuracy (avg) = 0.582082 (all), 0.510554 (pos), 0.656805 (neg)
data reader: epoch = 0, batch = 191 / 4040
iter = 191, cls_loss (cur) = 0.563953, cls_loss (avg) = 0.496164, lr = 0.010000
iter = 191, accuracy (cur) = 0.680000 (all), 0.521739 (pos), 0.814815 (neg)
iter = 191, accuracy (avg) = 0.583062 (all), 0.510666 (pos), 0.658385 (neg)
data reader: epoch = 0, batch = 192 / 4040
iter = 192, cls_loss (cur) = 0.498602, cls_loss (avg) = 0.496188, lr = 0.010000
iter = 192, accuracy (cur) = 0.760000 (all), 0.666667 (pos), 0.827586 (neg)
iter = 192, accuracy (avg) = 0.584831 (all), 0.512226 (pos), 0.660077 (neg)
data reader: epoch = 0, batch = 193 / 4040
iter = 193, cls_loss (cur) = 0.653378, cls_loss (avg) = 0.497760, lr = 0.010000
iter = 193, accuracy (cur) = 0.600000 (all), 0.307692 (pos), 0.916667 (neg)
iter = 193, accuracy (avg) = 0.584983 (all), 0.510181 (pos), 0.662643 (neg)
data reader: epoch = 0, batch = 194 / 4040
iter = 194, cls_loss (cur) = 0.590534, cls_loss (avg) = 0.498688, lr = 0.010000
iter = 194, accuracy (cur) = 0.700000 (all), 0.523810 (pos), 0.827586 (neg)
iter = 194, accuracy (avg) = 0.586133 (all), 0.510317 (pos), 0.664293 (neg)
data reader: epoch = 0, batch = 195 / 4040
iter = 195, cls_loss (cur) = 0.647423, cls_loss (avg) = 0.500175, lr = 0.010000
iter = 195, accuracy (cur) = 0.600000 (all), 0.379310 (pos), 0.904762 (neg)
iter = 195, accuracy (avg) = 0.586272 (all), 0.509007 (pos), 0.666697 (neg)
data reader: epoch = 0, batch = 196 / 4040
iter = 196, cls_loss (cur) = 0.460739, cls_loss (avg) = 0.499781, lr = 0.010000
iter = 196, accuracy (cur) = 0.760000 (all), 0.740741 (pos), 0.782609 (neg)
iter = 196, accuracy (avg) = 0.588009 (all), 0.511325 (pos), 0.667856 (neg)
data reader: epoch = 0, batch = 197 / 4040
iter = 197, cls_loss (cur) = 0.483952, cls_loss (avg) = 0.499622, lr = 0.010000
iter = 197, accuracy (cur) = 0.720000 (all), 0.620690 (pos), 0.857143 (neg)
iter = 197, accuracy (avg) = 0.589329 (all), 0.512418 (pos), 0.669749 (neg)
data reader: epoch = 0, batch = 198 / 4040
iter = 198, cls_loss (cur) = 0.620668, cls_loss (avg) = 0.500833, lr = 0.010000
iter = 198, accuracy (cur) = 0.580000 (all), 0.440000 (pos), 0.720000 (neg)
iter = 198, accuracy (avg) = 0.589235 (all), 0.511694 (pos), 0.670252 (neg)
data reader: epoch = 0, batch = 199 / 4040
iter = 199, cls_loss (cur) = 0.584478, cls_loss (avg) = 0.501669, lr = 0.010000
iter = 199, accuracy (cur) = 0.700000 (all), 0.739130 (pos), 0.666667 (neg)
iter = 199, accuracy (avg) = 0.590343 (all), 0.513968 (pos), 0.670216 (neg)
data reader: epoch = 0, batch = 200 / 4040
iter = 200, cls_loss (cur) = 0.585956, cls_loss (avg) = 0.502512, lr = 0.010000
iter = 200, accuracy (cur) = 0.720000 (all), 0.782609 (pos), 0.666667 (neg)
iter = 200, accuracy (avg) = 0.591640 (all), 0.516655 (pos), 0.670180 (neg)
data reader: epoch = 0, batch = 201 / 4040
iter = 201, cls_loss (cur) = 0.589719, cls_loss (avg) = 0.503384, lr = 0.010000
iter = 201, accuracy (cur) = 0.700000 (all), 0.518519 (pos), 0.913043 (neg)
iter = 201, accuracy (avg) = 0.592723 (all), 0.516673 (pos), 0.672609 (neg)
data reader: epoch = 0, batch = 202 / 4040
iter = 202, cls_loss (cur) = 0.585222, cls_loss (avg) = 0.504203, lr = 0.010000
iter = 202, accuracy (cur) = 0.600000 (all), 0.448276 (pos), 0.809524 (neg)
iter = 202, accuracy (avg) = 0.592796 (all), 0.515989 (pos), 0.673978 (neg)
data reader: epoch = 0, batch = 203 / 4040
iter = 203, cls_loss (cur) = 0.573960, cls_loss (avg) = 0.504900, lr = 0.010000
iter = 203, accuracy (cur) = 0.640000 (all), 0.550000 (pos), 0.700000 (neg)
iter = 203, accuracy (avg) = 0.593268 (all), 0.516330 (pos), 0.674238 (neg)
data reader: epoch = 0, batch = 204 / 4040
iter = 204, cls_loss (cur) = 0.555711, cls_loss (avg) = 0.505408, lr = 0.010000
iter = 204, accuracy (cur) = 0.720000 (all), 0.576923 (pos), 0.875000 (neg)
iter = 204, accuracy (avg) = 0.594535 (all), 0.516935 (pos), 0.676246 (neg)
data reader: epoch = 0, batch = 205 / 4040
iter = 205, cls_loss (cur) = 0.630766, cls_loss (avg) = 0.506662, lr = 0.010000
iter = 205, accuracy (cur) = 0.600000 (all), 0.461538 (pos), 0.750000 (neg)
iter = 205, accuracy (avg) = 0.594590 (all), 0.516381 (pos), 0.676984 (neg)
data reader: epoch = 0, batch = 206 / 4040
iter = 206, cls_loss (cur) = 0.559651, cls_loss (avg) = 0.507192, lr = 0.010000
iter = 206, accuracy (cur) = 0.660000 (all), 0.615385 (pos), 0.708333 (neg)
iter = 206, accuracy (avg) = 0.595244 (all), 0.517372 (pos), 0.677297 (neg)
data reader: epoch = 0, batch = 207 / 4040
iter = 207, cls_loss (cur) = 0.558437, cls_loss (avg) = 0.507704, lr = 0.010000
iter = 207, accuracy (cur) = 0.700000 (all), 0.666667 (pos), 0.730769 (neg)
iter = 207, accuracy (avg) = 0.596292 (all), 0.518864 (pos), 0.677832 (neg)
data reader: epoch = 0, batch = 208 / 4040
iter = 208, cls_loss (cur) = 0.562305, cls_loss (avg) = 0.508250, lr = 0.010000
iter = 208, accuracy (cur) = 0.680000 (all), 0.407407 (pos), 1.000000 (neg)
iter = 208, accuracy (avg) = 0.597129 (all), 0.517750 (pos), 0.681054 (neg)
data reader: epoch = 0, batch = 209 / 4040
iter = 209, cls_loss (cur) = 0.516176, cls_loss (avg) = 0.508330, lr = 0.010000
iter = 209, accuracy (cur) = 0.740000 (all), 0.666667 (pos), 0.826087 (neg)
iter = 209, accuracy (avg) = 0.598557 (all), 0.519239 (pos), 0.682504 (neg)
data reader: epoch = 0, batch = 210 / 4040
iter = 210, cls_loss (cur) = 0.590815, cls_loss (avg) = 0.509154, lr = 0.010000
iter = 210, accuracy (cur) = 0.680000 (all), 0.551724 (pos), 0.857143 (neg)
iter = 210, accuracy (avg) = 0.599372 (all), 0.519564 (pos), 0.684250 (neg)
data reader: epoch = 0, batch = 211 / 4040
iter = 211, cls_loss (cur) = 0.556219, cls_loss (avg) = 0.509625, lr = 0.010000
iter = 211, accuracy (cur) = 0.700000 (all), 0.652174 (pos), 0.740741 (neg)
iter = 211, accuracy (avg) = 0.600378 (all), 0.520890 (pos), 0.684815 (neg)
data reader: epoch = 0, batch = 212 / 4040
iter = 212, cls_loss (cur) = 0.602736, cls_loss (avg) = 0.510556, lr = 0.010000
iter = 212, accuracy (cur) = 0.640000 (all), 0.666667 (pos), 0.615385 (neg)
iter = 212, accuracy (avg) = 0.600774 (all), 0.522348 (pos), 0.684121 (neg)
data reader: epoch = 0, batch = 213 / 4040
iter = 213, cls_loss (cur) = 0.516549, cls_loss (avg) = 0.510616, lr = 0.010000
iter = 213, accuracy (cur) = 0.700000 (all), 0.571429 (pos), 0.863636 (neg)
iter = 213, accuracy (avg) = 0.601767 (all), 0.522839 (pos), 0.685916 (neg)
data reader: epoch = 0, batch = 214 / 4040
iter = 214, cls_loss (cur) = 0.624225, cls_loss (avg) = 0.511752, lr = 0.010000
iter = 214, accuracy (cur) = 0.620000 (all), 0.518519 (pos), 0.739130 (neg)
iter = 214, accuracy (avg) = 0.601949 (all), 0.522795 (pos), 0.686448 (neg)
data reader: epoch = 0, batch = 215 / 4040
iter = 215, cls_loss (cur) = 0.444855, cls_loss (avg) = 0.511083, lr = 0.010000
iter = 215, accuracy (cur) = 0.800000 (all), 0.840000 (pos), 0.760000 (neg)
iter = 215, accuracy (avg) = 0.603929 (all), 0.525967 (pos), 0.687184 (neg)
data reader: epoch = 0, batch = 216 / 4040
iter = 216, cls_loss (cur) = 0.501366, cls_loss (avg) = 0.510986, lr = 0.010000
iter = 216, accuracy (cur) = 0.760000 (all), 0.760000 (pos), 0.760000 (neg)
iter = 216, accuracy (avg) = 0.605490 (all), 0.528308 (pos), 0.687912 (neg)
data reader: epoch = 0, batch = 217 / 4040
iter = 217, cls_loss (cur) = 0.560117, cls_loss (avg) = 0.511477, lr = 0.010000
iter = 217, accuracy (cur) = 0.700000 (all), 0.565217 (pos), 0.814815 (neg)
iter = 217, accuracy (avg) = 0.606435 (all), 0.528677 (pos), 0.689181 (neg)
data reader: epoch = 0, batch = 218 / 4040
iter = 218, cls_loss (cur) = 0.532480, cls_loss (avg) = 0.511687, lr = 0.010000
iter = 218, accuracy (cur) = 0.740000 (all), 0.758621 (pos), 0.714286 (neg)
iter = 218, accuracy (avg) = 0.607771 (all), 0.530976 (pos), 0.689432 (neg)
data reader: epoch = 0, batch = 219 / 4040
iter = 219, cls_loss (cur) = 0.582982, cls_loss (avg) = 0.512400, lr = 0.010000
iter = 219, accuracy (cur) = 0.700000 (all), 0.583333 (pos), 0.807692 (neg)
iter = 219, accuracy (avg) = 0.608693 (all), 0.531500 (pos), 0.690615 (neg)
data reader: epoch = 0, batch = 220 / 4040
iter = 220, cls_loss (cur) = 0.559649, cls_loss (avg) = 0.512873, lr = 0.010000
iter = 220, accuracy (cur) = 0.760000 (all), 0.571429 (pos), 0.896552 (neg)
iter = 220, accuracy (avg) = 0.610206 (all), 0.531899 (pos), 0.692674 (neg)
data reader: epoch = 0, batch = 221 / 4040
iter = 221, cls_loss (cur) = 0.577218, cls_loss (avg) = 0.513516, lr = 0.010000
iter = 221, accuracy (cur) = 0.620000 (all), 0.464286 (pos), 0.818182 (neg)
iter = 221, accuracy (avg) = 0.610304 (all), 0.531223 (pos), 0.693929 (neg)
data reader: epoch = 0, batch = 222 / 4040
iter = 222, cls_loss (cur) = 0.500120, cls_loss (avg) = 0.513382, lr = 0.010000
iter = 222, accuracy (cur) = 0.760000 (all), 0.687500 (pos), 0.888889 (neg)
iter = 222, accuracy (avg) = 0.611801 (all), 0.532786 (pos), 0.695879 (neg)
data reader: epoch = 0, batch = 223 / 4040
iter = 223, cls_loss (cur) = 0.515118, cls_loss (avg) = 0.513400, lr = 0.010000
iter = 223, accuracy (cur) = 0.760000 (all), 0.760000 (pos), 0.760000 (neg)
iter = 223, accuracy (avg) = 0.613283 (all), 0.535058 (pos), 0.696520 (neg)
data reader: epoch = 0, batch = 224 / 4040
iter = 224, cls_loss (cur) = 0.599452, cls_loss (avg) = 0.514260, lr = 0.010000
iter = 224, accuracy (cur) = 0.700000 (all), 0.640000 (pos), 0.760000 (neg)
iter = 224, accuracy (avg) = 0.614150 (all), 0.536107 (pos), 0.697155 (neg)
data reader: epoch = 0, batch = 225 / 4040
iter = 225, cls_loss (cur) = 0.512830, cls_loss (avg) = 0.514246, lr = 0.010000
iter = 225, accuracy (cur) = 0.780000 (all), 0.590909 (pos), 0.928571 (neg)
iter = 225, accuracy (avg) = 0.615809 (all), 0.536655 (pos), 0.699469 (neg)
data reader: epoch = 0, batch = 226 / 4040
iter = 226, cls_loss (cur) = 0.606269, cls_loss (avg) = 0.515166, lr = 0.010000
iter = 226, accuracy (cur) = 0.680000 (all), 0.434783 (pos), 0.888889 (neg)
iter = 226, accuracy (avg) = 0.616451 (all), 0.535637 (pos), 0.701363 (neg)
data reader: epoch = 0, batch = 227 / 4040
iter = 227, cls_loss (cur) = 0.568390, cls_loss (avg) = 0.515698, lr = 0.010000
iter = 227, accuracy (cur) = 0.680000 (all), 0.450000 (pos), 0.833333 (neg)
iter = 227, accuracy (avg) = 0.617086 (all), 0.534780 (pos), 0.702683 (neg)
data reader: epoch = 0, batch = 228 / 4040
iter = 228, cls_loss (cur) = 0.601569, cls_loss (avg) = 0.516557, lr = 0.010000
iter = 228, accuracy (cur) = 0.640000 (all), 0.478261 (pos), 0.777778 (neg)
iter = 228, accuracy (avg) = 0.617315 (all), 0.534215 (pos), 0.703434 (neg)
data reader: epoch = 0, batch = 229 / 4040
iter = 229, cls_loss (cur) = 0.589360, cls_loss (avg) = 0.517285, lr = 0.010000
iter = 229, accuracy (cur) = 0.700000 (all), 0.566667 (pos), 0.900000 (neg)
iter = 229, accuracy (avg) = 0.618142 (all), 0.534540 (pos), 0.705399 (neg)
data reader: epoch = 0, batch = 230 / 4040
iter = 230, cls_loss (cur) = 0.508591, cls_loss (avg) = 0.517198, lr = 0.010000
iter = 230, accuracy (cur) = 0.760000 (all), 0.666667 (pos), 0.812500 (neg)
iter = 230, accuracy (avg) = 0.619561 (all), 0.535861 (pos), 0.706470 (neg)
data reader: epoch = 0, batch = 231 / 4040
iter = 231, cls_loss (cur) = 0.469658, cls_loss (avg) = 0.516723, lr = 0.010000
iter = 231, accuracy (cur) = 0.800000 (all), 0.708333 (pos), 0.884615 (neg)
iter = 231, accuracy (avg) = 0.621365 (all), 0.537586 (pos), 0.708252 (neg)
data reader: epoch = 0, batch = 232 / 4040
iter = 232, cls_loss (cur) = 0.507055, cls_loss (avg) = 0.516626, lr = 0.010000
iter = 232, accuracy (cur) = 0.800000 (all), 0.700000 (pos), 0.866667 (neg)
iter = 232, accuracy (avg) = 0.623152 (all), 0.539210 (pos), 0.709836 (neg)
data reader: epoch = 0, batch = 233 / 4040
iter = 233, cls_loss (cur) = 0.592029, cls_loss (avg) = 0.517380, lr = 0.010000
iter = 233, accuracy (cur) = 0.660000 (all), 0.629630 (pos), 0.695652 (neg)
iter = 233, accuracy (avg) = 0.623520 (all), 0.540114 (pos), 0.709694 (neg)
data reader: epoch = 0, batch = 234 / 4040
iter = 234, cls_loss (cur) = 0.486176, cls_loss (avg) = 0.517068, lr = 0.010000
iter = 234, accuracy (cur) = 0.760000 (all), 0.500000 (pos), 0.964286 (neg)
iter = 234, accuracy (avg) = 0.624885 (all), 0.539713 (pos), 0.712240 (neg)
data reader: epoch = 0, batch = 235 / 4040
iter = 235, cls_loss (cur) = 0.533284, cls_loss (avg) = 0.517230, lr = 0.010000
iter = 235, accuracy (cur) = 0.680000 (all), 0.565217 (pos), 0.777778 (neg)
iter = 235, accuracy (avg) = 0.625436 (all), 0.539968 (pos), 0.712895 (neg)
data reader: epoch = 0, batch = 236 / 4040
iter = 236, cls_loss (cur) = 0.563526, cls_loss (avg) = 0.517693, lr = 0.010000
iter = 236, accuracy (cur) = 0.720000 (all), 0.520000 (pos), 0.920000 (neg)
iter = 236, accuracy (avg) = 0.626382 (all), 0.539768 (pos), 0.714966 (neg)
data reader: epoch = 0, batch = 237 / 4040
iter = 237, cls_loss (cur) = 0.423277, cls_loss (avg) = 0.516749, lr = 0.010000
iter = 237, accuracy (cur) = 0.860000 (all), 0.925926 (pos), 0.782609 (neg)
iter = 237, accuracy (avg) = 0.628718 (all), 0.543630 (pos), 0.715643 (neg)
data reader: epoch = 0, batch = 238 / 4040
iter = 238, cls_loss (cur) = 0.588166, cls_loss (avg) = 0.517463, lr = 0.010000
iter = 238, accuracy (cur) = 0.620000 (all), 0.607143 (pos), 0.636364 (neg)
iter = 238, accuracy (avg) = 0.628631 (all), 0.544265 (pos), 0.714850 (neg)
data reader: epoch = 0, batch = 239 / 4040
iter = 239, cls_loss (cur) = 0.527469, cls_loss (avg) = 0.517563, lr = 0.010000
iter = 239, accuracy (cur) = 0.740000 (all), 0.550000 (pos), 0.866667 (neg)
iter = 239, accuracy (avg) = 0.629744 (all), 0.544322 (pos), 0.716368 (neg)
data reader: epoch = 0, batch = 240 / 4040
iter = 240, cls_loss (cur) = 0.502445, cls_loss (avg) = 0.517412, lr = 0.010000
iter = 240, accuracy (cur) = 0.780000 (all), 0.714286 (pos), 0.863636 (neg)
iter = 240, accuracy (avg) = 0.631247 (all), 0.546022 (pos), 0.717841 (neg)
data reader: epoch = 0, batch = 241 / 4040
iter = 241, cls_loss (cur) = 0.555199, cls_loss (avg) = 0.517790, lr = 0.010000
iter = 241, accuracy (cur) = 0.660000 (all), 0.576923 (pos), 0.750000 (neg)
iter = 241, accuracy (avg) = 0.631534 (all), 0.546331 (pos), 0.718162 (neg)
data reader: epoch = 0, batch = 242 / 4040
iter = 242, cls_loss (cur) = 0.532932, cls_loss (avg) = 0.517941, lr = 0.010000
iter = 242, accuracy (cur) = 0.720000 (all), 0.653846 (pos), 0.791667 (neg)
iter = 242, accuracy (avg) = 0.632419 (all), 0.547406 (pos), 0.718897 (neg)
data reader: epoch = 0, batch = 243 / 4040
iter = 243, cls_loss (cur) = 0.534544, cls_loss (avg) = 0.518107, lr = 0.010000
iter = 243, accuracy (cur) = 0.700000 (all), 0.625000 (pos), 0.769231 (neg)
iter = 243, accuracy (avg) = 0.633095 (all), 0.548182 (pos), 0.719401 (neg)
data reader: epoch = 0, batch = 244 / 4040
iter = 244, cls_loss (cur) = 0.503072, cls_loss (avg) = 0.517957, lr = 0.010000
iter = 244, accuracy (cur) = 0.780000 (all), 0.680000 (pos), 0.880000 (neg)
iter = 244, accuracy (avg) = 0.634564 (all), 0.549500 (pos), 0.721007 (neg)
data reader: epoch = 0, batch = 245 / 4040
iter = 245, cls_loss (cur) = 0.449324, cls_loss (avg) = 0.517271, lr = 0.010000
iter = 245, accuracy (cur) = 0.760000 (all), 0.689655 (pos), 0.857143 (neg)
iter = 245, accuracy (avg) = 0.635818 (all), 0.550902 (pos), 0.722368 (neg)
data reader: epoch = 0, batch = 246 / 4040
iter = 246, cls_loss (cur) = 0.554207, cls_loss (avg) = 0.517640, lr = 0.010000
iter = 246, accuracy (cur) = 0.700000 (all), 0.629630 (pos), 0.782609 (neg)
iter = 246, accuracy (avg) = 0.636460 (all), 0.551689 (pos), 0.722971 (neg)
data reader: epoch = 0, batch = 247 / 4040
iter = 247, cls_loss (cur) = 0.478633, cls_loss (avg) = 0.517250, lr = 0.010000
iter = 247, accuracy (cur) = 0.820000 (all), 0.695652 (pos), 0.925926 (neg)
iter = 247, accuracy (avg) = 0.638296 (all), 0.553129 (pos), 0.725000 (neg)
data reader: epoch = 0, batch = 248 / 4040
iter = 248, cls_loss (cur) = 0.489012, cls_loss (avg) = 0.516968, lr = 0.010000
iter = 248, accuracy (cur) = 0.800000 (all), 0.703704 (pos), 0.913043 (neg)
iter = 248, accuracy (avg) = 0.639913 (all), 0.554634 (pos), 0.726881 (neg)
data reader: epoch = 0, batch = 249 / 4040
iter = 249, cls_loss (cur) = 0.541254, cls_loss (avg) = 0.517210, lr = 0.010000
iter = 249, accuracy (cur) = 0.700000 (all), 0.666667 (pos), 0.739130 (neg)
iter = 249, accuracy (avg) = 0.640513 (all), 0.555755 (pos), 0.727003 (neg)
data reader: epoch = 0, batch = 250 / 4040
iter = 250, cls_loss (cur) = 0.531431, cls_loss (avg) = 0.517353, lr = 0.010000
iter = 250, accuracy (cur) = 0.740000 (all), 0.608696 (pos), 0.851852 (neg)
iter = 250, accuracy (avg) = 0.641508 (all), 0.556284 (pos), 0.728252 (neg)
data reader: epoch = 0, batch = 251 / 4040
iter = 251, cls_loss (cur) = 0.485399, cls_loss (avg) = 0.517033, lr = 0.010000
iter = 251, accuracy (cur) = 0.780000 (all), 0.720000 (pos), 0.840000 (neg)
iter = 251, accuracy (avg) = 0.642893 (all), 0.557921 (pos), 0.729369 (neg)
data reader: epoch = 0, batch = 252 / 4040
iter = 252, cls_loss (cur) = 0.570549, cls_loss (avg) = 0.517568, lr = 0.010000
iter = 252, accuracy (cur) = 0.700000 (all), 0.629630 (pos), 0.782609 (neg)
iter = 252, accuracy (avg) = 0.643464 (all), 0.558638 (pos), 0.729901 (neg)
data reader: epoch = 0, batch = 253 / 4040
iter = 253, cls_loss (cur) = 0.651713, cls_loss (avg) = 0.518910, lr = 0.010000
iter = 253, accuracy (cur) = 0.580000 (all), 0.346154 (pos), 0.833333 (neg)
iter = 253, accuracy (avg) = 0.642830 (all), 0.556513 (pos), 0.730936 (neg)
data reader: epoch = 0, batch = 254 / 4040
iter = 254, cls_loss (cur) = 0.576757, cls_loss (avg) = 0.519488, lr = 0.010000
iter = 254, accuracy (cur) = 0.680000 (all), 0.555556 (pos), 0.826087 (neg)
iter = 254, accuracy (avg) = 0.643201 (all), 0.556504 (pos), 0.731887 (neg)
data reader: epoch = 0, batch = 255 / 4040
iter = 255, cls_loss (cur) = 0.589090, cls_loss (avg) = 0.520184, lr = 0.010000
iter = 255, accuracy (cur) = 0.660000 (all), 0.652174 (pos), 0.666667 (neg)
iter = 255, accuracy (avg) = 0.643369 (all), 0.557461 (pos), 0.731235 (neg)
data reader: epoch = 0, batch = 256 / 4040
iter = 256, cls_loss (cur) = 0.523487, cls_loss (avg) = 0.520217, lr = 0.010000
iter = 256, accuracy (cur) = 0.720000 (all), 0.560000 (pos), 0.880000 (neg)
iter = 256, accuracy (avg) = 0.644136 (all), 0.557486 (pos), 0.732723 (neg)
data reader: epoch = 0, batch = 257 / 4040
iter = 257, cls_loss (cur) = 0.562116, cls_loss (avg) = 0.520636, lr = 0.010000
iter = 257, accuracy (cur) = 0.700000 (all), 0.592593 (pos), 0.826087 (neg)
iter = 257, accuracy (avg) = 0.644694 (all), 0.557837 (pos), 0.733656 (neg)
data reader: epoch = 0, batch = 258 / 4040
iter = 258, cls_loss (cur) = 0.566483, cls_loss (avg) = 0.521095, lr = 0.010000
iter = 258, accuracy (cur) = 0.720000 (all), 0.550000 (pos), 0.833333 (neg)
iter = 258, accuracy (avg) = 0.645447 (all), 0.557759 (pos), 0.734653 (neg)
data reader: epoch = 0, batch = 259 / 4040
iter = 259, cls_loss (cur) = 0.493859, cls_loss (avg) = 0.520822, lr = 0.010000
iter = 259, accuracy (cur) = 0.780000 (all), 0.583333 (pos), 0.961538 (neg)
iter = 259, accuracy (avg) = 0.646793 (all), 0.558014 (pos), 0.736922 (neg)
data reader: epoch = 0, batch = 260 / 4040
iter = 260, cls_loss (cur) = 0.445776, cls_loss (avg) = 0.520072, lr = 0.010000
iter = 260, accuracy (cur) = 0.840000 (all), 0.800000 (pos), 0.880000 (neg)
iter = 260, accuracy (avg) = 0.648725 (all), 0.560434 (pos), 0.738353 (neg)
data reader: epoch = 0, batch = 261 / 4040
iter = 261, cls_loss (cur) = 0.456387, cls_loss (avg) = 0.519435, lr = 0.010000
iter = 261, accuracy (cur) = 0.820000 (all), 0.809524 (pos), 0.827586 (neg)
iter = 261, accuracy (avg) = 0.650438 (all), 0.562925 (pos), 0.739245 (neg)
data reader: epoch = 0, batch = 262 / 4040
iter = 262, cls_loss (cur) = 0.542482, cls_loss (avg) = 0.519665, lr = 0.010000
iter = 262, accuracy (cur) = 0.700000 (all), 0.500000 (pos), 0.884615 (neg)
iter = 262, accuracy (avg) = 0.650933 (all), 0.562296 (pos), 0.740699 (neg)
data reader: epoch = 0, batch = 263 / 4040
iter = 263, cls_loss (cur) = 0.520141, cls_loss (avg) = 0.519670, lr = 0.010000
iter = 263, accuracy (cur) = 0.740000 (all), 0.565217 (pos), 0.888889 (neg)
iter = 263, accuracy (avg) = 0.651824 (all), 0.562325 (pos), 0.742181 (neg)
data reader: epoch = 0, batch = 264 / 4040
iter = 264, cls_loss (cur) = 0.500591, cls_loss (avg) = 0.519479, lr = 0.010000
iter = 264, accuracy (cur) = 0.760000 (all), 0.678571 (pos), 0.863636 (neg)
iter = 264, accuracy (avg) = 0.652906 (all), 0.563488 (pos), 0.743395 (neg)
data reader: epoch = 0, batch = 265 / 4040
iter = 265, cls_loss (cur) = 0.646158, cls_loss (avg) = 0.520746, lr = 0.010000
iter = 265, accuracy (cur) = 0.580000 (all), 0.523810 (pos), 0.620690 (neg)
iter = 265, accuracy (avg) = 0.652177 (all), 0.563091 (pos), 0.742168 (neg)
data reader: epoch = 0, batch = 266 / 4040
iter = 266, cls_loss (cur) = 0.460289, cls_loss (avg) = 0.520142, lr = 0.010000
iter = 266, accuracy (cur) = 0.800000 (all), 0.583333 (pos), 1.000000 (neg)
iter = 266, accuracy (avg) = 0.653655 (all), 0.563293 (pos), 0.744747 (neg)
data reader: epoch = 0, batch = 267 / 4040
iter = 267, cls_loss (cur) = 0.608348, cls_loss (avg) = 0.521024, lr = 0.010000
iter = 267, accuracy (cur) = 0.580000 (all), 0.357143 (pos), 0.863636 (neg)
iter = 267, accuracy (avg) = 0.652918 (all), 0.561232 (pos), 0.745935 (neg)
data reader: epoch = 0, batch = 268 / 4040
iter = 268, cls_loss (cur) = 0.507614, cls_loss (avg) = 0.520890, lr = 0.010000
iter = 268, accuracy (cur) = 0.740000 (all), 0.733333 (pos), 0.750000 (neg)
iter = 268, accuracy (avg) = 0.653789 (all), 0.562953 (pos), 0.745976 (neg)
data reader: epoch = 0, batch = 269 / 4040
iter = 269, cls_loss (cur) = 0.646978, cls_loss (avg) = 0.522150, lr = 0.010000
iter = 269, accuracy (cur) = 0.580000 (all), 0.576923 (pos), 0.583333 (neg)
iter = 269, accuracy (avg) = 0.653051 (all), 0.563092 (pos), 0.744350 (neg)
data reader: epoch = 0, batch = 270 / 4040
iter = 270, cls_loss (cur) = 0.498437, cls_loss (avg) = 0.521913, lr = 0.010000
iter = 270, accuracy (cur) = 0.640000 (all), 0.740741 (pos), 0.521739 (neg)
iter = 270, accuracy (avg) = 0.652921 (all), 0.564869 (pos), 0.742124 (neg)
data reader: epoch = 0, batch = 271 / 4040
iter = 271, cls_loss (cur) = 0.563543, cls_loss (avg) = 0.522330, lr = 0.010000
iter = 271, accuracy (cur) = 0.660000 (all), 0.583333 (pos), 0.730769 (neg)
iter = 271, accuracy (avg) = 0.652992 (all), 0.565054 (pos), 0.742010 (neg)
data reader: epoch = 0, batch = 272 / 4040
iter = 272, cls_loss (cur) = 0.582675, cls_loss (avg) = 0.522933, lr = 0.010000
iter = 272, accuracy (cur) = 0.640000 (all), 0.640000 (pos), 0.640000 (neg)
iter = 272, accuracy (avg) = 0.652862 (all), 0.565803 (pos), 0.740990 (neg)
data reader: epoch = 0, batch = 273 / 4040
iter = 273, cls_loss (cur) = 0.573291, cls_loss (avg) = 0.523437, lr = 0.010000
iter = 273, accuracy (cur) = 0.720000 (all), 0.523810 (pos), 0.862069 (neg)
iter = 273, accuracy (avg) = 0.653533 (all), 0.565383 (pos), 0.742201 (neg)
data reader: epoch = 0, batch = 274 / 4040
iter = 274, cls_loss (cur) = 0.553563, cls_loss (avg) = 0.523738, lr = 0.010000
iter = 274, accuracy (cur) = 0.660000 (all), 0.500000 (pos), 0.833333 (neg)
iter = 274, accuracy (avg) = 0.653598 (all), 0.564729 (pos), 0.743112 (neg)
data reader: epoch = 0, batch = 275 / 4040
iter = 275, cls_loss (cur) = 0.542592, cls_loss (avg) = 0.523926, lr = 0.010000
iter = 275, accuracy (cur) = 0.760000 (all), 0.615385 (pos), 0.916667 (neg)
iter = 275, accuracy (avg) = 0.654662 (all), 0.565236 (pos), 0.744848 (neg)
data reader: epoch = 0, batch = 276 / 4040
iter = 276, cls_loss (cur) = 0.466013, cls_loss (avg) = 0.523347, lr = 0.010000
iter = 276, accuracy (cur) = 0.820000 (all), 0.782609 (pos), 0.851852 (neg)
iter = 276, accuracy (avg) = 0.656315 (all), 0.567410 (pos), 0.745918 (neg)
data reader: epoch = 0, batch = 277 / 4040
iter = 277, cls_loss (cur) = 0.560982, cls_loss (avg) = 0.523724, lr = 0.010000
iter = 277, accuracy (cur) = 0.760000 (all), 0.666667 (pos), 0.827586 (neg)
iter = 277, accuracy (avg) = 0.657352 (all), 0.568402 (pos), 0.746734 (neg)
data reader: epoch = 0, batch = 278 / 4040
iter = 278, cls_loss (cur) = 0.519836, cls_loss (avg) = 0.523685, lr = 0.010000
iter = 278, accuracy (cur) = 0.720000 (all), 0.551724 (pos), 0.952381 (neg)
iter = 278, accuracy (avg) = 0.657978 (all), 0.568235 (pos), 0.748791 (neg)
data reader: epoch = 0, batch = 279 / 4040
iter = 279, cls_loss (cur) = 0.549526, cls_loss (avg) = 0.523943, lr = 0.010000
iter = 279, accuracy (cur) = 0.800000 (all), 0.684211 (pos), 0.870968 (neg)
iter = 279, accuracy (avg) = 0.659399 (all), 0.569395 (pos), 0.750013 (neg)
data reader: epoch = 0, batch = 280 / 4040
iter = 280, cls_loss (cur) = 0.395130, cls_loss (avg) = 0.522655, lr = 0.010000
iter = 280, accuracy (cur) = 0.900000 (all), 0.826087 (pos), 0.962963 (neg)
iter = 280, accuracy (avg) = 0.661805 (all), 0.571962 (pos), 0.752142 (neg)
data reader: epoch = 0, batch = 281 / 4040
iter = 281, cls_loss (cur) = 0.522177, cls_loss (avg) = 0.522650, lr = 0.010000
iter = 281, accuracy (cur) = 0.700000 (all), 0.500000 (pos), 0.884615 (neg)
iter = 281, accuracy (avg) = 0.662187 (all), 0.571242 (pos), 0.753467 (neg)
data reader: epoch = 0, batch = 282 / 4040
iter = 282, cls_loss (cur) = 0.536935, cls_loss (avg) = 0.522793, lr = 0.010000
iter = 282, accuracy (cur) = 0.740000 (all), 0.500000 (pos), 0.852941 (neg)
iter = 282, accuracy (avg) = 0.662965 (all), 0.570530 (pos), 0.754461 (neg)
data reader: epoch = 0, batch = 283 / 4040
iter = 283, cls_loss (cur) = 0.528249, cls_loss (avg) = 0.522848, lr = 0.010000
iter = 283, accuracy (cur) = 0.700000 (all), 0.608696 (pos), 0.777778 (neg)
iter = 283, accuracy (avg) = 0.663335 (all), 0.570912 (pos), 0.754695 (neg)
data reader: epoch = 0, batch = 284 / 4040
iter = 284, cls_loss (cur) = 0.575166, cls_loss (avg) = 0.523371, lr = 0.010000
iter = 284, accuracy (cur) = 0.700000 (all), 0.555556 (pos), 0.869565 (neg)
iter = 284, accuracy (avg) = 0.663702 (all), 0.570758 (pos), 0.755843 (neg)
data reader: epoch = 0, batch = 285 / 4040
iter = 285, cls_loss (cur) = 0.535776, cls_loss (avg) = 0.523495, lr = 0.010000
iter = 285, accuracy (cur) = 0.700000 (all), 0.629630 (pos), 0.782609 (neg)
iter = 285, accuracy (avg) = 0.664065 (all), 0.571347 (pos), 0.756111 (neg)
data reader: epoch = 0, batch = 286 / 4040
iter = 286, cls_loss (cur) = 0.592575, cls_loss (avg) = 0.524186, lr = 0.010000
iter = 286, accuracy (cur) = 0.660000 (all), 0.571429 (pos), 0.772727 (neg)
iter = 286, accuracy (avg) = 0.664024 (all), 0.571348 (pos), 0.756277 (neg)
data reader: epoch = 0, batch = 287 / 4040
iter = 287, cls_loss (cur) = 0.503726, cls_loss (avg) = 0.523981, lr = 0.010000
iter = 287, accuracy (cur) = 0.800000 (all), 0.777778 (pos), 0.812500 (neg)
iter = 287, accuracy (avg) = 0.665384 (all), 0.573412 (pos), 0.756839 (neg)
data reader: epoch = 0, batch = 288 / 4040
iter = 288, cls_loss (cur) = 0.400639, cls_loss (avg) = 0.522748, lr = 0.010000
iter = 288, accuracy (cur) = 0.860000 (all), 0.739130 (pos), 0.962963 (neg)
iter = 288, accuracy (avg) = 0.667330 (all), 0.575069 (pos), 0.758901 (neg)
data reader: epoch = 0, batch = 289 / 4040
iter = 289, cls_loss (cur) = 0.472280, cls_loss (avg) = 0.522243, lr = 0.010000
iter = 289, accuracy (cur) = 0.780000 (all), 0.666667 (pos), 0.843750 (neg)
iter = 289, accuracy (avg) = 0.668457 (all), 0.575985 (pos), 0.759749 (neg)
data reader: epoch = 0, batch = 290 / 4040
iter = 290, cls_loss (cur) = 0.572928, cls_loss (avg) = 0.522750, lr = 0.010000
iter = 290, accuracy (cur) = 0.660000 (all), 0.428571 (pos), 0.954545 (neg)
iter = 290, accuracy (avg) = 0.668372 (all), 0.574511 (pos), 0.761697 (neg)
data reader: epoch = 0, batch = 291 / 4040
iter = 291, cls_loss (cur) = 0.497065, cls_loss (avg) = 0.522493, lr = 0.010000
iter = 291, accuracy (cur) = 0.780000 (all), 0.680000 (pos), 0.880000 (neg)
iter = 291, accuracy (avg) = 0.669488 (all), 0.575566 (pos), 0.762880 (neg)
data reader: epoch = 0, batch = 292 / 4040
iter = 292, cls_loss (cur) = 0.543225, cls_loss (avg) = 0.522700, lr = 0.010000
iter = 292, accuracy (cur) = 0.700000 (all), 0.600000 (pos), 0.800000 (neg)
iter = 292, accuracy (avg) = 0.669794 (all), 0.575810 (pos), 0.763251 (neg)
data reader: epoch = 0, batch = 293 / 4040
iter = 293, cls_loss (cur) = 0.636813, cls_loss (avg) = 0.523842, lr = 0.010000
iter = 293, accuracy (cur) = 0.660000 (all), 0.523810 (pos), 0.758621 (neg)
iter = 293, accuracy (avg) = 0.669696 (all), 0.575290 (pos), 0.763205 (neg)
data reader: epoch = 0, batch = 294 / 4040
iter = 294, cls_loss (cur) = 0.428636, cls_loss (avg) = 0.522889, lr = 0.010000
iter = 294, accuracy (cur) = 0.820000 (all), 0.695652 (pos), 0.925926 (neg)
iter = 294, accuracy (avg) = 0.671199 (all), 0.576494 (pos), 0.764832 (neg)
data reader: epoch = 0, batch = 295 / 4040
iter = 295, cls_loss (cur) = 0.573561, cls_loss (avg) = 0.523396, lr = 0.010000
iter = 295, accuracy (cur) = 0.720000 (all), 0.555556 (pos), 0.913043 (neg)
iter = 295, accuracy (avg) = 0.671687 (all), 0.576284 (pos), 0.766314 (neg)
data reader: epoch = 0, batch = 296 / 4040
iter = 296, cls_loss (cur) = 0.490949, cls_loss (avg) = 0.523072, lr = 0.010000
iter = 296, accuracy (cur) = 0.800000 (all), 0.769231 (pos), 0.833333 (neg)
iter = 296, accuracy (avg) = 0.672970 (all), 0.578214 (pos), 0.766985 (neg)
data reader: epoch = 0, batch = 297 / 4040
iter = 297, cls_loss (cur) = 0.572901, cls_loss (avg) = 0.523570, lr = 0.010000
iter = 297, accuracy (cur) = 0.700000 (all), 0.703704 (pos), 0.695652 (neg)
iter = 297, accuracy (avg) = 0.673240 (all), 0.579469 (pos), 0.766271 (neg)
data reader: epoch = 0, batch = 298 / 4040
iter = 298, cls_loss (cur) = 0.526673, cls_loss (avg) = 0.523601, lr = 0.010000
iter = 298, accuracy (cur) = 0.800000 (all), 0.782609 (pos), 0.814815 (neg)
iter = 298, accuracy (avg) = 0.674508 (all), 0.581500 (pos), 0.766757 (neg)
data reader: epoch = 0, batch = 299 / 4040
iter = 299, cls_loss (cur) = 0.551742, cls_loss (avg) = 0.523882, lr = 0.010000
iter = 299, accuracy (cur) = 0.760000 (all), 0.750000 (pos), 0.769231 (neg)
iter = 299, accuracy (avg) = 0.675363 (all), 0.583185 (pos), 0.766781 (neg)
data reader: epoch = 0, batch = 300 / 4040
iter = 300, cls_loss (cur) = 0.507006, cls_loss (avg) = 0.523714, lr = 0.010000
iter = 300, accuracy (cur) = 0.780000 (all), 0.666667 (pos), 0.884615 (neg)
iter = 300, accuracy (avg) = 0.676409 (all), 0.584020 (pos), 0.767960 (neg)
data reader: epoch = 0, batch = 301 / 4040
iter = 301, cls_loss (cur) = 0.549898, cls_loss (avg) = 0.523976, lr = 0.010000
iter = 301, accuracy (cur) = 0.740000 (all), 0.680000 (pos), 0.800000 (neg)
iter = 301, accuracy (avg) = 0.677045 (all), 0.584980 (pos), 0.768280 (neg)
data reader: epoch = 0, batch = 302 / 4040
iter = 302, cls_loss (cur) = 0.497095, cls_loss (avg) = 0.523707, lr = 0.010000
iter = 302, accuracy (cur) = 0.720000 (all), 0.758621 (pos), 0.666667 (neg)
iter = 302, accuracy (avg) = 0.677474 (all), 0.586716 (pos), 0.767264 (neg)
data reader: epoch = 0, batch = 303 / 4040
iter = 303, cls_loss (cur) = 0.530322, cls_loss (avg) = 0.523773, lr = 0.010000
iter = 303, accuracy (cur) = 0.740000 (all), 0.571429 (pos), 0.862069 (neg)
iter = 303, accuracy (avg) = 0.678100 (all), 0.586563 (pos), 0.768212 (neg)
data reader: epoch = 0, batch = 304 / 4040
iter = 304, cls_loss (cur) = 0.502574, cls_loss (avg) = 0.523561, lr = 0.010000
iter = 304, accuracy (cur) = 0.780000 (all), 0.681818 (pos), 0.857143 (neg)
iter = 304, accuracy (avg) = 0.679119 (all), 0.587516 (pos), 0.769101 (neg)
data reader: epoch = 0, batch = 305 / 4040
iter = 305, cls_loss (cur) = 0.595167, cls_loss (avg) = 0.524277, lr = 0.010000
iter = 305, accuracy (cur) = 0.640000 (all), 0.541667 (pos), 0.730769 (neg)
iter = 305, accuracy (avg) = 0.678728 (all), 0.587057 (pos), 0.768718 (neg)
data reader: epoch = 0, batch = 306 / 4040
iter = 306, cls_loss (cur) = 0.491988, cls_loss (avg) = 0.523954, lr = 0.010000
iter = 306, accuracy (cur) = 0.800000 (all), 0.615385 (pos), 1.000000 (neg)
iter = 306, accuracy (avg) = 0.679940 (all), 0.587341 (pos), 0.771031 (neg)
data reader: epoch = 0, batch = 307 / 4040
iter = 307, cls_loss (cur) = 0.463689, cls_loss (avg) = 0.523351, lr = 0.010000
iter = 307, accuracy (cur) = 0.820000 (all), 0.809524 (pos), 0.827586 (neg)
iter = 307, accuracy (avg) = 0.681341 (all), 0.589562 (pos), 0.771596 (neg)
data reader: epoch = 0, batch = 308 / 4040
iter = 308, cls_loss (cur) = 0.521532, cls_loss (avg) = 0.523333, lr = 0.010000
iter = 308, accuracy (cur) = 0.740000 (all), 0.642857 (pos), 0.863636 (neg)
iter = 308, accuracy (avg) = 0.681927 (all), 0.590095 (pos), 0.772517 (neg)
data reader: epoch = 0, batch = 309 / 4040
iter = 309, cls_loss (cur) = 0.540003, cls_loss (avg) = 0.523500, lr = 0.010000
iter = 309, accuracy (cur) = 0.720000 (all), 0.681818 (pos), 0.750000 (neg)
iter = 309, accuracy (avg) = 0.682308 (all), 0.591013 (pos), 0.772292 (neg)
data reader: epoch = 0, batch = 310 / 4040
iter = 310, cls_loss (cur) = 0.536902, cls_loss (avg) = 0.523634, lr = 0.010000
iter = 310, accuracy (cur) = 0.700000 (all), 0.578947 (pos), 0.774194 (neg)
iter = 310, accuracy (avg) = 0.682485 (all), 0.590892 (pos), 0.772311 (neg)
data reader: epoch = 0, batch = 311 / 4040
iter = 311, cls_loss (cur) = 0.473357, cls_loss (avg) = 0.523131, lr = 0.010000
iter = 311, accuracy (cur) = 0.760000 (all), 0.640000 (pos), 0.880000 (neg)
iter = 311, accuracy (avg) = 0.683260 (all), 0.591383 (pos), 0.773388 (neg)
data reader: epoch = 0, batch = 312 / 4040
iter = 312, cls_loss (cur) = 0.566283, cls_loss (avg) = 0.523563, lr = 0.010000
iter = 312, accuracy (cur) = 0.760000 (all), 0.650000 (pos), 0.833333 (neg)
iter = 312, accuracy (avg) = 0.684028 (all), 0.591969 (pos), 0.773987 (neg)
data reader: epoch = 0, batch = 313 / 4040
iter = 313, cls_loss (cur) = 0.467665, cls_loss (avg) = 0.523004, lr = 0.010000
iter = 313, accuracy (cur) = 0.820000 (all), 0.727273 (pos), 0.892857 (neg)
iter = 313, accuracy (avg) = 0.685387 (all), 0.593322 (pos), 0.775176 (neg)
data reader: epoch = 0, batch = 314 / 4040
iter = 314, cls_loss (cur) = 0.471623, cls_loss (avg) = 0.522490, lr = 0.010000
iter = 314, accuracy (cur) = 0.780000 (all), 0.578947 (pos), 0.903226 (neg)
iter = 314, accuracy (avg) = 0.686333 (all), 0.593179 (pos), 0.776456 (neg)
data reader: epoch = 0, batch = 315 / 4040
iter = 315, cls_loss (cur) = 0.507946, cls_loss (avg) = 0.522344, lr = 0.010000
iter = 315, accuracy (cur) = 0.700000 (all), 0.450000 (pos), 0.866667 (neg)
iter = 315, accuracy (avg) = 0.686470 (all), 0.591747 (pos), 0.777358 (neg)
data reader: epoch = 0, batch = 316 / 4040
iter = 316, cls_loss (cur) = 0.517095, cls_loss (avg) = 0.522292, lr = 0.010000
iter = 316, accuracy (cur) = 0.700000 (all), 0.500000 (pos), 0.954545 (neg)
iter = 316, accuracy (avg) = 0.686605 (all), 0.590829 (pos), 0.779130 (neg)
data reader: epoch = 0, batch = 317 / 4040
iter = 317, cls_loss (cur) = 0.494547, cls_loss (avg) = 0.522015, lr = 0.010000
iter = 317, accuracy (cur) = 0.700000 (all), 0.625000 (pos), 0.769231 (neg)
iter = 317, accuracy (avg) = 0.686739 (all), 0.591171 (pos), 0.779031 (neg)
data reader: epoch = 0, batch = 318 / 4040
iter = 318, cls_loss (cur) = 0.513486, cls_loss (avg) = 0.521929, lr = 0.010000
iter = 318, accuracy (cur) = 0.740000 (all), 0.636364 (pos), 0.821429 (neg)
iter = 318, accuracy (avg) = 0.687272 (all), 0.591623 (pos), 0.779455 (neg)
data reader: epoch = 0, batch = 319 / 4040
iter = 319, cls_loss (cur) = 0.506549, cls_loss (avg) = 0.521775, lr = 0.010000
iter = 319, accuracy (cur) = 0.720000 (all), 0.545455 (pos), 0.857143 (neg)
iter = 319, accuracy (avg) = 0.687599 (all), 0.591161 (pos), 0.780232 (neg)
data reader: epoch = 0, batch = 320 / 4040
iter = 320, cls_loss (cur) = 0.524675, cls_loss (avg) = 0.521804, lr = 0.010000
iter = 320, accuracy (cur) = 0.720000 (all), 0.368421 (pos), 0.935484 (neg)
iter = 320, accuracy (avg) = 0.687923 (all), 0.588934 (pos), 0.781785 (neg)
data reader: epoch = 0, batch = 321 / 4040
iter = 321, cls_loss (cur) = 0.508693, cls_loss (avg) = 0.521673, lr = 0.010000
iter = 321, accuracy (cur) = 0.740000 (all), 0.680000 (pos), 0.800000 (neg)
iter = 321, accuracy (avg) = 0.688444 (all), 0.589844 (pos), 0.781967 (neg)
data reader: epoch = 0, batch = 322 / 4040
iter = 322, cls_loss (cur) = 0.496081, cls_loss (avg) = 0.521417, lr = 0.010000
iter = 322, accuracy (cur) = 0.780000 (all), 0.608696 (pos), 0.925926 (neg)
iter = 322, accuracy (avg) = 0.689360 (all), 0.590033 (pos), 0.783406 (neg)
data reader: epoch = 0, batch = 323 / 4040
iter = 323, cls_loss (cur) = 0.450931, cls_loss (avg) = 0.520713, lr = 0.010000
iter = 323, accuracy (cur) = 0.780000 (all), 0.652174 (pos), 0.888889 (neg)
iter = 323, accuracy (avg) = 0.690266 (all), 0.590654 (pos), 0.784461 (neg)
data reader: epoch = 0, batch = 324 / 4040
iter = 324, cls_loss (cur) = 0.465849, cls_loss (avg) = 0.520164, lr = 0.010000
iter = 324, accuracy (cur) = 0.700000 (all), 0.562500 (pos), 0.944444 (neg)
iter = 324, accuracy (avg) = 0.690363 (all), 0.590373 (pos), 0.786061 (neg)
data reader: epoch = 0, batch = 325 / 4040
iter = 325, cls_loss (cur) = 0.580187, cls_loss (avg) = 0.520764, lr = 0.010000
iter = 325, accuracy (cur) = 0.720000 (all), 0.840000 (pos), 0.600000 (neg)
iter = 325, accuracy (avg) = 0.690660 (all), 0.592869 (pos), 0.784200 (neg)
data reader: epoch = 0, batch = 326 / 4040
iter = 326, cls_loss (cur) = 0.435446, cls_loss (avg) = 0.519911, lr = 0.010000
iter = 326, accuracy (cur) = 0.800000 (all), 0.750000 (pos), 0.888889 (neg)
iter = 326, accuracy (avg) = 0.691753 (all), 0.594440 (pos), 0.785247 (neg)
data reader: epoch = 0, batch = 327 / 4040
iter = 327, cls_loss (cur) = 0.457888, cls_loss (avg) = 0.519291, lr = 0.010000
iter = 327, accuracy (cur) = 0.760000 (all), 0.774194 (pos), 0.736842 (neg)
iter = 327, accuracy (avg) = 0.692436 (all), 0.596238 (pos), 0.784763 (neg)
data reader: epoch = 0, batch = 328 / 4040
iter = 328, cls_loss (cur) = 0.532543, cls_loss (avg) = 0.519423, lr = 0.010000
iter = 328, accuracy (cur) = 0.640000 (all), 0.733333 (pos), 0.500000 (neg)
iter = 328, accuracy (avg) = 0.691911 (all), 0.597609 (pos), 0.781916 (neg)
data reader: epoch = 0, batch = 329 / 4040
iter = 329, cls_loss (cur) = 0.541882, cls_loss (avg) = 0.519648, lr = 0.010000
iter = 329, accuracy (cur) = 0.800000 (all), 0.869565 (pos), 0.740741 (neg)
iter = 329, accuracy (avg) = 0.692992 (all), 0.600328 (pos), 0.781504 (neg)
data reader: epoch = 0, batch = 330 / 4040
iter = 330, cls_loss (cur) = 0.405152, cls_loss (avg) = 0.518503, lr = 0.010000
iter = 330, accuracy (cur) = 0.820000 (all), 0.826087 (pos), 0.814815 (neg)
iter = 330, accuracy (avg) = 0.694262 (all), 0.602586 (pos), 0.781837 (neg)
data reader: epoch = 0, batch = 331 / 4040
iter = 331, cls_loss (cur) = 0.462769, cls_loss (avg) = 0.517946, lr = 0.010000
iter = 331, accuracy (cur) = 0.780000 (all), 0.629630 (pos), 0.956522 (neg)
iter = 331, accuracy (avg) = 0.695120 (all), 0.602857 (pos), 0.783584 (neg)
data reader: epoch = 0, batch = 332 / 4040
iter = 332, cls_loss (cur) = 0.542583, cls_loss (avg) = 0.518192, lr = 0.010000
iter = 332, accuracy (cur) = 0.700000 (all), 0.566667 (pos), 0.900000 (neg)
iter = 332, accuracy (avg) = 0.695168 (all), 0.602495 (pos), 0.784748 (neg)
data reader: epoch = 0, batch = 333 / 4040
iter = 333, cls_loss (cur) = 0.567378, cls_loss (avg) = 0.518684, lr = 0.010000
iter = 333, accuracy (cur) = 0.620000 (all), 0.620690 (pos), 0.619048 (neg)
iter = 333, accuracy (avg) = 0.694417 (all), 0.602677 (pos), 0.783091 (neg)
data reader: epoch = 0, batch = 334 / 4040
iter = 334, cls_loss (cur) = 0.608595, cls_loss (avg) = 0.519583, lr = 0.010000
iter = 334, accuracy (cur) = 0.640000 (all), 0.535714 (pos), 0.772727 (neg)
iter = 334, accuracy (avg) = 0.693873 (all), 0.602007 (pos), 0.782987 (neg)
data reader: epoch = 0, batch = 335 / 4040
iter = 335, cls_loss (cur) = 0.549197, cls_loss (avg) = 0.519879, lr = 0.010000
iter = 335, accuracy (cur) = 0.720000 (all), 0.764706 (pos), 0.696970 (neg)
iter = 335, accuracy (avg) = 0.694134 (all), 0.603634 (pos), 0.782127 (neg)
data reader: epoch = 0, batch = 336 / 4040
iter = 336, cls_loss (cur) = 0.550219, cls_loss (avg) = 0.520182, lr = 0.010000
iter = 336, accuracy (cur) = 0.680000 (all), 0.615385 (pos), 0.750000 (neg)
iter = 336, accuracy (avg) = 0.693992 (all), 0.603751 (pos), 0.781806 (neg)
data reader: epoch = 0, batch = 337 / 4040
iter = 337, cls_loss (cur) = 0.492146, cls_loss (avg) = 0.519902, lr = 0.010000
iter = 337, accuracy (cur) = 0.820000 (all), 0.714286 (pos), 0.896552 (neg)
iter = 337, accuracy (avg) = 0.695253 (all), 0.604857 (pos), 0.782953 (neg)
data reader: epoch = 0, batch = 338 / 4040
iter = 338, cls_loss (cur) = 0.531186, cls_loss (avg) = 0.520015, lr = 0.010000
iter = 338, accuracy (cur) = 0.700000 (all), 0.500000 (pos), 0.857143 (neg)
iter = 338, accuracy (avg) = 0.695300 (all), 0.603808 (pos), 0.783695 (neg)
data reader: epoch = 0, batch = 339 / 4040
iter = 339, cls_loss (cur) = 0.474594, cls_loss (avg) = 0.519561, lr = 0.010000
iter = 339, accuracy (cur) = 0.780000 (all), 0.666667 (pos), 0.862069 (neg)
iter = 339, accuracy (avg) = 0.696147 (all), 0.604437 (pos), 0.784479 (neg)
data reader: epoch = 0, batch = 340 / 4040
iter = 340, cls_loss (cur) = 0.499227, cls_loss (avg) = 0.519357, lr = 0.010000
iter = 340, accuracy (cur) = 0.680000 (all), 0.464286 (pos), 0.954545 (neg)
iter = 340, accuracy (avg) = 0.695986 (all), 0.603035 (pos), 0.786180 (neg)
data reader: epoch = 0, batch = 341 / 4040
iter = 341, cls_loss (cur) = 0.543250, cls_loss (avg) = 0.519596, lr = 0.010000
iter = 341, accuracy (cur) = 0.700000 (all), 0.500000 (pos), 1.000000 (neg)
iter = 341, accuracy (avg) = 0.696026 (all), 0.602005 (pos), 0.788318 (neg)
data reader: epoch = 0, batch = 342 / 4040
iter = 342, cls_loss (cur) = 0.435509, cls_loss (avg) = 0.518755, lr = 0.010000
iter = 342, accuracy (cur) = 0.840000 (all), 0.700000 (pos), 0.933333 (neg)
iter = 342, accuracy (avg) = 0.697465 (all), 0.602985 (pos), 0.789768 (neg)
data reader: epoch = 0, batch = 343 / 4040
iter = 343, cls_loss (cur) = 0.493019, cls_loss (avg) = 0.518498, lr = 0.010000
iter = 343, accuracy (cur) = 0.740000 (all), 0.782609 (pos), 0.703704 (neg)
iter = 343, accuracy (avg) = 0.697891 (all), 0.604781 (pos), 0.788907 (neg)
data reader: epoch = 0, batch = 344 / 4040
iter = 344, cls_loss (cur) = 0.473528, cls_loss (avg) = 0.518048, lr = 0.010000
iter = 344, accuracy (cur) = 0.720000 (all), 0.593750 (pos), 0.944444 (neg)
iter = 344, accuracy (avg) = 0.698112 (all), 0.604671 (pos), 0.790463 (neg)
data reader: epoch = 0, batch = 345 / 4040
iter = 345, cls_loss (cur) = 0.520256, cls_loss (avg) = 0.518070, lr = 0.010000
iter = 345, accuracy (cur) = 0.640000 (all), 0.687500 (pos), 0.555556 (neg)
iter = 345, accuracy (avg) = 0.697531 (all), 0.605499 (pos), 0.788114 (neg)
data reader: epoch = 0, batch = 346 / 4040
iter = 346, cls_loss (cur) = 0.666198, cls_loss (avg) = 0.519552, lr = 0.010000
iter = 346, accuracy (cur) = 0.620000 (all), 0.652174 (pos), 0.592593 (neg)
iter = 346, accuracy (avg) = 0.696755 (all), 0.605966 (pos), 0.786158 (neg)
data reader: epoch = 0, batch = 347 / 4040
iter = 347, cls_loss (cur) = 0.549086, cls_loss (avg) = 0.519847, lr = 0.010000
iter = 347, accuracy (cur) = 0.780000 (all), 0.777778 (pos), 0.782609 (neg)
iter = 347, accuracy (avg) = 0.697588 (all), 0.607684 (pos), 0.786123 (neg)
data reader: epoch = 0, batch = 348 / 4040
iter = 348, cls_loss (cur) = 0.549173, cls_loss (avg) = 0.520140, lr = 0.010000
iter = 348, accuracy (cur) = 0.740000 (all), 0.851852 (pos), 0.608696 (neg)
iter = 348, accuracy (avg) = 0.698012 (all), 0.610126 (pos), 0.784349 (neg)
data reader: epoch = 0, batch = 349 / 4040
iter = 349, cls_loss (cur) = 0.533026, cls_loss (avg) = 0.520269, lr = 0.010000
iter = 349, accuracy (cur) = 0.680000 (all), 0.555556 (pos), 0.826087 (neg)
iter = 349, accuracy (avg) = 0.697832 (all), 0.609580 (pos), 0.784766 (neg)
data reader: epoch = 0, batch = 350 / 4040
iter = 350, cls_loss (cur) = 0.475065, cls_loss (avg) = 0.519817, lr = 0.010000
iter = 350, accuracy (cur) = 0.800000 (all), 0.769231 (pos), 0.833333 (neg)
iter = 350, accuracy (avg) = 0.698854 (all), 0.611176 (pos), 0.785252 (neg)
data reader: epoch = 0, batch = 351 / 4040
iter = 351, cls_loss (cur) = 0.557974, cls_loss (avg) = 0.520199, lr = 0.010000
iter = 351, accuracy (cur) = 0.760000 (all), 0.821429 (pos), 0.681818 (neg)
iter = 351, accuracy (avg) = 0.699465 (all), 0.613279 (pos), 0.784217 (neg)
data reader: epoch = 0, batch = 352 / 4040
iter = 352, cls_loss (cur) = 0.546160, cls_loss (avg) = 0.520458, lr = 0.010000
iter = 352, accuracy (cur) = 0.680000 (all), 0.583333 (pos), 0.769231 (neg)
iter = 352, accuracy (avg) = 0.699270 (all), 0.612980 (pos), 0.784067 (neg)
data reader: epoch = 0, batch = 353 / 4040
iter = 353, cls_loss (cur) = 0.531793, cls_loss (avg) = 0.520572, lr = 0.010000
iter = 353, accuracy (cur) = 0.760000 (all), 0.818182 (pos), 0.714286 (neg)
iter = 353, accuracy (avg) = 0.699878 (all), 0.615032 (pos), 0.783370 (neg)
data reader: epoch = 0, batch = 354 / 4040
iter = 354, cls_loss (cur) = 0.463661, cls_loss (avg) = 0.520003, lr = 0.010000
iter = 354, accuracy (cur) = 0.900000 (all), 0.827586 (pos), 1.000000 (neg)
iter = 354, accuracy (avg) = 0.701879 (all), 0.617157 (pos), 0.785536 (neg)
data reader: epoch = 0, batch = 355 / 4040
iter = 355, cls_loss (cur) = 0.533634, cls_loss (avg) = 0.520139, lr = 0.010000
iter = 355, accuracy (cur) = 0.700000 (all), 0.703704 (pos), 0.695652 (neg)
iter = 355, accuracy (avg) = 0.701860 (all), 0.618023 (pos), 0.784637 (neg)
data reader: epoch = 0, batch = 356 / 4040
iter = 356, cls_loss (cur) = 0.523255, cls_loss (avg) = 0.520170, lr = 0.010000
iter = 356, accuracy (cur) = 0.740000 (all), 0.724138 (pos), 0.761905 (neg)
iter = 356, accuracy (avg) = 0.702242 (all), 0.619084 (pos), 0.784410 (neg)
data reader: epoch = 0, batch = 357 / 4040
iter = 357, cls_loss (cur) = 0.490304, cls_loss (avg) = 0.519871, lr = 0.010000
iter = 357, accuracy (cur) = 0.760000 (all), 0.857143 (pos), 0.636364 (neg)
iter = 357, accuracy (avg) = 0.702819 (all), 0.621464 (pos), 0.782929 (neg)
data reader: epoch = 0, batch = 358 / 4040
iter = 358, cls_loss (cur) = 0.518082, cls_loss (avg) = 0.519853, lr = 0.010000
iter = 358, accuracy (cur) = 0.760000 (all), 0.814815 (pos), 0.695652 (neg)
iter = 358, accuracy (avg) = 0.703391 (all), 0.623398 (pos), 0.782057 (neg)
data reader: epoch = 0, batch = 359 / 4040
iter = 359, cls_loss (cur) = 0.548611, cls_loss (avg) = 0.520141, lr = 0.010000
iter = 359, accuracy (cur) = 0.740000 (all), 0.882353 (pos), 0.666667 (neg)
iter = 359, accuracy (avg) = 0.703757 (all), 0.625987 (pos), 0.780903 (neg)
data reader: epoch = 0, batch = 360 / 4040
iter = 360, cls_loss (cur) = 0.518449, cls_loss (avg) = 0.520124, lr = 0.010000
iter = 360, accuracy (cur) = 0.700000 (all), 0.620690 (pos), 0.809524 (neg)
iter = 360, accuracy (avg) = 0.703719 (all), 0.625934 (pos), 0.781189 (neg)
data reader: epoch = 0, batch = 361 / 4040
iter = 361, cls_loss (cur) = 0.504467, cls_loss (avg) = 0.519968, lr = 0.010000
iter = 361, accuracy (cur) = 0.780000 (all), 0.700000 (pos), 0.833333 (neg)
iter = 361, accuracy (avg) = 0.704482 (all), 0.626675 (pos), 0.781710 (neg)
data reader: epoch = 0, batch = 362 / 4040
iter = 362, cls_loss (cur) = 0.518720, cls_loss (avg) = 0.519955, lr = 0.010000
iter = 362, accuracy (cur) = 0.780000 (all), 0.652174 (pos), 0.888889 (neg)
iter = 362, accuracy (avg) = 0.705237 (all), 0.626930 (pos), 0.782782 (neg)
data reader: epoch = 0, batch = 363 / 4040
iter = 363, cls_loss (cur) = 0.487845, cls_loss (avg) = 0.519634, lr = 0.010000
iter = 363, accuracy (cur) = 0.780000 (all), 0.608696 (pos), 0.925926 (neg)
iter = 363, accuracy (avg) = 0.705985 (all), 0.626748 (pos), 0.784214 (neg)
data reader: epoch = 0, batch = 364 / 4040
iter = 364, cls_loss (cur) = 0.450044, cls_loss (avg) = 0.518938, lr = 0.010000
iter = 364, accuracy (cur) = 0.800000 (all), 0.619048 (pos), 0.931034 (neg)
iter = 364, accuracy (avg) = 0.706925 (all), 0.626671 (pos), 0.785682 (neg)
data reader: epoch = 0, batch = 365 / 4040
iter = 365, cls_loss (cur) = 0.632469, cls_loss (avg) = 0.520073, lr = 0.010000
iter = 365, accuracy (cur) = 0.640000 (all), 0.483871 (pos), 0.894737 (neg)
iter = 365, accuracy (avg) = 0.706256 (all), 0.625243 (pos), 0.786772 (neg)
data reader: epoch = 0, batch = 366 / 4040
iter = 366, cls_loss (cur) = 0.425338, cls_loss (avg) = 0.519126, lr = 0.010000
iter = 366, accuracy (cur) = 0.760000 (all), 0.703704 (pos), 0.826087 (neg)
iter = 366, accuracy (avg) = 0.706793 (all), 0.626027 (pos), 0.787165 (neg)
data reader: epoch = 0, batch = 367 / 4040
iter = 367, cls_loss (cur) = 0.575139, cls_loss (avg) = 0.519686, lr = 0.010000
iter = 367, accuracy (cur) = 0.700000 (all), 0.470588 (pos), 0.818182 (neg)
iter = 367, accuracy (avg) = 0.706725 (all), 0.624473 (pos), 0.787476 (neg)
data reader: epoch = 0, batch = 368 / 4040
iter = 368, cls_loss (cur) = 0.433746, cls_loss (avg) = 0.518827, lr = 0.010000
iter = 368, accuracy (cur) = 0.820000 (all), 0.720000 (pos), 0.920000 (neg)
iter = 368, accuracy (avg) = 0.707858 (all), 0.625428 (pos), 0.788801 (neg)
data reader: epoch = 0, batch = 369 / 4040
iter = 369, cls_loss (cur) = 0.417321, cls_loss (avg) = 0.517812, lr = 0.010000
iter = 369, accuracy (cur) = 0.860000 (all), 0.818182 (pos), 0.892857 (neg)
iter = 369, accuracy (avg) = 0.709380 (all), 0.627356 (pos), 0.789841 (neg)
data reader: epoch = 0, batch = 370 / 4040
iter = 370, cls_loss (cur) = 0.571657, cls_loss (avg) = 0.518350, lr = 0.010000
iter = 370, accuracy (cur) = 0.640000 (all), 0.461538 (pos), 0.833333 (neg)
iter = 370, accuracy (avg) = 0.708686 (all), 0.625698 (pos), 0.790276 (neg)
data reader: epoch = 0, batch = 371 / 4040
iter = 371, cls_loss (cur) = 0.501054, cls_loss (avg) = 0.518177, lr = 0.010000
iter = 371, accuracy (cur) = 0.740000 (all), 0.640000 (pos), 0.840000 (neg)
iter = 371, accuracy (avg) = 0.708999 (all), 0.625841 (pos), 0.790774 (neg)
data reader: epoch = 0, batch = 372 / 4040
iter = 372, cls_loss (cur) = 0.512806, cls_loss (avg) = 0.518123, lr = 0.010000
iter = 372, accuracy (cur) = 0.760000 (all), 0.680000 (pos), 0.840000 (neg)
iter = 372, accuracy (avg) = 0.709509 (all), 0.626382 (pos), 0.791266 (neg)
data reader: epoch = 0, batch = 373 / 4040
iter = 373, cls_loss (cur) = 0.586790, cls_loss (avg) = 0.518810, lr = 0.010000
iter = 373, accuracy (cur) = 0.660000 (all), 0.541667 (pos), 0.769231 (neg)
iter = 373, accuracy (avg) = 0.709014 (all), 0.625535 (pos), 0.791046 (neg)
data reader: epoch = 0, batch = 374 / 4040
iter = 374, cls_loss (cur) = 0.449781, cls_loss (avg) = 0.518120, lr = 0.010000
iter = 374, accuracy (cur) = 0.780000 (all), 0.718750 (pos), 0.888889 (neg)
iter = 374, accuracy (avg) = 0.709724 (all), 0.626467 (pos), 0.792024 (neg)
data reader: epoch = 0, batch = 375 / 4040
iter = 375, cls_loss (cur) = 0.419205, cls_loss (avg) = 0.517131, lr = 0.010000
iter = 375, accuracy (cur) = 0.800000 (all), 0.862069 (pos), 0.714286 (neg)
iter = 375, accuracy (avg) = 0.710626 (all), 0.628823 (pos), 0.791247 (neg)
data reader: epoch = 0, batch = 376 / 4040
iter = 376, cls_loss (cur) = 0.523789, cls_loss (avg) = 0.517197, lr = 0.010000
iter = 376, accuracy (cur) = 0.760000 (all), 0.833333 (pos), 0.692308 (neg)
iter = 376, accuracy (avg) = 0.711120 (all), 0.630868 (pos), 0.790257 (neg)
data reader: epoch = 0, batch = 377 / 4040
iter = 377, cls_loss (cur) = 0.534557, cls_loss (avg) = 0.517371, lr = 0.010000
iter = 377, accuracy (cur) = 0.700000 (all), 0.774194 (pos), 0.578947 (neg)
iter = 377, accuracy (avg) = 0.711009 (all), 0.632302 (pos), 0.788144 (neg)
data reader: epoch = 0, batch = 378 / 4040
iter = 378, cls_loss (cur) = 0.470403, cls_loss (avg) = 0.516901, lr = 0.010000
iter = 378, accuracy (cur) = 0.820000 (all), 0.923077 (pos), 0.708333 (neg)
iter = 378, accuracy (avg) = 0.712099 (all), 0.635209 (pos), 0.787346 (neg)
data reader: epoch = 0, batch = 379 / 4040
iter = 379, cls_loss (cur) = 0.529931, cls_loss (avg) = 0.517031, lr = 0.010000
iter = 379, accuracy (cur) = 0.760000 (all), 0.653846 (pos), 0.875000 (neg)
iter = 379, accuracy (avg) = 0.712578 (all), 0.635396 (pos), 0.788223 (neg)
data reader: epoch = 0, batch = 380 / 4040
iter = 380, cls_loss (cur) = 0.488273, cls_loss (avg) = 0.516744, lr = 0.010000
iter = 380, accuracy (cur) = 0.780000 (all), 0.800000 (pos), 0.760000 (neg)
iter = 380, accuracy (avg) = 0.713252 (all), 0.637042 (pos), 0.787940 (neg)
data reader: epoch = 0, batch = 381 / 4040
iter = 381, cls_loss (cur) = 0.457492, cls_loss (avg) = 0.516151, lr = 0.010000
iter = 381, accuracy (cur) = 0.800000 (all), 0.730769 (pos), 0.875000 (neg)
iter = 381, accuracy (avg) = 0.714120 (all), 0.637979 (pos), 0.788811 (neg)
data reader: epoch = 0, batch = 382 / 4040
iter = 382, cls_loss (cur) = 0.495361, cls_loss (avg) = 0.515943, lr = 0.010000
iter = 382, accuracy (cur) = 0.780000 (all), 0.818182 (pos), 0.750000 (neg)
iter = 382, accuracy (avg) = 0.714778 (all), 0.639781 (pos), 0.788423 (neg)
data reader: epoch = 0, batch = 383 / 4040
iter = 383, cls_loss (cur) = 0.499993, cls_loss (avg) = 0.515784, lr = 0.010000
iter = 383, accuracy (cur) = 0.760000 (all), 0.750000 (pos), 0.769231 (neg)
iter = 383, accuracy (avg) = 0.715231 (all), 0.640883 (pos), 0.788231 (neg)
data reader: epoch = 0, batch = 384 / 4040
iter = 384, cls_loss (cur) = 0.581302, cls_loss (avg) = 0.516439, lr = 0.010000
iter = 384, accuracy (cur) = 0.640000 (all), 0.440000 (pos), 0.840000 (neg)
iter = 384, accuracy (avg) = 0.714478 (all), 0.638874 (pos), 0.788749 (neg)
data reader: epoch = 0, batch = 385 / 4040
iter = 385, cls_loss (cur) = 0.424510, cls_loss (avg) = 0.515520, lr = 0.010000
iter = 385, accuracy (cur) = 0.800000 (all), 0.714286 (pos), 0.909091 (neg)
iter = 385, accuracy (avg) = 0.715334 (all), 0.639628 (pos), 0.789952 (neg)
data reader: epoch = 0, batch = 386 / 4040
iter = 386, cls_loss (cur) = 0.430076, cls_loss (avg) = 0.514665, lr = 0.010000
iter = 386, accuracy (cur) = 0.820000 (all), 0.791667 (pos), 0.846154 (neg)
iter = 386, accuracy (avg) = 0.716380 (all), 0.641149 (pos), 0.790514 (neg)
data reader: epoch = 0, batch = 387 / 4040
iter = 387, cls_loss (cur) = 0.436413, cls_loss (avg) = 0.513883, lr = 0.010000
iter = 387, accuracy (cur) = 0.760000 (all), 0.777778 (pos), 0.739130 (neg)
iter = 387, accuracy (avg) = 0.716816 (all), 0.642515 (pos), 0.790000 (neg)
data reader: epoch = 0, batch = 388 / 4040
iter = 388, cls_loss (cur) = 0.500587, cls_loss (avg) = 0.513750, lr = 0.010000
iter = 388, accuracy (cur) = 0.720000 (all), 0.571429 (pos), 0.909091 (neg)
iter = 388, accuracy (avg) = 0.716848 (all), 0.641804 (pos), 0.791191 (neg)
data reader: epoch = 0, batch = 389 / 4040
iter = 389, cls_loss (cur) = 0.532439, cls_loss (avg) = 0.513937, lr = 0.010000
iter = 389, accuracy (cur) = 0.780000 (all), 0.833333 (pos), 0.730769 (neg)
iter = 389, accuracy (avg) = 0.717480 (all), 0.643720 (pos), 0.790587 (neg)
data reader: epoch = 0, batch = 390 / 4040
iter = 390, cls_loss (cur) = 0.373709, cls_loss (avg) = 0.512535, lr = 0.010000
iter = 390, accuracy (cur) = 0.880000 (all), 0.900000 (pos), 0.866667 (neg)
iter = 390, accuracy (avg) = 0.719105 (all), 0.646282 (pos), 0.791348 (neg)
data reader: epoch = 0, batch = 391 / 4040
iter = 391, cls_loss (cur) = 0.463411, cls_loss (avg) = 0.512043, lr = 0.010000
iter = 391, accuracy (cur) = 0.800000 (all), 0.714286 (pos), 0.909091 (neg)
iter = 391, accuracy (avg) = 0.719914 (all), 0.646962 (pos), 0.792525 (neg)
data reader: epoch = 0, batch = 392 / 4040
iter = 392, cls_loss (cur) = 0.633919, cls_loss (avg) = 0.513262, lr = 0.010000
iter = 392, accuracy (cur) = 0.580000 (all), 0.476190 (pos), 0.655172 (neg)
iter = 392, accuracy (avg) = 0.718515 (all), 0.645255 (pos), 0.791152 (neg)
data reader: epoch = 0, batch = 393 / 4040
iter = 393, cls_loss (cur) = 0.468928, cls_loss (avg) = 0.512819, lr = 0.010000
iter = 393, accuracy (cur) = 0.800000 (all), 0.652174 (pos), 0.925926 (neg)
iter = 393, accuracy (avg) = 0.719330 (all), 0.645324 (pos), 0.792499 (neg)
data reader: epoch = 0, batch = 394 / 4040
iter = 394, cls_loss (cur) = 0.491141, cls_loss (avg) = 0.512602, lr = 0.010000
iter = 394, accuracy (cur) = 0.800000 (all), 0.791667 (pos), 0.807692 (neg)
iter = 394, accuracy (avg) = 0.720136 (all), 0.646787 (pos), 0.792651 (neg)
data reader: epoch = 0, batch = 395 / 4040
iter = 395, cls_loss (cur) = 0.469975, cls_loss (avg) = 0.512176, lr = 0.010000
iter = 395, accuracy (cur) = 0.820000 (all), 0.833333 (pos), 0.800000 (neg)
iter = 395, accuracy (avg) = 0.721135 (all), 0.648653 (pos), 0.792725 (neg)
data reader: epoch = 0, batch = 396 / 4040
iter = 396, cls_loss (cur) = 0.493781, cls_loss (avg) = 0.511992, lr = 0.010000
iter = 396, accuracy (cur) = 0.780000 (all), 0.666667 (pos), 0.884615 (neg)
iter = 396, accuracy (avg) = 0.721724 (all), 0.648833 (pos), 0.793644 (neg)
data reader: epoch = 0, batch = 397 / 4040
iter = 397, cls_loss (cur) = 0.403394, cls_loss (avg) = 0.510906, lr = 0.010000
iter = 397, accuracy (cur) = 0.900000 (all), 0.800000 (pos), 0.966667 (neg)
iter = 397, accuracy (avg) = 0.723506 (all), 0.650345 (pos), 0.795374 (neg)
data reader: epoch = 0, batch = 398 / 4040
iter = 398, cls_loss (cur) = 0.463547, cls_loss (avg) = 0.510432, lr = 0.010000
iter = 398, accuracy (cur) = 0.780000 (all), 0.772727 (pos), 0.785714 (neg)
iter = 398, accuracy (avg) = 0.724071 (all), 0.651568 (pos), 0.795277 (neg)
data reader: epoch = 0, batch = 399 / 4040
iter = 399, cls_loss (cur) = 0.462134, cls_loss (avg) = 0.509949, lr = 0.010000
iter = 399, accuracy (cur) = 0.800000 (all), 0.666667 (pos), 0.956522 (neg)
iter = 399, accuracy (avg) = 0.724831 (all), 0.651719 (pos), 0.796890 (neg)
data reader: epoch = 0, batch = 400 / 4040
iter = 400, cls_loss (cur) = 0.511277, cls_loss (avg) = 0.509962, lr = 0.010000
iter = 400, accuracy (cur) = 0.780000 (all), 0.642857 (pos), 0.954545 (neg)
iter = 400, accuracy (avg) = 0.725382 (all), 0.651631 (pos), 0.798466 (neg)
data reader: epoch = 0, batch = 401 / 4040
iter = 401, cls_loss (cur) = 0.390425, cls_loss (avg) = 0.508767, lr = 0.010000
iter = 401, accuracy (cur) = 0.880000 (all), 0.850000 (pos), 0.900000 (neg)
iter = 401, accuracy (avg) = 0.726929 (all), 0.653614 (pos), 0.799482 (neg)
data reader: epoch = 0, batch = 402 / 4040
iter = 402, cls_loss (cur) = 0.378445, cls_loss (avg) = 0.507464, lr = 0.010000
iter = 402, accuracy (cur) = 0.840000 (all), 0.772727 (pos), 0.892857 (neg)
iter = 402, accuracy (avg) = 0.728059 (all), 0.654806 (pos), 0.800415 (neg)
data reader: epoch = 0, batch = 403 / 4040
iter = 403, cls_loss (cur) = 0.463337, cls_loss (avg) = 0.507023, lr = 0.010000
iter = 403, accuracy (cur) = 0.780000 (all), 0.740741 (pos), 0.826087 (neg)
iter = 403, accuracy (avg) = 0.728579 (all), 0.655665 (pos), 0.800672 (neg)
data reader: epoch = 0, batch = 404 / 4040
iter = 404, cls_loss (cur) = 0.455724, cls_loss (avg) = 0.506510, lr = 0.010000
iter = 404, accuracy (cur) = 0.760000 (all), 0.703704 (pos), 0.826087 (neg)
iter = 404, accuracy (avg) = 0.728893 (all), 0.656145 (pos), 0.800926 (neg)
data reader: epoch = 0, batch = 405 / 4040
iter = 405, cls_loss (cur) = 0.386195, cls_loss (avg) = 0.505306, lr = 0.010000
iter = 405, accuracy (cur) = 0.840000 (all), 0.888889 (pos), 0.812500 (neg)
iter = 405, accuracy (avg) = 0.730004 (all), 0.658473 (pos), 0.801042 (neg)
data reader: epoch = 0, batch = 406 / 4040
iter = 406, cls_loss (cur) = 0.477295, cls_loss (avg) = 0.505026, lr = 0.010000
iter = 406, accuracy (cur) = 0.760000 (all), 0.678571 (pos), 0.863636 (neg)
iter = 406, accuracy (avg) = 0.730304 (all), 0.658674 (pos), 0.801668 (neg)
data reader: epoch = 0, batch = 407 / 4040
iter = 407, cls_loss (cur) = 0.576699, cls_loss (avg) = 0.505743, lr = 0.010000
iter = 407, accuracy (cur) = 0.680000 (all), 0.826087 (pos), 0.555556 (neg)
iter = 407, accuracy (avg) = 0.729801 (all), 0.660348 (pos), 0.799207 (neg)
data reader: epoch = 0, batch = 408 / 4040
iter = 408, cls_loss (cur) = 0.515606, cls_loss (avg) = 0.505842, lr = 0.010000
iter = 408, accuracy (cur) = 0.700000 (all), 0.615385 (pos), 0.791667 (neg)
iter = 408, accuracy (avg) = 0.729503 (all), 0.659898 (pos), 0.799131 (neg)
data reader: epoch = 0, batch = 409 / 4040
iter = 409, cls_loss (cur) = 0.538814, cls_loss (avg) = 0.506171, lr = 0.010000
iter = 409, accuracy (cur) = 0.680000 (all), 0.612903 (pos), 0.789474 (neg)
iter = 409, accuracy (avg) = 0.729008 (all), 0.659428 (pos), 0.799035 (neg)
data reader: epoch = 0, batch = 410 / 4040
iter = 410, cls_loss (cur) = 0.491174, cls_loss (avg) = 0.506021, lr = 0.010000
iter = 410, accuracy (cur) = 0.800000 (all), 0.896552 (pos), 0.666667 (neg)
iter = 410, accuracy (avg) = 0.729718 (all), 0.661800 (pos), 0.797711 (neg)
data reader: epoch = 0, batch = 411 / 4040
iter = 411, cls_loss (cur) = 0.442551, cls_loss (avg) = 0.505387, lr = 0.010000
iter = 411, accuracy (cur) = 0.860000 (all), 0.931034 (pos), 0.761905 (neg)
iter = 411, accuracy (avg) = 0.731021 (all), 0.664492 (pos), 0.797353 (neg)
data reader: epoch = 0, batch = 412 / 4040
iter = 412, cls_loss (cur) = 0.488337, cls_loss (avg) = 0.505216, lr = 0.010000
iter = 412, accuracy (cur) = 0.780000 (all), 0.954545 (pos), 0.642857 (neg)
iter = 412, accuracy (avg) = 0.731510 (all), 0.667392 (pos), 0.795808 (neg)
data reader: epoch = 0, batch = 413 / 4040
iter = 413, cls_loss (cur) = 0.540794, cls_loss (avg) = 0.505572, lr = 0.010000
iter = 413, accuracy (cur) = 0.820000 (all), 0.916667 (pos), 0.730769 (neg)
iter = 413, accuracy (avg) = 0.732395 (all), 0.669885 (pos), 0.795158 (neg)
data reader: epoch = 0, batch = 414 / 4040
iter = 414, cls_loss (cur) = 0.370181, cls_loss (avg) = 0.504218, lr = 0.010000
iter = 414, accuracy (cur) = 0.820000 (all), 0.758621 (pos), 0.904762 (neg)
iter = 414, accuracy (avg) = 0.733271 (all), 0.670773 (pos), 0.796254 (neg)
data reader: epoch = 0, batch = 415 / 4040
iter = 415, cls_loss (cur) = 0.492482, cls_loss (avg) = 0.504101, lr = 0.010000
iter = 415, accuracy (cur) = 0.700000 (all), 0.678571 (pos), 0.727273 (neg)
iter = 415, accuracy (avg) = 0.732939 (all), 0.670851 (pos), 0.795564 (neg)
data reader: epoch = 0, batch = 416 / 4040
iter = 416, cls_loss (cur) = 0.527290, cls_loss (avg) = 0.504333, lr = 0.010000
iter = 416, accuracy (cur) = 0.760000 (all), 0.793103 (pos), 0.714286 (neg)
iter = 416, accuracy (avg) = 0.733209 (all), 0.672073 (pos), 0.794751 (neg)
data reader: epoch = 0, batch = 417 / 4040
iter = 417, cls_loss (cur) = 0.480625, cls_loss (avg) = 0.504096, lr = 0.010000
iter = 417, accuracy (cur) = 0.800000 (all), 0.692308 (pos), 0.916667 (neg)
iter = 417, accuracy (avg) = 0.733877 (all), 0.672275 (pos), 0.795970 (neg)
data reader: epoch = 0, batch = 418 / 4040
iter = 418, cls_loss (cur) = 0.490114, cls_loss (avg) = 0.503956, lr = 0.010000
iter = 418, accuracy (cur) = 0.820000 (all), 0.884615 (pos), 0.750000 (neg)
iter = 418, accuracy (avg) = 0.734738 (all), 0.674399 (pos), 0.795511 (neg)
data reader: epoch = 0, batch = 419 / 4040
iter = 419, cls_loss (cur) = 0.494999, cls_loss (avg) = 0.503866, lr = 0.010000
iter = 419, accuracy (cur) = 0.740000 (all), 0.769231 (pos), 0.708333 (neg)
iter = 419, accuracy (avg) = 0.734791 (all), 0.675347 (pos), 0.794639 (neg)
data reader: epoch = 0, batch = 420 / 4040
iter = 420, cls_loss (cur) = 0.439844, cls_loss (avg) = 0.503226, lr = 0.010000
iter = 420, accuracy (cur) = 0.840000 (all), 0.920000 (pos), 0.760000 (neg)
iter = 420, accuracy (avg) = 0.735843 (all), 0.677794 (pos), 0.794292 (neg)
data reader: epoch = 0, batch = 421 / 4040
iter = 421, cls_loss (cur) = 0.419022, cls_loss (avg) = 0.502384, lr = 0.010000
iter = 421, accuracy (cur) = 0.780000 (all), 0.750000 (pos), 0.807692 (neg)
iter = 421, accuracy (avg) = 0.736285 (all), 0.678516 (pos), 0.794426 (neg)
data reader: epoch = 0, batch = 422 / 4040
iter = 422, cls_loss (cur) = 0.475516, cls_loss (avg) = 0.502115, lr = 0.010000
iter = 422, accuracy (cur) = 0.840000 (all), 0.850000 (pos), 0.833333 (neg)
iter = 422, accuracy (avg) = 0.737322 (all), 0.680231 (pos), 0.794816 (neg)
data reader: epoch = 0, batch = 423 / 4040
iter = 423, cls_loss (cur) = 0.459912, cls_loss (avg) = 0.501693, lr = 0.010000
iter = 423, accuracy (cur) = 0.780000 (all), 0.600000 (pos), 0.960000 (neg)
iter = 423, accuracy (avg) = 0.737749 (all), 0.679428 (pos), 0.796467 (neg)
data reader: epoch = 0, batch = 424 / 4040
iter = 424, cls_loss (cur) = 0.519936, cls_loss (avg) = 0.501876, lr = 0.010000
iter = 424, accuracy (cur) = 0.700000 (all), 0.607143 (pos), 0.818182 (neg)
iter = 424, accuracy (avg) = 0.737371 (all), 0.678705 (pos), 0.796684 (neg)
data reader: epoch = 0, batch = 425 / 4040
iter = 425, cls_loss (cur) = 0.504765, cls_loss (avg) = 0.501905, lr = 0.010000
iter = 425, accuracy (cur) = 0.740000 (all), 0.653846 (pos), 0.833333 (neg)
iter = 425, accuracy (avg) = 0.737397 (all), 0.678457 (pos), 0.797051 (neg)
data reader: epoch = 0, batch = 426 / 4040
iter = 426, cls_loss (cur) = 0.432822, cls_loss (avg) = 0.501214, lr = 0.010000
iter = 426, accuracy (cur) = 0.780000 (all), 0.777778 (pos), 0.782609 (neg)
iter = 426, accuracy (avg) = 0.737823 (all), 0.679450 (pos), 0.796907 (neg)
data reader: epoch = 0, batch = 427 / 4040
iter = 427, cls_loss (cur) = 0.457288, cls_loss (avg) = 0.500774, lr = 0.010000
iter = 427, accuracy (cur) = 0.860000 (all), 0.809524 (pos), 0.896552 (neg)
iter = 427, accuracy (avg) = 0.739045 (all), 0.680751 (pos), 0.797903 (neg)
data reader: epoch = 0, batch = 428 / 4040
iter = 428, cls_loss (cur) = 0.406655, cls_loss (avg) = 0.499833, lr = 0.010000
iter = 428, accuracy (cur) = 0.860000 (all), 0.750000 (pos), 0.933333 (neg)
iter = 428, accuracy (avg) = 0.740255 (all), 0.681443 (pos), 0.799257 (neg)
data reader: epoch = 0, batch = 429 / 4040
iter = 429, cls_loss (cur) = 0.487503, cls_loss (avg) = 0.499710, lr = 0.010000
iter = 429, accuracy (cur) = 0.820000 (all), 0.687500 (pos), 0.882353 (neg)
iter = 429, accuracy (avg) = 0.741052 (all), 0.681504 (pos), 0.800088 (neg)
data reader: epoch = 0, batch = 430 / 4040
iter = 430, cls_loss (cur) = 0.471670, cls_loss (avg) = 0.499430, lr = 0.010000
iter = 430, accuracy (cur) = 0.820000 (all), 0.619048 (pos), 0.965517 (neg)
iter = 430, accuracy (avg) = 0.741842 (all), 0.680879 (pos), 0.801743 (neg)
data reader: epoch = 0, batch = 431 / 4040
iter = 431, cls_loss (cur) = 0.498589, cls_loss (avg) = 0.499421, lr = 0.010000
iter = 431, accuracy (cur) = 0.740000 (all), 0.625000 (pos), 0.944444 (neg)
iter = 431, accuracy (avg) = 0.741823 (all), 0.680320 (pos), 0.803170 (neg)
data reader: epoch = 0, batch = 432 / 4040
iter = 432, cls_loss (cur) = 0.484873, cls_loss (avg) = 0.499276, lr = 0.010000
iter = 432, accuracy (cur) = 0.780000 (all), 0.740741 (pos), 0.826087 (neg)
iter = 432, accuracy (avg) = 0.742205 (all), 0.680925 (pos), 0.803399 (neg)
data reader: epoch = 0, batch = 433 / 4040
iter = 433, cls_loss (cur) = 0.453675, cls_loss (avg) = 0.498820, lr = 0.010000
iter = 433, accuracy (cur) = 0.800000 (all), 0.708333 (pos), 0.884615 (neg)
iter = 433, accuracy (avg) = 0.742783 (all), 0.681199 (pos), 0.804211 (neg)
data reader: epoch = 0, batch = 434 / 4040
iter = 434, cls_loss (cur) = 0.541386, cls_loss (avg) = 0.499245, lr = 0.010000
iter = 434, accuracy (cur) = 0.640000 (all), 0.653846 (pos), 0.625000 (neg)
iter = 434, accuracy (avg) = 0.741755 (all), 0.680925 (pos), 0.802419 (neg)
data reader: epoch = 0, batch = 435 / 4040
iter = 435, cls_loss (cur) = 0.424050, cls_loss (avg) = 0.498493, lr = 0.010000
iter = 435, accuracy (cur) = 0.860000 (all), 0.826087 (pos), 0.888889 (neg)
iter = 435, accuracy (avg) = 0.742938 (all), 0.682377 (pos), 0.803284 (neg)
data reader: epoch = 0, batch = 436 / 4040
iter = 436, cls_loss (cur) = 0.525368, cls_loss (avg) = 0.498762, lr = 0.010000
iter = 436, accuracy (cur) = 0.780000 (all), 0.840000 (pos), 0.720000 (neg)
iter = 436, accuracy (avg) = 0.743308 (all), 0.683953 (pos), 0.802451 (neg)
data reader: epoch = 0, batch = 437 / 4040
iter = 437, cls_loss (cur) = 0.492989, cls_loss (avg) = 0.498704, lr = 0.010000
iter = 437, accuracy (cur) = 0.740000 (all), 0.700000 (pos), 0.800000 (neg)
iter = 437, accuracy (avg) = 0.743275 (all), 0.684114 (pos), 0.802426 (neg)
data reader: epoch = 0, batch = 438 / 4040
iter = 438, cls_loss (cur) = 0.571034, cls_loss (avg) = 0.499428, lr = 0.010000
iter = 438, accuracy (cur) = 0.780000 (all), 0.695652 (pos), 0.851852 (neg)
iter = 438, accuracy (avg) = 0.743642 (all), 0.684229 (pos), 0.802920 (neg)
data reader: epoch = 0, batch = 439 / 4040
iter = 439, cls_loss (cur) = 0.365949, cls_loss (avg) = 0.498093, lr = 0.010000
iter = 439, accuracy (cur) = 0.880000 (all), 0.848485 (pos), 0.941176 (neg)
iter = 439, accuracy (avg) = 0.745006 (all), 0.685871 (pos), 0.804303 (neg)
data reader: epoch = 0, batch = 440 / 4040
iter = 440, cls_loss (cur) = 0.358607, cls_loss (avg) = 0.496698, lr = 0.010000
iter = 440, accuracy (cur) = 0.880000 (all), 0.888889 (pos), 0.869565 (neg)
iter = 440, accuracy (avg) = 0.746356 (all), 0.687902 (pos), 0.804956 (neg)
data reader: epoch = 0, batch = 441 / 4040
iter = 441, cls_loss (cur) = 0.559548, cls_loss (avg) = 0.497327, lr = 0.010000
iter = 441, accuracy (cur) = 0.660000 (all), 0.695652 (pos), 0.629630 (neg)
iter = 441, accuracy (avg) = 0.745492 (all), 0.687979 (pos), 0.803202 (neg)
data reader: epoch = 0, batch = 442 / 4040
iter = 442, cls_loss (cur) = 0.526712, cls_loss (avg) = 0.497620, lr = 0.010000
iter = 442, accuracy (cur) = 0.780000 (all), 0.720000 (pos), 0.840000 (neg)
iter = 442, accuracy (avg) = 0.745837 (all), 0.688299 (pos), 0.803570 (neg)
data reader: epoch = 0, batch = 443 / 4040
iter = 443, cls_loss (cur) = 0.416431, cls_loss (avg) = 0.496808, lr = 0.010000
iter = 443, accuracy (cur) = 0.860000 (all), 0.789474 (pos), 0.903226 (neg)
iter = 443, accuracy (avg) = 0.746979 (all), 0.689311 (pos), 0.804567 (neg)
data reader: epoch = 0, batch = 444 / 4040
iter = 444, cls_loss (cur) = 0.408652, cls_loss (avg) = 0.495927, lr = 0.010000
iter = 444, accuracy (cur) = 0.860000 (all), 0.727273 (pos), 0.964286 (neg)
iter = 444, accuracy (avg) = 0.748109 (all), 0.689691 (pos), 0.806164 (neg)
data reader: epoch = 0, batch = 445 / 4040
iter = 445, cls_loss (cur) = 0.431926, cls_loss (avg) = 0.495287, lr = 0.010000
iter = 445, accuracy (cur) = 0.800000 (all), 0.739130 (pos), 0.851852 (neg)
iter = 445, accuracy (avg) = 0.748628 (all), 0.690185 (pos), 0.806621 (neg)
data reader: epoch = 0, batch = 446 / 4040
iter = 446, cls_loss (cur) = 0.468986, cls_loss (avg) = 0.495024, lr = 0.010000
iter = 446, accuracy (cur) = 0.800000 (all), 0.750000 (pos), 0.863636 (neg)
iter = 446, accuracy (avg) = 0.749142 (all), 0.690783 (pos), 0.807191 (neg)
data reader: epoch = 0, batch = 447 / 4040
iter = 447, cls_loss (cur) = 0.485180, cls_loss (avg) = 0.494925, lr = 0.010000
iter = 447, accuracy (cur) = 0.740000 (all), 0.625000 (pos), 0.944444 (neg)
iter = 447, accuracy (avg) = 0.749050 (all), 0.690125 (pos), 0.808564 (neg)
data reader: epoch = 0, batch = 448 / 4040
iter = 448, cls_loss (cur) = 0.416123, cls_loss (avg) = 0.494137, lr = 0.010000
iter = 448, accuracy (cur) = 0.820000 (all), 0.809524 (pos), 0.827586 (neg)
iter = 448, accuracy (avg) = 0.749760 (all), 0.691319 (pos), 0.808754 (neg)
data reader: epoch = 0, batch = 449 / 4040
iter = 449, cls_loss (cur) = 0.468736, cls_loss (avg) = 0.493883, lr = 0.010000
iter = 449, accuracy (cur) = 0.760000 (all), 0.846154 (pos), 0.666667 (neg)
iter = 449, accuracy (avg) = 0.749862 (all), 0.692868 (pos), 0.807333 (neg)
data reader: epoch = 0, batch = 450 / 4040
iter = 450, cls_loss (cur) = 0.555917, cls_loss (avg) = 0.494504, lr = 0.010000
iter = 450, accuracy (cur) = 0.680000 (all), 0.695652 (pos), 0.666667 (neg)
iter = 450, accuracy (avg) = 0.749164 (all), 0.692896 (pos), 0.805926 (neg)
data reader: epoch = 0, batch = 451 / 4040
iter = 451, cls_loss (cur) = 0.439344, cls_loss (avg) = 0.493952, lr = 0.010000
iter = 451, accuracy (cur) = 0.820000 (all), 0.695652 (pos), 0.925926 (neg)
iter = 451, accuracy (avg) = 0.749872 (all), 0.692923 (pos), 0.807126 (neg)
data reader: epoch = 0, batch = 452 / 4040
iter = 452, cls_loss (cur) = 0.491219, cls_loss (avg) = 0.493925, lr = 0.010000
iter = 452, accuracy (cur) = 0.780000 (all), 0.727273 (pos), 0.821429 (neg)
iter = 452, accuracy (avg) = 0.750173 (all), 0.693267 (pos), 0.807269 (neg)
data reader: epoch = 0, batch = 453 / 4040
iter = 453, cls_loss (cur) = 0.439103, cls_loss (avg) = 0.493377, lr = 0.010000
iter = 453, accuracy (cur) = 0.820000 (all), 0.666667 (pos), 0.961538 (neg)
iter = 453, accuracy (avg) = 0.750872 (all), 0.693001 (pos), 0.808812 (neg)
data reader: epoch = 0, batch = 454 / 4040
iter = 454, cls_loss (cur) = 0.458850, cls_loss (avg) = 0.493031, lr = 0.010000
iter = 454, accuracy (cur) = 0.760000 (all), 0.642857 (pos), 0.909091 (neg)
iter = 454, accuracy (avg) = 0.750963 (all), 0.692499 (pos), 0.809815 (neg)
data reader: epoch = 0, batch = 455 / 4040
iter = 455, cls_loss (cur) = 0.501373, cls_loss (avg) = 0.493115, lr = 0.010000
iter = 455, accuracy (cur) = 0.820000 (all), 0.740741 (pos), 0.913043 (neg)
iter = 455, accuracy (avg) = 0.751653 (all), 0.692982 (pos), 0.810847 (neg)
data reader: epoch = 0, batch = 456 / 4040
iter = 456, cls_loss (cur) = 0.481003, cls_loss (avg) = 0.492994, lr = 0.010000
iter = 456, accuracy (cur) = 0.760000 (all), 0.730769 (pos), 0.791667 (neg)
iter = 456, accuracy (avg) = 0.751737 (all), 0.693360 (pos), 0.810655 (neg)
data reader: epoch = 0, batch = 457 / 4040
iter = 457, cls_loss (cur) = 0.396640, cls_loss (avg) = 0.492030, lr = 0.010000
iter = 457, accuracy (cur) = 0.820000 (all), 0.875000 (pos), 0.769231 (neg)
iter = 457, accuracy (avg) = 0.752419 (all), 0.695176 (pos), 0.810241 (neg)
data reader: epoch = 0, batch = 458 / 4040
iter = 458, cls_loss (cur) = 0.431085, cls_loss (avg) = 0.491421, lr = 0.010000
iter = 458, accuracy (cur) = 0.860000 (all), 0.846154 (pos), 0.875000 (neg)
iter = 458, accuracy (avg) = 0.753495 (all), 0.696686 (pos), 0.810889 (neg)
data reader: epoch = 0, batch = 459 / 4040
iter = 459, cls_loss (cur) = 0.511185, cls_loss (avg) = 0.491618, lr = 0.010000
iter = 459, accuracy (cur) = 0.780000 (all), 0.823529 (pos), 0.757576 (neg)
iter = 459, accuracy (avg) = 0.753760 (all), 0.697954 (pos), 0.810356 (neg)
data reader: epoch = 0, batch = 460 / 4040
iter = 460, cls_loss (cur) = 0.504469, cls_loss (avg) = 0.491747, lr = 0.010000
iter = 460, accuracy (cur) = 0.700000 (all), 0.545455 (pos), 0.821429 (neg)
iter = 460, accuracy (avg) = 0.753223 (all), 0.696429 (pos), 0.810466 (neg)
data reader: epoch = 0, batch = 461 / 4040
iter = 461, cls_loss (cur) = 0.552171, cls_loss (avg) = 0.492351, lr = 0.010000
iter = 461, accuracy (cur) = 0.740000 (all), 0.633333 (pos), 0.900000 (neg)
iter = 461, accuracy (avg) = 0.753090 (all), 0.695798 (pos), 0.811362 (neg)
data reader: epoch = 0, batch = 462 / 4040
iter = 462, cls_loss (cur) = 0.466362, cls_loss (avg) = 0.492091, lr = 0.010000
iter = 462, accuracy (cur) = 0.780000 (all), 0.869565 (pos), 0.703704 (neg)
iter = 462, accuracy (avg) = 0.753359 (all), 0.697536 (pos), 0.810285 (neg)
data reader: epoch = 0, batch = 463 / 4040
iter = 463, cls_loss (cur) = 0.481452, cls_loss (avg) = 0.491985, lr = 0.010000
iter = 463, accuracy (cur) = 0.780000 (all), 0.750000 (pos), 0.807692 (neg)
iter = 463, accuracy (avg) = 0.753626 (all), 0.698060 (pos), 0.810259 (neg)
data reader: epoch = 0, batch = 464 / 4040
iter = 464, cls_loss (cur) = 0.445313, cls_loss (avg) = 0.491518, lr = 0.010000
iter = 464, accuracy (cur) = 0.780000 (all), 0.666667 (pos), 0.913043 (neg)
iter = 464, accuracy (avg) = 0.753890 (all), 0.697747 (pos), 0.811287 (neg)
data reader: epoch = 0, batch = 465 / 4040
iter = 465, cls_loss (cur) = 0.468406, cls_loss (avg) = 0.491287, lr = 0.010000
iter = 465, accuracy (cur) = 0.760000 (all), 0.791667 (pos), 0.730769 (neg)
iter = 465, accuracy (avg) = 0.753951 (all), 0.698686 (pos), 0.810482 (neg)
data reader: epoch = 0, batch = 466 / 4040
iter = 466, cls_loss (cur) = 0.419416, cls_loss (avg) = 0.490568, lr = 0.010000
iter = 466, accuracy (cur) = 0.780000 (all), 0.650000 (pos), 0.866667 (neg)
iter = 466, accuracy (avg) = 0.754211 (all), 0.698199 (pos), 0.811044 (neg)
data reader: epoch = 0, batch = 467 / 4040
iter = 467, cls_loss (cur) = 0.469301, cls_loss (avg) = 0.490356, lr = 0.010000
iter = 467, accuracy (cur) = 0.760000 (all), 0.666667 (pos), 0.827586 (neg)
iter = 467, accuracy (avg) = 0.754269 (all), 0.697884 (pos), 0.811209 (neg)
data reader: epoch = 0, batch = 468 / 4040
iter = 468, cls_loss (cur) = 0.454313, cls_loss (avg) = 0.489995, lr = 0.010000
iter = 468, accuracy (cur) = 0.780000 (all), 0.629630 (pos), 0.956522 (neg)
iter = 468, accuracy (avg) = 0.754526 (all), 0.697201 (pos), 0.812662 (neg)
data reader: epoch = 0, batch = 469 / 4040
iter = 469, cls_loss (cur) = 0.369680, cls_loss (avg) = 0.488792, lr = 0.010000
iter = 469, accuracy (cur) = 0.860000 (all), 0.875000 (pos), 0.846154 (neg)
iter = 469, accuracy (avg) = 0.755581 (all), 0.698979 (pos), 0.812997 (neg)
data reader: epoch = 0, batch = 470 / 4040
iter = 470, cls_loss (cur) = 0.469101, cls_loss (avg) = 0.488595, lr = 0.010000
iter = 470, accuracy (cur) = 0.840000 (all), 0.793103 (pos), 0.904762 (neg)
iter = 470, accuracy (avg) = 0.756425 (all), 0.699920 (pos), 0.813915 (neg)
data reader: epoch = 0, batch = 471 / 4040
iter = 471, cls_loss (cur) = 0.499330, cls_loss (avg) = 0.488702, lr = 0.010000
iter = 471, accuracy (cur) = 0.800000 (all), 0.851852 (pos), 0.739130 (neg)
iter = 471, accuracy (avg) = 0.756861 (all), 0.701440 (pos), 0.813167 (neg)
data reader: epoch = 0, batch = 472 / 4040
iter = 472, cls_loss (cur) = 0.482226, cls_loss (avg) = 0.488638, lr = 0.010000
iter = 472, accuracy (cur) = 0.780000 (all), 0.590909 (pos), 0.928571 (neg)
iter = 472, accuracy (avg) = 0.757092 (all), 0.700334 (pos), 0.814321 (neg)
data reader: epoch = 0, batch = 473 / 4040
iter = 473, cls_loss (cur) = 0.472341, cls_loss (avg) = 0.488475, lr = 0.010000
iter = 473, accuracy (cur) = 0.720000 (all), 0.692308 (pos), 0.750000 (neg)
iter = 473, accuracy (avg) = 0.756722 (all), 0.700254 (pos), 0.813678 (neg)
data reader: epoch = 0, batch = 474 / 4040
iter = 474, cls_loss (cur) = 0.309531, cls_loss (avg) = 0.486685, lr = 0.010000
iter = 474, accuracy (cur) = 0.860000 (all), 0.807692 (pos), 0.916667 (neg)
iter = 474, accuracy (avg) = 0.757754 (all), 0.701328 (pos), 0.814708 (neg)
data reader: epoch = 0, batch = 475 / 4040
iter = 475, cls_loss (cur) = 0.371081, cls_loss (avg) = 0.485529, lr = 0.010000
iter = 475, accuracy (cur) = 0.880000 (all), 0.913043 (pos), 0.851852 (neg)
iter = 475, accuracy (avg) = 0.758977 (all), 0.703446 (pos), 0.815079 (neg)
data reader: epoch = 0, batch = 476 / 4040
iter = 476, cls_loss (cur) = 0.372357, cls_loss (avg) = 0.484398, lr = 0.010000
iter = 476, accuracy (cur) = 0.840000 (all), 0.923077 (pos), 0.750000 (neg)
iter = 476, accuracy (avg) = 0.759787 (all), 0.705642 (pos), 0.814428 (neg)
data reader: epoch = 0, batch = 477 / 4040
iter = 477, cls_loss (cur) = 0.522925, cls_loss (avg) = 0.484783, lr = 0.010000
iter = 477, accuracy (cur) = 0.680000 (all), 0.541667 (pos), 0.807692 (neg)
iter = 477, accuracy (avg) = 0.758989 (all), 0.704002 (pos), 0.814361 (neg)
data reader: epoch = 0, batch = 478 / 4040
iter = 478, cls_loss (cur) = 0.486623, cls_loss (avg) = 0.484801, lr = 0.010000
iter = 478, accuracy (cur) = 0.700000 (all), 0.541667 (pos), 0.846154 (neg)
iter = 478, accuracy (avg) = 0.758399 (all), 0.702379 (pos), 0.814679 (neg)
data reader: epoch = 0, batch = 479 / 4040
iter = 479, cls_loss (cur) = 0.430706, cls_loss (avg) = 0.484260, lr = 0.010000
iter = 479, accuracy (cur) = 0.800000 (all), 0.782609 (pos), 0.814815 (neg)
iter = 479, accuracy (avg) = 0.758815 (all), 0.703181 (pos), 0.814680 (neg)
data reader: epoch = 0, batch = 480 / 4040
iter = 480, cls_loss (cur) = 0.421628, cls_loss (avg) = 0.483634, lr = 0.010000
iter = 480, accuracy (cur) = 0.780000 (all), 0.636364 (pos), 0.892857 (neg)
iter = 480, accuracy (avg) = 0.759027 (all), 0.702513 (pos), 0.815462 (neg)
data reader: epoch = 0, batch = 481 / 4040
iter = 481, cls_loss (cur) = 0.434262, cls_loss (avg) = 0.483140, lr = 0.010000
iter = 481, accuracy (cur) = 0.820000 (all), 0.800000 (pos), 0.850000 (neg)
iter = 481, accuracy (avg) = 0.759637 (all), 0.703488 (pos), 0.815807 (neg)
data reader: epoch = 0, batch = 482 / 4040
iter = 482, cls_loss (cur) = 0.407822, cls_loss (avg) = 0.482387, lr = 0.010000
iter = 482, accuracy (cur) = 0.860000 (all), 0.800000 (pos), 0.920000 (neg)
iter = 482, accuracy (avg) = 0.760640 (all), 0.704453 (pos), 0.816849 (neg)
data reader: epoch = 0, batch = 483 / 4040
iter = 483, cls_loss (cur) = 0.394958, cls_loss (avg) = 0.481513, lr = 0.010000
iter = 483, accuracy (cur) = 0.860000 (all), 0.869565 (pos), 0.851852 (neg)
iter = 483, accuracy (avg) = 0.761634 (all), 0.706104 (pos), 0.817199 (neg)
data reader: epoch = 0, batch = 484 / 4040
iter = 484, cls_loss (cur) = 0.454867, cls_loss (avg) = 0.481246, lr = 0.010000
iter = 484, accuracy (cur) = 0.820000 (all), 0.809524 (pos), 0.827586 (neg)
iter = 484, accuracy (avg) = 0.762218 (all), 0.707138 (pos), 0.817303 (neg)
data reader: epoch = 0, batch = 485 / 4040
iter = 485, cls_loss (cur) = 0.408930, cls_loss (avg) = 0.480523, lr = 0.010000
iter = 485, accuracy (cur) = 0.820000 (all), 0.800000 (pos), 0.840000 (neg)
iter = 485, accuracy (avg) = 0.762796 (all), 0.708067 (pos), 0.817530 (neg)
data reader: epoch = 0, batch = 486 / 4040
iter = 486, cls_loss (cur) = 0.473833, cls_loss (avg) = 0.480456, lr = 0.010000
iter = 486, accuracy (cur) = 0.760000 (all), 0.642857 (pos), 0.909091 (neg)
iter = 486, accuracy (avg) = 0.762768 (all), 0.707415 (pos), 0.818446 (neg)
data reader: epoch = 0, batch = 487 / 4040
iter = 487, cls_loss (cur) = 0.433892, cls_loss (avg) = 0.479991, lr = 0.010000
iter = 487, accuracy (cur) = 0.760000 (all), 0.709677 (pos), 0.842105 (neg)
iter = 487, accuracy (avg) = 0.762740 (all), 0.707437 (pos), 0.818682 (neg)
data reader: epoch = 0, batch = 488 / 4040
iter = 488, cls_loss (cur) = 0.461846, cls_loss (avg) = 0.479809, lr = 0.010000
iter = 488, accuracy (cur) = 0.780000 (all), 0.703704 (pos), 0.869565 (neg)
iter = 488, accuracy (avg) = 0.762913 (all), 0.707400 (pos), 0.819191 (neg)
data reader: epoch = 0, batch = 489 / 4040
iter = 489, cls_loss (cur) = 0.414787, cls_loss (avg) = 0.479159, lr = 0.010000
iter = 489, accuracy (cur) = 0.780000 (all), 0.791667 (pos), 0.769231 (neg)
iter = 489, accuracy (avg) = 0.763083 (all), 0.708243 (pos), 0.818692 (neg)
data reader: epoch = 0, batch = 490 / 4040
iter = 490, cls_loss (cur) = 0.377254, cls_loss (avg) = 0.478140, lr = 0.010000
iter = 490, accuracy (cur) = 0.800000 (all), 0.709677 (pos), 0.947368 (neg)
iter = 490, accuracy (avg) = 0.763453 (all), 0.708257 (pos), 0.819978 (neg)
data reader: epoch = 0, batch = 491 / 4040
iter = 491, cls_loss (cur) = 0.521362, cls_loss (avg) = 0.478572, lr = 0.010000
iter = 491, accuracy (cur) = 0.720000 (all), 0.812500 (pos), 0.555556 (neg)
iter = 491, accuracy (avg) = 0.763018 (all), 0.709299 (pos), 0.817334 (neg)
data reader: epoch = 0, batch = 492 / 4040
iter = 492, cls_loss (cur) = 0.630768, cls_loss (avg) = 0.480094, lr = 0.010000
iter = 492, accuracy (cur) = 0.580000 (all), 0.888889 (pos), 0.406250 (neg)
iter = 492, accuracy (avg) = 0.761188 (all), 0.711095 (pos), 0.813223 (neg)
data reader: epoch = 0, batch = 493 / 4040
iter = 493, cls_loss (cur) = 0.447621, cls_loss (avg) = 0.479769, lr = 0.010000
iter = 493, accuracy (cur) = 0.820000 (all), 0.821429 (pos), 0.818182 (neg)
iter = 493, accuracy (avg) = 0.761776 (all), 0.712199 (pos), 0.813273 (neg)
data reader: epoch = 0, batch = 494 / 4040
iter = 494, cls_loss (cur) = 0.376275, cls_loss (avg) = 0.478734, lr = 0.010000
iter = 494, accuracy (cur) = 0.860000 (all), 0.862069 (pos), 0.857143 (neg)
iter = 494, accuracy (avg) = 0.762758 (all), 0.713697 (pos), 0.813712 (neg)
data reader: epoch = 0, batch = 495 / 4040
iter = 495, cls_loss (cur) = 0.579830, cls_loss (avg) = 0.479745, lr = 0.010000
iter = 495, accuracy (cur) = 0.700000 (all), 0.750000 (pos), 0.653846 (neg)
iter = 495, accuracy (avg) = 0.762131 (all), 0.714060 (pos), 0.812113 (neg)
data reader: epoch = 0, batch = 496 / 4040
iter = 496, cls_loss (cur) = 0.387619, cls_loss (avg) = 0.478824, lr = 0.010000
iter = 496, accuracy (cur) = 0.860000 (all), 0.785714 (pos), 0.954545 (neg)
iter = 496, accuracy (avg) = 0.763109 (all), 0.714777 (pos), 0.813537 (neg)
data reader: epoch = 0, batch = 497 / 4040
iter = 497, cls_loss (cur) = 0.473415, cls_loss (avg) = 0.478770, lr = 0.010000
iter = 497, accuracy (cur) = 0.760000 (all), 0.629630 (pos), 0.913043 (neg)
iter = 497, accuracy (avg) = 0.763078 (all), 0.713925 (pos), 0.814532 (neg)
data reader: epoch = 0, batch = 498 / 4040
iter = 498, cls_loss (cur) = 0.368431, cls_loss (avg) = 0.477667, lr = 0.010000
iter = 498, accuracy (cur) = 0.820000 (all), 0.695652 (pos), 0.925926 (neg)
iter = 498, accuracy (avg) = 0.763647 (all), 0.713743 (pos), 0.815646 (neg)
data reader: epoch = 0, batch = 499 / 4040
iter = 499, cls_loss (cur) = 0.384113, cls_loss (avg) = 0.476731, lr = 0.010000
iter = 499, accuracy (cur) = 0.840000 (all), 0.807692 (pos), 0.875000 (neg)
iter = 499, accuracy (avg) = 0.764411 (all), 0.714682 (pos), 0.816240 (neg)
data reader: epoch = 0, batch = 500 / 4040
iter = 500, cls_loss (cur) = 0.471564, cls_loss (avg) = 0.476679, lr = 0.010000
iter = 500, accuracy (cur) = 0.800000 (all), 0.777778 (pos), 0.812500 (neg)
iter = 500, accuracy (avg) = 0.764767 (all), 0.715313 (pos), 0.816202 (neg)
data reader: epoch = 0, batch = 501 / 4040
iter = 501, cls_loss (cur) = 0.446424, cls_loss (avg) = 0.476377, lr = 0.010000
iter = 501, accuracy (cur) = 0.780000 (all), 0.724138 (pos), 0.857143 (neg)
iter = 501, accuracy (avg) = 0.764919 (all), 0.715401 (pos), 0.816612 (neg)
data reader: epoch = 0, batch = 502 / 4040
iter = 502, cls_loss (cur) = 0.414731, cls_loss (avg) = 0.475760, lr = 0.010000
iter = 502, accuracy (cur) = 0.840000 (all), 0.739130 (pos), 0.925926 (neg)
iter = 502, accuracy (avg) = 0.765670 (all), 0.715639 (pos), 0.817705 (neg)
data reader: epoch = 0, batch = 503 / 4040
iter = 503, cls_loss (cur) = 0.478607, cls_loss (avg) = 0.475789, lr = 0.010000
iter = 503, accuracy (cur) = 0.760000 (all), 0.740741 (pos), 0.782609 (neg)
iter = 503, accuracy (avg) = 0.765613 (all), 0.715890 (pos), 0.817354 (neg)
data reader: epoch = 0, batch = 504 / 4040
iter = 504, cls_loss (cur) = 0.425217, cls_loss (avg) = 0.475283, lr = 0.010000
iter = 504, accuracy (cur) = 0.900000 (all), 0.916667 (pos), 0.884615 (neg)
iter = 504, accuracy (avg) = 0.766957 (all), 0.717898 (pos), 0.818027 (neg)
data reader: epoch = 0, batch = 505 / 4040
iter = 505, cls_loss (cur) = 0.479401, cls_loss (avg) = 0.475324, lr = 0.010000
iter = 505, accuracy (cur) = 0.760000 (all), 0.777778 (pos), 0.739130 (neg)
iter = 505, accuracy (avg) = 0.766888 (all), 0.718496 (pos), 0.817238 (neg)
data reader: epoch = 0, batch = 506 / 4040
iter = 506, cls_loss (cur) = 0.464091, cls_loss (avg) = 0.475212, lr = 0.010000
iter = 506, accuracy (cur) = 0.800000 (all), 0.880000 (pos), 0.720000 (neg)
iter = 506, accuracy (avg) = 0.767219 (all), 0.720111 (pos), 0.816265 (neg)
data reader: epoch = 0, batch = 507 / 4040
iter = 507, cls_loss (cur) = 0.426067, cls_loss (avg) = 0.474721, lr = 0.010000
iter = 507, accuracy (cur) = 0.860000 (all), 0.950000 (pos), 0.800000 (neg)
iter = 507, accuracy (avg) = 0.768147 (all), 0.722410 (pos), 0.816103 (neg)
data reader: epoch = 0, batch = 508 / 4040
iter = 508, cls_loss (cur) = 0.409058, cls_loss (avg) = 0.474064, lr = 0.010000
iter = 508, accuracy (cur) = 0.820000 (all), 0.666667 (pos), 1.000000 (neg)
iter = 508, accuracy (avg) = 0.768665 (all), 0.721853 (pos), 0.817942 (neg)
data reader: epoch = 0, batch = 509 / 4040
iter = 509, cls_loss (cur) = 0.505273, cls_loss (avg) = 0.474376, lr = 0.010000
iter = 509, accuracy (cur) = 0.740000 (all), 0.695652 (pos), 0.777778 (neg)
iter = 509, accuracy (avg) = 0.768378 (all), 0.721591 (pos), 0.817540 (neg)
data reader: epoch = 0, batch = 510 / 4040
iter = 510, cls_loss (cur) = 0.335232, cls_loss (avg) = 0.472985, lr = 0.010000
iter = 510, accuracy (cur) = 0.900000 (all), 0.880000 (pos), 0.920000 (neg)
iter = 510, accuracy (avg) = 0.769695 (all), 0.723175 (pos), 0.818564 (neg)
data reader: epoch = 0, batch = 511 / 4040
iter = 511, cls_loss (cur) = 0.439600, cls_loss (avg) = 0.472651, lr = 0.010000
iter = 511, accuracy (cur) = 0.780000 (all), 0.791667 (pos), 0.769231 (neg)
iter = 511, accuracy (avg) = 0.769798 (all), 0.723860 (pos), 0.818071 (neg)
data reader: epoch = 0, batch = 512 / 4040
iter = 512, cls_loss (cur) = 0.435172, cls_loss (avg) = 0.472276, lr = 0.010000
iter = 512, accuracy (cur) = 0.740000 (all), 0.571429 (pos), 0.954545 (neg)
iter = 512, accuracy (avg) = 0.769500 (all), 0.722336 (pos), 0.819436 (neg)
data reader: epoch = 0, batch = 513 / 4040
iter = 513, cls_loss (cur) = 0.517954, cls_loss (avg) = 0.472733, lr = 0.010000
iter = 513, accuracy (cur) = 0.720000 (all), 0.772727 (pos), 0.678571 (neg)
iter = 513, accuracy (avg) = 0.769005 (all), 0.722839 (pos), 0.818027 (neg)
data reader: epoch = 0, batch = 514 / 4040
iter = 514, cls_loss (cur) = 0.409330, cls_loss (avg) = 0.472099, lr = 0.010000
iter = 514, accuracy (cur) = 0.820000 (all), 0.695652 (pos), 0.925926 (neg)
iter = 514, accuracy (avg) = 0.769515 (all), 0.722568 (pos), 0.819106 (neg)
data reader: epoch = 0, batch = 515 / 4040
iter = 515, cls_loss (cur) = 0.453332, cls_loss (avg) = 0.471911, lr = 0.010000
iter = 515, accuracy (cur) = 0.740000 (all), 0.642857 (pos), 0.863636 (neg)
iter = 515, accuracy (avg) = 0.769220 (all), 0.721770 (pos), 0.819552 (neg)
data reader: epoch = 0, batch = 516 / 4040
iter = 516, cls_loss (cur) = 0.489809, cls_loss (avg) = 0.472090, lr = 0.010000
iter = 516, accuracy (cur) = 0.760000 (all), 0.789474 (pos), 0.741935 (neg)
iter = 516, accuracy (avg) = 0.769127 (all), 0.722447 (pos), 0.818775 (neg)
data reader: epoch = 0, batch = 517 / 4040
iter = 517, cls_loss (cur) = 0.452014, cls_loss (avg) = 0.471889, lr = 0.010000
iter = 517, accuracy (cur) = 0.820000 (all), 0.684211 (pos), 0.903226 (neg)
iter = 517, accuracy (avg) = 0.769636 (all), 0.722065 (pos), 0.819620 (neg)
data reader: epoch = 0, batch = 518 / 4040
iter = 518, cls_loss (cur) = 0.457643, cls_loss (avg) = 0.471747, lr = 0.010000
iter = 518, accuracy (cur) = 0.820000 (all), 0.730769 (pos), 0.916667 (neg)
iter = 518, accuracy (avg) = 0.770140 (all), 0.722152 (pos), 0.820590 (neg)
data reader: epoch = 0, batch = 519 / 4040
iter = 519, cls_loss (cur) = 0.439218, cls_loss (avg) = 0.471421, lr = 0.010000
iter = 519, accuracy (cur) = 0.780000 (all), 0.750000 (pos), 0.833333 (neg)
iter = 519, accuracy (avg) = 0.770238 (all), 0.722431 (pos), 0.820718 (neg)
data reader: epoch = 0, batch = 520 / 4040
iter = 520, cls_loss (cur) = 0.477295, cls_loss (avg) = 0.471480, lr = 0.010000
iter = 520, accuracy (cur) = 0.840000 (all), 0.880000 (pos), 0.800000 (neg)
iter = 520, accuracy (avg) = 0.770936 (all), 0.724006 (pos), 0.820511 (neg)
data reader: epoch = 0, batch = 521 / 4040
iter = 521, cls_loss (cur) = 0.470033, cls_loss (avg) = 0.471466, lr = 0.010000
iter = 521, accuracy (cur) = 0.840000 (all), 0.958333 (pos), 0.730769 (neg)
iter = 521, accuracy (avg) = 0.771627 (all), 0.726350 (pos), 0.819613 (neg)
data reader: epoch = 0, batch = 522 / 4040
iter = 522, cls_loss (cur) = 0.498157, cls_loss (avg) = 0.471733, lr = 0.010000
iter = 522, accuracy (cur) = 0.780000 (all), 0.827586 (pos), 0.714286 (neg)
iter = 522, accuracy (avg) = 0.771710 (all), 0.727362 (pos), 0.818560 (neg)
data reader: epoch = 0, batch = 523 / 4040
iter = 523, cls_loss (cur) = 0.385064, cls_loss (avg) = 0.470866, lr = 0.010000
iter = 523, accuracy (cur) = 0.840000 (all), 0.875000 (pos), 0.777778 (neg)
iter = 523, accuracy (avg) = 0.772393 (all), 0.728838 (pos), 0.818152 (neg)
data reader: epoch = 0, batch = 524 / 4040
iter = 524, cls_loss (cur) = 0.451076, cls_loss (avg) = 0.470668, lr = 0.010000
iter = 524, accuracy (cur) = 0.780000 (all), 0.800000 (pos), 0.766667 (neg)
iter = 524, accuracy (avg) = 0.772469 (all), 0.729550 (pos), 0.817637 (neg)
data reader: epoch = 0, batch = 525 / 4040
iter = 525, cls_loss (cur) = 0.399369, cls_loss (avg) = 0.469955, lr = 0.010000
iter = 525, accuracy (cur) = 0.880000 (all), 0.923077 (pos), 0.833333 (neg)
iter = 525, accuracy (avg) = 0.773545 (all), 0.731485 (pos), 0.817794 (neg)
data reader: epoch = 0, batch = 526 / 4040
iter = 526, cls_loss (cur) = 0.527086, cls_loss (avg) = 0.470526, lr = 0.010000
iter = 526, accuracy (cur) = 0.700000 (all), 0.500000 (pos), 0.857143 (neg)
iter = 526, accuracy (avg) = 0.772809 (all), 0.729170 (pos), 0.818188 (neg)
data reader: epoch = 0, batch = 527 / 4040
iter = 527, cls_loss (cur) = 0.414545, cls_loss (avg) = 0.469967, lr = 0.010000
iter = 527, accuracy (cur) = 0.860000 (all), 0.800000 (pos), 0.920000 (neg)
iter = 527, accuracy (avg) = 0.773681 (all), 0.729879 (pos), 0.819206 (neg)
data reader: epoch = 0, batch = 528 / 4040
iter = 528, cls_loss (cur) = 0.474251, cls_loss (avg) = 0.470009, lr = 0.010000
iter = 528, accuracy (cur) = 0.720000 (all), 0.620690 (pos), 0.857143 (neg)
iter = 528, accuracy (avg) = 0.773144 (all), 0.728787 (pos), 0.819585 (neg)
data reader: epoch = 0, batch = 529 / 4040
iter = 529, cls_loss (cur) = 0.352429, cls_loss (avg) = 0.468834, lr = 0.010000
iter = 529, accuracy (cur) = 0.860000 (all), 0.750000 (pos), 0.961538 (neg)
iter = 529, accuracy (avg) = 0.774013 (all), 0.728999 (pos), 0.821005 (neg)
data reader: epoch = 0, batch = 530 / 4040
iter = 530, cls_loss (cur) = 0.361261, cls_loss (avg) = 0.467758, lr = 0.010000
iter = 530, accuracy (cur) = 0.800000 (all), 0.653846 (pos), 0.958333 (neg)
iter = 530, accuracy (avg) = 0.774273 (all), 0.728247 (pos), 0.822378 (neg)
data reader: epoch = 0, batch = 531 / 4040
iter = 531, cls_loss (cur) = 0.515233, cls_loss (avg) = 0.468233, lr = 0.010000
iter = 531, accuracy (cur) = 0.700000 (all), 0.678571 (pos), 0.727273 (neg)
iter = 531, accuracy (avg) = 0.773530 (all), 0.727751 (pos), 0.821427 (neg)
data reader: epoch = 0, batch = 532 / 4040
iter = 532, cls_loss (cur) = 0.344268, cls_loss (avg) = 0.466993, lr = 0.010000
iter = 532, accuracy (cur) = 0.860000 (all), 0.800000 (pos), 0.950000 (neg)
iter = 532, accuracy (avg) = 0.774395 (all), 0.728473 (pos), 0.822713 (neg)
data reader: epoch = 0, batch = 533 / 4040
iter = 533, cls_loss (cur) = 0.469826, cls_loss (avg) = 0.467021, lr = 0.010000
iter = 533, accuracy (cur) = 0.780000 (all), 0.769231 (pos), 0.791667 (neg)
iter = 533, accuracy (avg) = 0.774451 (all), 0.728881 (pos), 0.822402 (neg)
data reader: epoch = 0, batch = 534 / 4040
iter = 534, cls_loss (cur) = 0.471765, cls_loss (avg) = 0.467069, lr = 0.010000
iter = 534, accuracy (cur) = 0.720000 (all), 0.850000 (pos), 0.633333 (neg)
iter = 534, accuracy (avg) = 0.773906 (all), 0.730092 (pos), 0.820512 (neg)
data reader: epoch = 0, batch = 535 / 4040
iter = 535, cls_loss (cur) = 0.422427, cls_loss (avg) = 0.466622, lr = 0.010000
iter = 535, accuracy (cur) = 0.820000 (all), 0.714286 (pos), 0.896552 (neg)
iter = 535, accuracy (avg) = 0.774367 (all), 0.729934 (pos), 0.821272 (neg)
data reader: epoch = 0, batch = 536 / 4040
iter = 536, cls_loss (cur) = 0.284467, cls_loss (avg) = 0.464801, lr = 0.010000
iter = 536, accuracy (cur) = 0.940000 (all), 0.903226 (pos), 1.000000 (neg)
iter = 536, accuracy (avg) = 0.776023 (all), 0.731667 (pos), 0.823059 (neg)
data reader: epoch = 0, batch = 537 / 4040
iter = 537, cls_loss (cur) = 0.405266, cls_loss (avg) = 0.464205, lr = 0.010000
iter = 537, accuracy (cur) = 0.840000 (all), 0.857143 (pos), 0.827586 (neg)
iter = 537, accuracy (avg) = 0.776663 (all), 0.732922 (pos), 0.823104 (neg)
data reader: epoch = 0, batch = 538 / 4040
iter = 538, cls_loss (cur) = 0.506587, cls_loss (avg) = 0.464629, lr = 0.010000
iter = 538, accuracy (cur) = 0.620000 (all), 0.500000 (pos), 0.772727 (neg)
iter = 538, accuracy (avg) = 0.775097 (all), 0.730592 (pos), 0.822601 (neg)
data reader: epoch = 0, batch = 539 / 4040
iter = 539, cls_loss (cur) = 0.452227, cls_loss (avg) = 0.464505, lr = 0.010000
iter = 539, accuracy (cur) = 0.760000 (all), 0.800000 (pos), 0.720000 (neg)
iter = 539, accuracy (avg) = 0.774946 (all), 0.731286 (pos), 0.821575 (neg)
data reader: epoch = 0, batch = 540 / 4040
iter = 540, cls_loss (cur) = 0.482966, cls_loss (avg) = 0.464690, lr = 0.010000
iter = 540, accuracy (cur) = 0.760000 (all), 0.680000 (pos), 0.840000 (neg)
iter = 540, accuracy (avg) = 0.774796 (all), 0.730774 (pos), 0.821759 (neg)
data reader: epoch = 0, batch = 541 / 4040
iter = 541, cls_loss (cur) = 0.359791, cls_loss (avg) = 0.463641, lr = 0.010000
iter = 541, accuracy (cur) = 0.820000 (all), 0.769231 (pos), 0.875000 (neg)
iter = 541, accuracy (avg) = 0.775248 (all), 0.731158 (pos), 0.822291 (neg)
data reader: epoch = 0, batch = 542 / 4040
iter = 542, cls_loss (cur) = 0.505558, cls_loss (avg) = 0.464060, lr = 0.010000
iter = 542, accuracy (cur) = 0.700000 (all), 0.521739 (pos), 0.851852 (neg)
iter = 542, accuracy (avg) = 0.774496 (all), 0.729064 (pos), 0.822587 (neg)
data reader: epoch = 0, batch = 543 / 4040
iter = 543, cls_loss (cur) = 0.499102, cls_loss (avg) = 0.464410, lr = 0.010000
iter = 543, accuracy (cur) = 0.720000 (all), 0.720000 (pos), 0.720000 (neg)
iter = 543, accuracy (avg) = 0.773951 (all), 0.728973 (pos), 0.821561 (neg)
data reader: epoch = 0, batch = 544 / 4040
iter = 544, cls_loss (cur) = 0.401887, cls_loss (avg) = 0.463785, lr = 0.010000
iter = 544, accuracy (cur) = 0.840000 (all), 0.920000 (pos), 0.760000 (neg)
iter = 544, accuracy (avg) = 0.774611 (all), 0.730884 (pos), 0.820945 (neg)
data reader: epoch = 0, batch = 545 / 4040
iter = 545, cls_loss (cur) = 0.364302, cls_loss (avg) = 0.462790, lr = 0.010000
iter = 545, accuracy (cur) = 0.860000 (all), 0.758621 (pos), 1.000000 (neg)
iter = 545, accuracy (avg) = 0.775465 (all), 0.731161 (pos), 0.822736 (neg)
data reader: epoch = 0, batch = 546 / 4040
iter = 546, cls_loss (cur) = 0.422158, cls_loss (avg) = 0.462384, lr = 0.010000
iter = 546, accuracy (cur) = 0.840000 (all), 0.807692 (pos), 0.875000 (neg)
iter = 546, accuracy (avg) = 0.776110 (all), 0.731926 (pos), 0.823259 (neg)
data reader: epoch = 0, batch = 547 / 4040
iter = 547, cls_loss (cur) = 0.443687, cls_loss (avg) = 0.462197, lr = 0.010000
iter = 547, accuracy (cur) = 0.780000 (all), 0.724138 (pos), 0.857143 (neg)
iter = 547, accuracy (avg) = 0.776149 (all), 0.731848 (pos), 0.823598 (neg)
data reader: epoch = 0, batch = 548 / 4040
iter = 548, cls_loss (cur) = 0.421404, cls_loss (avg) = 0.461789, lr = 0.010000
iter = 548, accuracy (cur) = 0.880000 (all), 0.809524 (pos), 0.931034 (neg)
iter = 548, accuracy (avg) = 0.777188 (all), 0.732625 (pos), 0.824672 (neg)
data reader: epoch = 0, batch = 549 / 4040
iter = 549, cls_loss (cur) = 0.479861, cls_loss (avg) = 0.461970, lr = 0.010000
iter = 549, accuracy (cur) = 0.780000 (all), 0.862069 (pos), 0.666667 (neg)
iter = 549, accuracy (avg) = 0.777216 (all), 0.733920 (pos), 0.823092 (neg)
data reader: epoch = 0, batch = 550 / 4040
iter = 550, cls_loss (cur) = 0.496310, cls_loss (avg) = 0.462313, lr = 0.010000
iter = 550, accuracy (cur) = 0.740000 (all), 0.791667 (pos), 0.692308 (neg)
iter = 550, accuracy (avg) = 0.776844 (all), 0.734497 (pos), 0.821784 (neg)
data reader: epoch = 0, batch = 551 / 4040
iter = 551, cls_loss (cur) = 0.491138, cls_loss (avg) = 0.462602, lr = 0.010000
iter = 551, accuracy (cur) = 0.760000 (all), 0.739130 (pos), 0.777778 (neg)
iter = 551, accuracy (avg) = 0.776675 (all), 0.734543 (pos), 0.821344 (neg)
data reader: epoch = 0, batch = 552 / 4040
iter = 552, cls_loss (cur) = 0.557922, cls_loss (avg) = 0.463555, lr = 0.010000
iter = 552, accuracy (cur) = 0.720000 (all), 0.846154 (pos), 0.583333 (neg)
iter = 552, accuracy (avg) = 0.776109 (all), 0.735659 (pos), 0.818964 (neg)
data reader: epoch = 0, batch = 553 / 4040
iter = 553, cls_loss (cur) = 0.475773, cls_loss (avg) = 0.463677, lr = 0.010000
iter = 553, accuracy (cur) = 0.780000 (all), 0.800000 (pos), 0.760000 (neg)
iter = 553, accuracy (avg) = 0.776148 (all), 0.736303 (pos), 0.818374 (neg)
data reader: epoch = 0, batch = 554 / 4040
iter = 554, cls_loss (cur) = 0.446468, cls_loss (avg) = 0.463505, lr = 0.010000
iter = 554, accuracy (cur) = 0.780000 (all), 0.681818 (pos), 0.857143 (neg)
iter = 554, accuracy (avg) = 0.776186 (all), 0.735758 (pos), 0.818762 (neg)
data reader: epoch = 0, batch = 555 / 4040
iter = 555, cls_loss (cur) = 0.375573, cls_loss (avg) = 0.462625, lr = 0.010000
iter = 555, accuracy (cur) = 0.820000 (all), 0.846154 (pos), 0.791667 (neg)
iter = 555, accuracy (avg) = 0.776624 (all), 0.736862 (pos), 0.818491 (neg)
data reader: epoch = 0, batch = 556 / 4040
iter = 556, cls_loss (cur) = 0.513134, cls_loss (avg) = 0.463131, lr = 0.010000
iter = 556, accuracy (cur) = 0.700000 (all), 0.761905 (pos), 0.655172 (neg)
iter = 556, accuracy (avg) = 0.775858 (all), 0.737112 (pos), 0.816858 (neg)
data reader: epoch = 0, batch = 557 / 4040
iter = 557, cls_loss (cur) = 0.457172, cls_loss (avg) = 0.463071, lr = 0.010000
iter = 557, accuracy (cur) = 0.780000 (all), 0.750000 (pos), 0.833333 (neg)
iter = 557, accuracy (avg) = 0.775899 (all), 0.737241 (pos), 0.817022 (neg)
data reader: epoch = 0, batch = 558 / 4040
iter = 558, cls_loss (cur) = 0.452605, cls_loss (avg) = 0.462966, lr = 0.010000
iter = 558, accuracy (cur) = 0.780000 (all), 0.750000 (pos), 0.807692 (neg)
iter = 558, accuracy (avg) = 0.775940 (all), 0.737369 (pos), 0.816929 (neg)
data reader: epoch = 0, batch = 559 / 4040
iter = 559, cls_loss (cur) = 0.378409, cls_loss (avg) = 0.462121, lr = 0.010000
iter = 559, accuracy (cur) = 0.860000 (all), 0.826087 (pos), 0.888889 (neg)
iter = 559, accuracy (avg) = 0.776781 (all), 0.738256 (pos), 0.817649 (neg)
data reader: epoch = 0, batch = 560 / 4040
iter = 560, cls_loss (cur) = 0.450657, cls_loss (avg) = 0.462006, lr = 0.010000
iter = 560, accuracy (cur) = 0.800000 (all), 0.722222 (pos), 0.843750 (neg)
iter = 560, accuracy (avg) = 0.777013 (all), 0.738096 (pos), 0.817910 (neg)
data reader: epoch = 0, batch = 561 / 4040
iter = 561, cls_loss (cur) = 0.400530, cls_loss (avg) = 0.461391, lr = 0.010000
iter = 561, accuracy (cur) = 0.760000 (all), 0.640000 (pos), 0.880000 (neg)
iter = 561, accuracy (avg) = 0.776843 (all), 0.737115 (pos), 0.818531 (neg)
data reader: epoch = 0, batch = 562 / 4040
iter = 562, cls_loss (cur) = 0.516668, cls_loss (avg) = 0.461944, lr = 0.010000
iter = 562, accuracy (cur) = 0.720000 (all), 0.571429 (pos), 0.827586 (neg)
iter = 562, accuracy (avg) = 0.776275 (all), 0.735458 (pos), 0.818621 (neg)
data reader: epoch = 0, batch = 563 / 4040
iter = 563, cls_loss (cur) = 0.385972, cls_loss (avg) = 0.461184, lr = 0.010000
iter = 563, accuracy (cur) = 0.820000 (all), 0.700000 (pos), 0.900000 (neg)
iter = 563, accuracy (avg) = 0.776712 (all), 0.735103 (pos), 0.819435 (neg)
data reader: epoch = 0, batch = 564 / 4040
iter = 564, cls_loss (cur) = 0.408830, cls_loss (avg) = 0.460661, lr = 0.010000
iter = 564, accuracy (cur) = 0.800000 (all), 0.750000 (pos), 0.863636 (neg)
iter = 564, accuracy (avg) = 0.776945 (all), 0.735252 (pos), 0.819877 (neg)
data reader: epoch = 0, batch = 565 / 4040
iter = 565, cls_loss (cur) = 0.530513, cls_loss (avg) = 0.461359, lr = 0.010000
iter = 565, accuracy (cur) = 0.740000 (all), 0.571429 (pos), 0.862069 (neg)
iter = 565, accuracy (avg) = 0.776575 (all), 0.733614 (pos), 0.820299 (neg)
data reader: epoch = 0, batch = 566 / 4040
iter = 566, cls_loss (cur) = 0.460273, cls_loss (avg) = 0.461349, lr = 0.010000
iter = 566, accuracy (cur) = 0.820000 (all), 0.724138 (pos), 0.952381 (neg)
iter = 566, accuracy (avg) = 0.777010 (all), 0.733519 (pos), 0.821620 (neg)
data reader: epoch = 0, batch = 567 / 4040
iter = 567, cls_loss (cur) = 0.431033, cls_loss (avg) = 0.461045, lr = 0.010000
iter = 567, accuracy (cur) = 0.800000 (all), 0.680000 (pos), 0.920000 (neg)
iter = 567, accuracy (avg) = 0.777239 (all), 0.732984 (pos), 0.822604 (neg)
data reader: epoch = 0, batch = 568 / 4040
iter = 568, cls_loss (cur) = 0.451940, cls_loss (avg) = 0.460954, lr = 0.010000
iter = 568, accuracy (cur) = 0.780000 (all), 0.909091 (pos), 0.678571 (neg)
iter = 568, accuracy (avg) = 0.777267 (all), 0.734745 (pos), 0.821163 (neg)
data reader: epoch = 0, batch = 569 / 4040
iter = 569, cls_loss (cur) = 0.335602, cls_loss (avg) = 0.459701, lr = 0.010000
iter = 569, accuracy (cur) = 0.800000 (all), 0.913043 (pos), 0.703704 (neg)
iter = 569, accuracy (avg) = 0.777494 (all), 0.736528 (pos), 0.819989 (neg)
data reader: epoch = 0, batch = 570 / 4040
iter = 570, cls_loss (cur) = 0.312167, cls_loss (avg) = 0.458225, lr = 0.010000
iter = 570, accuracy (cur) = 0.920000 (all), 0.920000 (pos), 0.920000 (neg)
iter = 570, accuracy (avg) = 0.778919 (all), 0.738363 (pos), 0.820989 (neg)
data reader: epoch = 0, batch = 571 / 4040
iter = 571, cls_loss (cur) = 0.391176, cls_loss (avg) = 0.457555, lr = 0.010000
iter = 571, accuracy (cur) = 0.860000 (all), 0.840000 (pos), 0.880000 (neg)
iter = 571, accuracy (avg) = 0.779730 (all), 0.739379 (pos), 0.821579 (neg)
data reader: epoch = 0, batch = 572 / 4040
iter = 572, cls_loss (cur) = 0.360131, cls_loss (avg) = 0.456581, lr = 0.010000
iter = 572, accuracy (cur) = 0.840000 (all), 0.863636 (pos), 0.821429 (neg)
iter = 572, accuracy (avg) = 0.780333 (all), 0.740622 (pos), 0.821577 (neg)
data reader: epoch = 0, batch = 573 / 4040
iter = 573, cls_loss (cur) = 0.450716, cls_loss (avg) = 0.456522, lr = 0.010000
iter = 573, accuracy (cur) = 0.780000 (all), 0.733333 (pos), 0.850000 (neg)
iter = 573, accuracy (avg) = 0.780330 (all), 0.740549 (pos), 0.821862 (neg)
data reader: epoch = 0, batch = 574 / 4040
iter = 574, cls_loss (cur) = 0.448336, cls_loss (avg) = 0.456440, lr = 0.010000
iter = 574, accuracy (cur) = 0.800000 (all), 0.680000 (pos), 0.920000 (neg)
iter = 574, accuracy (avg) = 0.780526 (all), 0.739943 (pos), 0.822843 (neg)
data reader: epoch = 0, batch = 575 / 4040
iter = 575, cls_loss (cur) = 0.464437, cls_loss (avg) = 0.456520, lr = 0.010000
iter = 575, accuracy (cur) = 0.720000 (all), 0.739130 (pos), 0.703704 (neg)
iter = 575, accuracy (avg) = 0.779921 (all), 0.739935 (pos), 0.821652 (neg)
data reader: epoch = 0, batch = 576 / 4040
iter = 576, cls_loss (cur) = 0.304488, cls_loss (avg) = 0.455000, lr = 0.010000
iter = 576, accuracy (cur) = 0.900000 (all), 0.950000 (pos), 0.866667 (neg)
iter = 576, accuracy (avg) = 0.781122 (all), 0.742036 (pos), 0.822102 (neg)
data reader: epoch = 0, batch = 577 / 4040
iter = 577, cls_loss (cur) = 0.402783, cls_loss (avg) = 0.454478, lr = 0.010000
iter = 577, accuracy (cur) = 0.780000 (all), 0.730769 (pos), 0.833333 (neg)
iter = 577, accuracy (avg) = 0.781111 (all), 0.741923 (pos), 0.822214 (neg)
data reader: epoch = 0, batch = 578 / 4040
iter = 578, cls_loss (cur) = 0.400877, cls_loss (avg) = 0.453942, lr = 0.010000
iter = 578, accuracy (cur) = 0.800000 (all), 0.666667 (pos), 0.896552 (neg)
iter = 578, accuracy (avg) = 0.781300 (all), 0.741171 (pos), 0.822957 (neg)
data reader: epoch = 0, batch = 579 / 4040
iter = 579, cls_loss (cur) = 0.458914, cls_loss (avg) = 0.453991, lr = 0.010000
iter = 579, accuracy (cur) = 0.760000 (all), 0.692308 (pos), 0.833333 (neg)
iter = 579, accuracy (avg) = 0.781087 (all), 0.740682 (pos), 0.823061 (neg)
data reader: epoch = 0, batch = 580 / 4040
iter = 580, cls_loss (cur) = 0.516545, cls_loss (avg) = 0.454617, lr = 0.010000
iter = 580, accuracy (cur) = 0.680000 (all), 0.517241 (pos), 0.904762 (neg)
iter = 580, accuracy (avg) = 0.780076 (all), 0.738448 (pos), 0.823878 (neg)
data reader: epoch = 0, batch = 581 / 4040
iter = 581, cls_loss (cur) = 0.452882, cls_loss (avg) = 0.454600, lr = 0.010000
iter = 581, accuracy (cur) = 0.760000 (all), 0.708333 (pos), 0.807692 (neg)
iter = 581, accuracy (avg) = 0.779875 (all), 0.738147 (pos), 0.823716 (neg)
data reader: epoch = 0, batch = 582 / 4040
iter = 582, cls_loss (cur) = 0.478856, cls_loss (avg) = 0.454842, lr = 0.010000
iter = 582, accuracy (cur) = 0.720000 (all), 0.636364 (pos), 0.785714 (neg)
iter = 582, accuracy (avg) = 0.779276 (all), 0.737129 (pos), 0.823336 (neg)
data reader: epoch = 0, batch = 583 / 4040
iter = 583, cls_loss (cur) = 0.528087, cls_loss (avg) = 0.455575, lr = 0.010000
iter = 583, accuracy (cur) = 0.740000 (all), 0.904762 (pos), 0.620690 (neg)
iter = 583, accuracy (avg) = 0.778883 (all), 0.738805 (pos), 0.821310 (neg)
data reader: epoch = 0, batch = 584 / 4040
iter = 584, cls_loss (cur) = 0.557151, cls_loss (avg) = 0.456590, lr = 0.010000
iter = 584, accuracy (cur) = 0.780000 (all), 0.785714 (pos), 0.772727 (neg)
iter = 584, accuracy (avg) = 0.778895 (all), 0.739274 (pos), 0.820824 (neg)
data reader: epoch = 0, batch = 585 / 4040
iter = 585, cls_loss (cur) = 0.566795, cls_loss (avg) = 0.457692, lr = 0.010000
iter = 585, accuracy (cur) = 0.720000 (all), 0.913043 (pos), 0.555556 (neg)
iter = 585, accuracy (avg) = 0.778306 (all), 0.741012 (pos), 0.818171 (neg)
data reader: epoch = 0, batch = 586 / 4040
iter = 586, cls_loss (cur) = 0.431960, cls_loss (avg) = 0.457435, lr = 0.010000
iter = 586, accuracy (cur) = 0.800000 (all), 0.739130 (pos), 0.851852 (neg)
iter = 586, accuracy (avg) = 0.778523 (all), 0.740993 (pos), 0.818508 (neg)
data reader: epoch = 0, batch = 587 / 4040
iter = 587, cls_loss (cur) = 0.474586, cls_loss (avg) = 0.457607, lr = 0.010000
iter = 587, accuracy (cur) = 0.740000 (all), 0.750000 (pos), 0.730769 (neg)
iter = 587, accuracy (avg) = 0.778137 (all), 0.741083 (pos), 0.817631 (neg)
data reader: epoch = 0, batch = 588 / 4040
iter = 588, cls_loss (cur) = 0.394950, cls_loss (avg) = 0.456980, lr = 0.010000
iter = 588, accuracy (cur) = 0.840000 (all), 0.666667 (pos), 1.000000 (neg)
iter = 588, accuracy (avg) = 0.778756 (all), 0.740339 (pos), 0.819454 (neg)
data reader: epoch = 0, batch = 589 / 4040
iter = 589, cls_loss (cur) = 0.522285, cls_loss (avg) = 0.457633, lr = 0.010000
iter = 589, accuracy (cur) = 0.760000 (all), 0.576923 (pos), 0.958333 (neg)
iter = 589, accuracy (avg) = 0.778568 (all), 0.738705 (pos), 0.820843 (neg)
data reader: epoch = 0, batch = 590 / 4040
iter = 590, cls_loss (cur) = 0.483629, cls_loss (avg) = 0.457893, lr = 0.010000
iter = 590, accuracy (cur) = 0.720000 (all), 0.702703 (pos), 0.769231 (neg)
iter = 590, accuracy (avg) = 0.777983 (all), 0.738345 (pos), 0.820327 (neg)
data reader: epoch = 0, batch = 591 / 4040
iter = 591, cls_loss (cur) = 0.392495, cls_loss (avg) = 0.457239, lr = 0.010000
iter = 591, accuracy (cur) = 0.860000 (all), 0.900000 (pos), 0.800000 (neg)
iter = 591, accuracy (avg) = 0.778803 (all), 0.739961 (pos), 0.820124 (neg)
data reader: epoch = 0, batch = 592 / 4040
iter = 592, cls_loss (cur) = 0.429955, cls_loss (avg) = 0.456966, lr = 0.010000
iter = 592, accuracy (cur) = 0.780000 (all), 0.785714 (pos), 0.772727 (neg)
iter = 592, accuracy (avg) = 0.778815 (all), 0.740419 (pos), 0.819650 (neg)
data reader: epoch = 0, batch = 593 / 4040
iter = 593, cls_loss (cur) = 0.369944, cls_loss (avg) = 0.456096, lr = 0.010000
iter = 593, accuracy (cur) = 0.860000 (all), 0.884615 (pos), 0.833333 (neg)
iter = 593, accuracy (avg) = 0.779627 (all), 0.741861 (pos), 0.819787 (neg)
data reader: epoch = 0, batch = 594 / 4040
iter = 594, cls_loss (cur) = 0.372488, cls_loss (avg) = 0.455260, lr = 0.010000
iter = 594, accuracy (cur) = 0.880000 (all), 0.846154 (pos), 0.916667 (neg)
iter = 594, accuracy (avg) = 0.780630 (all), 0.742904 (pos), 0.820756 (neg)
data reader: epoch = 0, batch = 595 / 4040
iter = 595, cls_loss (cur) = 0.334888, cls_loss (avg) = 0.454056, lr = 0.010000
iter = 595, accuracy (cur) = 0.940000 (all), 1.000000 (pos), 0.888889 (neg)
iter = 595, accuracy (avg) = 0.782224 (all), 0.745475 (pos), 0.821437 (neg)
data reader: epoch = 0, batch = 596 / 4040
iter = 596, cls_loss (cur) = 0.454220, cls_loss (avg) = 0.454058, lr = 0.010000
iter = 596, accuracy (cur) = 0.800000 (all), 0.850000 (pos), 0.766667 (neg)
iter = 596, accuracy (avg) = 0.782402 (all), 0.746520 (pos), 0.820889 (neg)
data reader: epoch = 0, batch = 597 / 4040
iter = 597, cls_loss (cur) = 0.521066, cls_loss (avg) = 0.454728, lr = 0.010000
iter = 597, accuracy (cur) = 0.760000 (all), 0.826087 (pos), 0.703704 (neg)
iter = 597, accuracy (avg) = 0.782178 (all), 0.747316 (pos), 0.819717 (neg)
data reader: epoch = 0, batch = 598 / 4040
iter = 598, cls_loss (cur) = 0.387435, cls_loss (avg) = 0.454055, lr = 0.010000
iter = 598, accuracy (cur) = 0.860000 (all), 0.862069 (pos), 0.857143 (neg)
iter = 598, accuracy (avg) = 0.782956 (all), 0.748463 (pos), 0.820092 (neg)
data reader: epoch = 0, batch = 599 / 4040
iter = 599, cls_loss (cur) = 0.384426, cls_loss (avg) = 0.453359, lr = 0.010000
iter = 599, accuracy (cur) = 0.900000 (all), 0.840000 (pos), 0.960000 (neg)
iter = 599, accuracy (avg) = 0.784127 (all), 0.749378 (pos), 0.821491 (neg)
data reader: epoch = 0, batch = 600 / 4040
iter = 600, cls_loss (cur) = 0.435552, cls_loss (avg) = 0.453181, lr = 0.010000
iter = 600, accuracy (cur) = 0.820000 (all), 0.739130 (pos), 0.888889 (neg)
iter = 600, accuracy (avg) = 0.784485 (all), 0.749276 (pos), 0.822165 (neg)
data reader: epoch = 0, batch = 601 / 4040
iter = 601, cls_loss (cur) = 0.491388, cls_loss (avg) = 0.453563, lr = 0.010000
iter = 601, accuracy (cur) = 0.700000 (all), 0.666667 (pos), 0.730769 (neg)
iter = 601, accuracy (avg) = 0.783640 (all), 0.748450 (pos), 0.821251 (neg)
data reader: epoch = 0, batch = 602 / 4040
iter = 602, cls_loss (cur) = 0.430700, cls_loss (avg) = 0.453334, lr = 0.010000
iter = 602, accuracy (cur) = 0.820000 (all), 0.766667 (pos), 0.900000 (neg)
iter = 602, accuracy (avg) = 0.784004 (all), 0.748632 (pos), 0.822038 (neg)
data reader: epoch = 0, batch = 603 / 4040
iter = 603, cls_loss (cur) = 0.299576, cls_loss (avg) = 0.451796, lr = 0.010000
iter = 603, accuracy (cur) = 0.880000 (all), 0.791667 (pos), 0.961538 (neg)
iter = 603, accuracy (avg) = 0.784964 (all), 0.749062 (pos), 0.823433 (neg)
data reader: epoch = 0, batch = 604 / 4040
iter = 604, cls_loss (cur) = 0.448398, cls_loss (avg) = 0.451763, lr = 0.010000
iter = 604, accuracy (cur) = 0.820000 (all), 0.681818 (pos), 0.928571 (neg)
iter = 604, accuracy (avg) = 0.785314 (all), 0.748390 (pos), 0.824485 (neg)
data reader: epoch = 0, batch = 605 / 4040
iter = 605, cls_loss (cur) = 0.490710, cls_loss (avg) = 0.452152, lr = 0.010000
iter = 605, accuracy (cur) = 0.740000 (all), 0.633333 (pos), 0.900000 (neg)
iter = 605, accuracy (avg) = 0.784861 (all), 0.747239 (pos), 0.825240 (neg)
data reader: epoch = 0, batch = 606 / 4040
iter = 606, cls_loss (cur) = 0.382101, cls_loss (avg) = 0.451451, lr = 0.010000
iter = 606, accuracy (cur) = 0.840000 (all), 0.814815 (pos), 0.869565 (neg)
iter = 606, accuracy (avg) = 0.785413 (all), 0.747915 (pos), 0.825683 (neg)
data reader: epoch = 0, batch = 607 / 4040
iter = 607, cls_loss (cur) = 0.509186, cls_loss (avg) = 0.452029, lr = 0.010000
iter = 607, accuracy (cur) = 0.680000 (all), 0.851852 (pos), 0.478261 (neg)
iter = 607, accuracy (avg) = 0.784358 (all), 0.748955 (pos), 0.822209 (neg)
data reader: epoch = 0, batch = 608 / 4040
iter = 608, cls_loss (cur) = 0.377807, cls_loss (avg) = 0.451287, lr = 0.010000
iter = 608, accuracy (cur) = 0.860000 (all), 0.833333 (pos), 0.884615 (neg)
iter = 608, accuracy (avg) = 0.785115 (all), 0.749798 (pos), 0.822833 (neg)
data reader: epoch = 0, batch = 609 / 4040
iter = 609, cls_loss (cur) = 0.412760, cls_loss (avg) = 0.450901, lr = 0.010000
iter = 609, accuracy (cur) = 0.780000 (all), 0.739130 (pos), 0.814815 (neg)
iter = 609, accuracy (avg) = 0.785064 (all), 0.749692 (pos), 0.822753 (neg)
data reader: epoch = 0, batch = 610 / 4040
iter = 610, cls_loss (cur) = 0.403941, cls_loss (avg) = 0.450432, lr = 0.010000
iter = 610, accuracy (cur) = 0.860000 (all), 0.807692 (pos), 0.916667 (neg)
iter = 610, accuracy (avg) = 0.785813 (all), 0.750272 (pos), 0.823692 (neg)
data reader: epoch = 0, batch = 611 / 4040
iter = 611, cls_loss (cur) = 0.418093, cls_loss (avg) = 0.450108, lr = 0.010000
iter = 611, accuracy (cur) = 0.840000 (all), 0.925926 (pos), 0.739130 (neg)
iter = 611, accuracy (avg) = 0.786355 (all), 0.752028 (pos), 0.822846 (neg)
data reader: epoch = 0, batch = 612 / 4040
iter = 612, cls_loss (cur) = 0.383441, cls_loss (avg) = 0.449442, lr = 0.010000
iter = 612, accuracy (cur) = 0.840000 (all), 0.800000 (pos), 0.866667 (neg)
iter = 612, accuracy (avg) = 0.786891 (all), 0.752508 (pos), 0.823284 (neg)
data reader: epoch = 0, batch = 613 / 4040
iter = 613, cls_loss (cur) = 0.440288, cls_loss (avg) = 0.449350, lr = 0.010000
iter = 613, accuracy (cur) = 0.780000 (all), 0.791667 (pos), 0.769231 (neg)
iter = 613, accuracy (avg) = 0.786823 (all), 0.752899 (pos), 0.822744 (neg)
data reader: epoch = 0, batch = 614 / 4040
iter = 614, cls_loss (cur) = 0.454469, cls_loss (avg) = 0.449401, lr = 0.010000
iter = 614, accuracy (cur) = 0.840000 (all), 0.840000 (pos), 0.840000 (neg)
iter = 614, accuracy (avg) = 0.787354 (all), 0.753770 (pos), 0.822916 (neg)
data reader: epoch = 0, batch = 615 / 4040
iter = 615, cls_loss (cur) = 0.402737, cls_loss (avg) = 0.448935, lr = 0.010000
iter = 615, accuracy (cur) = 0.820000 (all), 0.880000 (pos), 0.760000 (neg)
iter = 615, accuracy (avg) = 0.787681 (all), 0.755033 (pos), 0.822287 (neg)
data reader: epoch = 0, batch = 616 / 4040
iter = 616, cls_loss (cur) = 0.449166, cls_loss (avg) = 0.448937, lr = 0.010000
iter = 616, accuracy (cur) = 0.800000 (all), 0.800000 (pos), 0.800000 (neg)
iter = 616, accuracy (avg) = 0.787804 (all), 0.755482 (pos), 0.822064 (neg)
data reader: epoch = 0, batch = 617 / 4040
iter = 617, cls_loss (cur) = 0.492841, cls_loss (avg) = 0.449376, lr = 0.010000
iter = 617, accuracy (cur) = 0.700000 (all), 0.476190 (pos), 0.862069 (neg)
iter = 617, accuracy (avg) = 0.786926 (all), 0.752690 (pos), 0.822464 (neg)
data reader: epoch = 0, batch = 618 / 4040
iter = 618, cls_loss (cur) = 0.323992, cls_loss (avg) = 0.448122, lr = 0.010000
iter = 618, accuracy (cur) = 0.900000 (all), 0.888889 (pos), 0.913043 (neg)
iter = 618, accuracy (avg) = 0.788057 (all), 0.754052 (pos), 0.823370 (neg)
data reader: epoch = 0, batch = 619 / 4040
iter = 619, cls_loss (cur) = 0.455739, cls_loss (avg) = 0.448198, lr = 0.010000
iter = 619, accuracy (cur) = 0.760000 (all), 0.684211 (pos), 0.806452 (neg)
iter = 619, accuracy (avg) = 0.787776 (all), 0.753353 (pos), 0.823201 (neg)
data reader: epoch = 0, batch = 620 / 4040
iter = 620, cls_loss (cur) = 0.291100, cls_loss (avg) = 0.446627, lr = 0.010000
iter = 620, accuracy (cur) = 0.900000 (all), 0.772727 (pos), 1.000000 (neg)
iter = 620, accuracy (avg) = 0.788898 (all), 0.753547 (pos), 0.824969 (neg)
data reader: epoch = 0, batch = 621 / 4040
iter = 621, cls_loss (cur) = 0.374102, cls_loss (avg) = 0.445902, lr = 0.010000
iter = 621, accuracy (cur) = 0.840000 (all), 0.760000 (pos), 0.920000 (neg)
iter = 621, accuracy (avg) = 0.789409 (all), 0.753611 (pos), 0.825919 (neg)
data reader: epoch = 0, batch = 622 / 4040
iter = 622, cls_loss (cur) = 0.328638, cls_loss (avg) = 0.444729, lr = 0.010000
iter = 622, accuracy (cur) = 0.880000 (all), 0.884615 (pos), 0.875000 (neg)
iter = 622, accuracy (avg) = 0.790315 (all), 0.754921 (pos), 0.826410 (neg)
data reader: epoch = 0, batch = 623 / 4040
iter = 623, cls_loss (cur) = 0.467414, cls_loss (avg) = 0.444956, lr = 0.010000
iter = 623, accuracy (cur) = 0.780000 (all), 0.840000 (pos), 0.720000 (neg)
iter = 623, accuracy (avg) = 0.790212 (all), 0.755772 (pos), 0.825346 (neg)
data reader: epoch = 0, batch = 624 / 4040
iter = 624, cls_loss (cur) = 0.427417, cls_loss (avg) = 0.444781, lr = 0.010000
iter = 624, accuracy (cur) = 0.760000 (all), 0.678571 (pos), 0.863636 (neg)
iter = 624, accuracy (avg) = 0.789910 (all), 0.755000 (pos), 0.825729 (neg)
data reader: epoch = 0, batch = 625 / 4040
iter = 625, cls_loss (cur) = 0.371288, cls_loss (avg) = 0.444046, lr = 0.010000
iter = 625, accuracy (cur) = 0.860000 (all), 0.827586 (pos), 0.904762 (neg)
iter = 625, accuracy (avg) = 0.790611 (all), 0.755726 (pos), 0.826519 (neg)
data reader: epoch = 0, batch = 626 / 4040
iter = 626, cls_loss (cur) = 0.442445, cls_loss (avg) = 0.444030, lr = 0.010000
iter = 626, accuracy (cur) = 0.780000 (all), 0.750000 (pos), 0.857143 (neg)
iter = 626, accuracy (avg) = 0.790505 (all), 0.755669 (pos), 0.826825 (neg)
data reader: epoch = 0, batch = 627 / 4040
iter = 627, cls_loss (cur) = 0.379399, cls_loss (avg) = 0.443384, lr = 0.010000
iter = 627, accuracy (cur) = 0.860000 (all), 0.931034 (pos), 0.761905 (neg)
iter = 627, accuracy (avg) = 0.791200 (all), 0.757422 (pos), 0.826176 (neg)
data reader: epoch = 0, batch = 628 / 4040
iter = 628, cls_loss (cur) = 0.432041, cls_loss (avg) = 0.443270, lr = 0.010000
iter = 628, accuracy (cur) = 0.800000 (all), 1.000000 (pos), 0.642857 (neg)
iter = 628, accuracy (avg) = 0.791288 (all), 0.759848 (pos), 0.824343 (neg)
data reader: epoch = 0, batch = 629 / 4040
iter = 629, cls_loss (cur) = 0.346860, cls_loss (avg) = 0.442306, lr = 0.010000
iter = 629, accuracy (cur) = 0.860000 (all), 0.916667 (pos), 0.807692 (neg)
iter = 629, accuracy (avg) = 0.791975 (all), 0.761416 (pos), 0.824177 (neg)
data reader: epoch = 0, batch = 630 / 4040
iter = 630, cls_loss (cur) = 0.517340, cls_loss (avg) = 0.443056, lr = 0.010000
iter = 630, accuracy (cur) = 0.720000 (all), 0.720000 (pos), 0.720000 (neg)
iter = 630, accuracy (avg) = 0.791255 (all), 0.761002 (pos), 0.823135 (neg)
data reader: epoch = 0, batch = 631 / 4040
iter = 631, cls_loss (cur) = 0.386090, cls_loss (avg) = 0.442487, lr = 0.010000
iter = 631, accuracy (cur) = 0.880000 (all), 0.884615 (pos), 0.875000 (neg)
iter = 631, accuracy (avg) = 0.792143 (all), 0.762238 (pos), 0.823653 (neg)
data reader: epoch = 0, batch = 632 / 4040
iter = 632, cls_loss (cur) = 0.456775, cls_loss (avg) = 0.442630, lr = 0.010000
iter = 632, accuracy (cur) = 0.740000 (all), 0.709677 (pos), 0.789474 (neg)
iter = 632, accuracy (avg) = 0.791621 (all), 0.761713 (pos), 0.823312 (neg)
data reader: epoch = 0, batch = 633 / 4040
iter = 633, cls_loss (cur) = 0.454439, cls_loss (avg) = 0.442748, lr = 0.010000
iter = 633, accuracy (cur) = 0.740000 (all), 0.750000 (pos), 0.730769 (neg)
iter = 633, accuracy (avg) = 0.791105 (all), 0.761596 (pos), 0.822386 (neg)
data reader: epoch = 0, batch = 634 / 4040
iter = 634, cls_loss (cur) = 0.441484, cls_loss (avg) = 0.442735, lr = 0.010000
iter = 634, accuracy (cur) = 0.760000 (all), 0.761905 (pos), 0.758621 (neg)
iter = 634, accuracy (avg) = 0.790794 (all), 0.761599 (pos), 0.821749 (neg)
data reader: epoch = 0, batch = 635 / 4040
iter = 635, cls_loss (cur) = 0.347007, cls_loss (avg) = 0.441778, lr = 0.010000
iter = 635, accuracy (cur) = 0.820000 (all), 0.833333 (pos), 0.800000 (neg)
iter = 635, accuracy (avg) = 0.791086 (all), 0.762316 (pos), 0.821531 (neg)
data reader: epoch = 0, batch = 636 / 4040
iter = 636, cls_loss (cur) = 0.391553, cls_loss (avg) = 0.441276, lr = 0.010000
iter = 636, accuracy (cur) = 0.760000 (all), 0.760000 (pos), 0.760000 (neg)
iter = 636, accuracy (avg) = 0.790775 (all), 0.762293 (pos), 0.820916 (neg)
data reader: epoch = 0, batch = 637 / 4040
iter = 637, cls_loss (cur) = 0.447929, cls_loss (avg) = 0.441342, lr = 0.010000
iter = 637, accuracy (cur) = 0.800000 (all), 0.840000 (pos), 0.760000 (neg)
iter = 637, accuracy (avg) = 0.790867 (all), 0.763070 (pos), 0.820307 (neg)
data reader: epoch = 0, batch = 638 / 4040
iter = 638, cls_loss (cur) = 0.481971, cls_loss (avg) = 0.441748, lr = 0.010000
iter = 638, accuracy (cur) = 0.760000 (all), 0.761905 (pos), 0.758621 (neg)
iter = 638, accuracy (avg) = 0.790559 (all), 0.763058 (pos), 0.819690 (neg)
data reader: epoch = 0, batch = 639 / 4040
iter = 639, cls_loss (cur) = 0.459702, cls_loss (avg) = 0.441928, lr = 0.010000
iter = 639, accuracy (cur) = 0.800000 (all), 0.777778 (pos), 0.826087 (neg)
iter = 639, accuracy (avg) = 0.790653 (all), 0.763206 (pos), 0.819754 (neg)
data reader: epoch = 0, batch = 640 / 4040
iter = 640, cls_loss (cur) = 0.447784, cls_loss (avg) = 0.441987, lr = 0.010000
iter = 640, accuracy (cur) = 0.760000 (all), 0.640000 (pos), 0.880000 (neg)
iter = 640, accuracy (avg) = 0.790347 (all), 0.761973 (pos), 0.820356 (neg)
data reader: epoch = 0, batch = 641 / 4040
iter = 641, cls_loss (cur) = 0.459828, cls_loss (avg) = 0.442165, lr = 0.010000
iter = 641, accuracy (cur) = 0.760000 (all), 0.727273 (pos), 0.785714 (neg)
iter = 641, accuracy (avg) = 0.790043 (all), 0.761626 (pos), 0.820010 (neg)
data reader: epoch = 0, batch = 642 / 4040
iter = 642, cls_loss (cur) = 0.397255, cls_loss (avg) = 0.441716, lr = 0.010000
iter = 642, accuracy (cur) = 0.820000 (all), 0.760000 (pos), 0.880000 (neg)
iter = 642, accuracy (avg) = 0.790343 (all), 0.761610 (pos), 0.820610 (neg)
data reader: epoch = 0, batch = 643 / 4040
iter = 643, cls_loss (cur) = 0.399523, cls_loss (avg) = 0.441294, lr = 0.010000
iter = 643, accuracy (cur) = 0.840000 (all), 0.833333 (pos), 0.846154 (neg)
iter = 643, accuracy (avg) = 0.790839 (all), 0.762327 (pos), 0.820865 (neg)
data reader: epoch = 0, batch = 644 / 4040
iter = 644, cls_loss (cur) = 0.372224, cls_loss (avg) = 0.440603, lr = 0.010000
iter = 644, accuracy (cur) = 0.820000 (all), 0.791667 (pos), 0.846154 (neg)
iter = 644, accuracy (avg) = 0.791131 (all), 0.762621 (pos), 0.821118 (neg)
data reader: epoch = 0, batch = 645 / 4040
iter = 645, cls_loss (cur) = 0.454490, cls_loss (avg) = 0.440742, lr = 0.010000
iter = 645, accuracy (cur) = 0.800000 (all), 0.769231 (pos), 0.833333 (neg)
iter = 645, accuracy (avg) = 0.791219 (all), 0.762687 (pos), 0.821240 (neg)
data reader: epoch = 0, batch = 646 / 4040
iter = 646, cls_loss (cur) = 0.464325, cls_loss (avg) = 0.440978, lr = 0.010000
iter = 646, accuracy (cur) = 0.780000 (all), 0.807692 (pos), 0.750000 (neg)
iter = 646, accuracy (avg) = 0.791107 (all), 0.763137 (pos), 0.820528 (neg)
data reader: epoch = 0, batch = 647 / 4040
iter = 647, cls_loss (cur) = 0.317423, cls_loss (avg) = 0.439742, lr = 0.010000
iter = 647, accuracy (cur) = 0.900000 (all), 0.923077 (pos), 0.875000 (neg)
iter = 647, accuracy (avg) = 0.792196 (all), 0.764736 (pos), 0.821072 (neg)
data reader: epoch = 0, batch = 648 / 4040
iter = 648, cls_loss (cur) = 0.411048, cls_loss (avg) = 0.439455, lr = 0.010000
iter = 648, accuracy (cur) = 0.780000 (all), 0.952381 (pos), 0.655172 (neg)
iter = 648, accuracy (avg) = 0.792074 (all), 0.766613 (pos), 0.819413 (neg)
data reader: epoch = 0, batch = 649 / 4040
iter = 649, cls_loss (cur) = 0.316311, cls_loss (avg) = 0.438224, lr = 0.010000
iter = 649, accuracy (cur) = 0.880000 (all), 0.863636 (pos), 0.892857 (neg)
iter = 649, accuracy (avg) = 0.792954 (all), 0.767583 (pos), 0.820148 (neg)
data reader: epoch = 0, batch = 650 / 4040
iter = 650, cls_loss (cur) = 0.476981, cls_loss (avg) = 0.438612, lr = 0.010000
iter = 650, accuracy (cur) = 0.780000 (all), 0.760000 (pos), 0.800000 (neg)
iter = 650, accuracy (avg) = 0.792824 (all), 0.767507 (pos), 0.819946 (neg)
data reader: epoch = 0, batch = 651 / 4040
iter = 651, cls_loss (cur) = 0.499254, cls_loss (avg) = 0.439218, lr = 0.010000
iter = 651, accuracy (cur) = 0.760000 (all), 0.714286 (pos), 0.818182 (neg)
iter = 651, accuracy (avg) = 0.792496 (all), 0.766975 (pos), 0.819929 (neg)
data reader: epoch = 0, batch = 652 / 4040
iter = 652, cls_loss (cur) = 0.339006, cls_loss (avg) = 0.438216, lr = 0.010000
iter = 652, accuracy (cur) = 0.880000 (all), 0.840000 (pos), 0.920000 (neg)
iter = 652, accuracy (avg) = 0.793371 (all), 0.767705 (pos), 0.820930 (neg)
data reader: epoch = 0, batch = 653 / 4040
iter = 653, cls_loss (cur) = 0.441022, cls_loss (avg) = 0.438244, lr = 0.010000
iter = 653, accuracy (cur) = 0.820000 (all), 0.863636 (pos), 0.785714 (neg)
iter = 653, accuracy (avg) = 0.793637 (all), 0.768665 (pos), 0.820577 (neg)
data reader: epoch = 0, batch = 654 / 4040
iter = 654, cls_loss (cur) = 0.430832, cls_loss (avg) = 0.438170, lr = 0.010000
iter = 654, accuracy (cur) = 0.860000 (all), 0.913043 (pos), 0.814815 (neg)
iter = 654, accuracy (avg) = 0.794301 (all), 0.770108 (pos), 0.820520 (neg)
data reader: epoch = 0, batch = 655 / 4040
iter = 655, cls_loss (cur) = 0.442498, cls_loss (avg) = 0.438213, lr = 0.010000
iter = 655, accuracy (cur) = 0.780000 (all), 0.684211 (pos), 0.838710 (neg)
iter = 655, accuracy (avg) = 0.794158 (all), 0.769249 (pos), 0.820702 (neg)
data reader: epoch = 0, batch = 656 / 4040
iter = 656, cls_loss (cur) = 0.400929, cls_loss (avg) = 0.437840, lr = 0.010000
iter = 656, accuracy (cur) = 0.840000 (all), 0.680000 (pos), 1.000000 (neg)
iter = 656, accuracy (avg) = 0.794616 (all), 0.768357 (pos), 0.822495 (neg)
data reader: epoch = 0, batch = 657 / 4040
iter = 657, cls_loss (cur) = 0.530916, cls_loss (avg) = 0.438771, lr = 0.010000
iter = 657, accuracy (cur) = 0.720000 (all), 0.608696 (pos), 0.814815 (neg)
iter = 657, accuracy (avg) = 0.793870 (all), 0.766760 (pos), 0.822418 (neg)
data reader: epoch = 0, batch = 658 / 4040
iter = 658, cls_loss (cur) = 0.433011, cls_loss (avg) = 0.438713, lr = 0.010000
iter = 658, accuracy (cur) = 0.820000 (all), 0.888889 (pos), 0.739130 (neg)
iter = 658, accuracy (avg) = 0.794131 (all), 0.767982 (pos), 0.821585 (neg)
data reader: epoch = 0, batch = 659 / 4040
iter = 659, cls_loss (cur) = 0.410097, cls_loss (avg) = 0.438427, lr = 0.010000
iter = 659, accuracy (cur) = 0.800000 (all), 0.800000 (pos), 0.800000 (neg)
iter = 659, accuracy (avg) = 0.794190 (all), 0.768302 (pos), 0.821369 (neg)
data reader: epoch = 0, batch = 660 / 4040
iter = 660, cls_loss (cur) = 0.361807, cls_loss (avg) = 0.437661, lr = 0.010000
iter = 660, accuracy (cur) = 0.880000 (all), 0.888889 (pos), 0.875000 (neg)
iter = 660, accuracy (avg) = 0.795048 (all), 0.769508 (pos), 0.821905 (neg)
data reader: epoch = 0, batch = 661 / 4040
iter = 661, cls_loss (cur) = 0.406117, cls_loss (avg) = 0.437346, lr = 0.010000
iter = 661, accuracy (cur) = 0.800000 (all), 0.740741 (pos), 0.869565 (neg)
iter = 661, accuracy (avg) = 0.795098 (all), 0.769220 (pos), 0.822382 (neg)
data reader: epoch = 0, batch = 662 / 4040
iter = 662, cls_loss (cur) = 0.393782, cls_loss (avg) = 0.436910, lr = 0.010000
iter = 662, accuracy (cur) = 0.860000 (all), 0.862069 (pos), 0.857143 (neg)
iter = 662, accuracy (avg) = 0.795747 (all), 0.770148 (pos), 0.822730 (neg)
data reader: epoch = 0, batch = 663 / 4040
iter = 663, cls_loss (cur) = 0.383343, cls_loss (avg) = 0.436374, lr = 0.010000
iter = 663, accuracy (cur) = 0.840000 (all), 0.846154 (pos), 0.833333 (neg)
iter = 663, accuracy (avg) = 0.796189 (all), 0.770909 (pos), 0.822836 (neg)
data reader: epoch = 0, batch = 664 / 4040
iter = 664, cls_loss (cur) = 0.374773, cls_loss (avg) = 0.435758, lr = 0.010000
iter = 664, accuracy (cur) = 0.860000 (all), 0.896552 (pos), 0.809524 (neg)
iter = 664, accuracy (avg) = 0.796827 (all), 0.772165 (pos), 0.822703 (neg)
data reader: epoch = 0, batch = 665 / 4040
iter = 665, cls_loss (cur) = 0.438196, cls_loss (avg) = 0.435783, lr = 0.010000
iter = 665, accuracy (cur) = 0.820000 (all), 0.787879 (pos), 0.882353 (neg)
iter = 665, accuracy (avg) = 0.797059 (all), 0.772322 (pos), 0.823299 (neg)
data reader: epoch = 0, batch = 666 / 4040
iter = 666, cls_loss (cur) = 0.413587, cls_loss (avg) = 0.435561, lr = 0.010000
iter = 666, accuracy (cur) = 0.840000 (all), 0.850000 (pos), 0.833333 (neg)
iter = 666, accuracy (avg) = 0.797488 (all), 0.773099 (pos), 0.823399 (neg)
data reader: epoch = 0, batch = 667 / 4040
iter = 667, cls_loss (cur) = 0.330629, cls_loss (avg) = 0.434511, lr = 0.010000
iter = 667, accuracy (cur) = 0.860000 (all), 0.870968 (pos), 0.842105 (neg)
iter = 667, accuracy (avg) = 0.798113 (all), 0.774078 (pos), 0.823586 (neg)
data reader: epoch = 0, batch = 668 / 4040
iter = 668, cls_loss (cur) = 0.357165, cls_loss (avg) = 0.433738, lr = 0.010000
iter = 668, accuracy (cur) = 0.880000 (all), 0.909091 (pos), 0.857143 (neg)
iter = 668, accuracy (avg) = 0.798932 (all), 0.775428 (pos), 0.823922 (neg)
data reader: epoch = 0, batch = 669 / 4040
iter = 669, cls_loss (cur) = 0.475551, cls_loss (avg) = 0.434156, lr = 0.010000
iter = 669, accuracy (cur) = 0.700000 (all), 0.760000 (pos), 0.640000 (neg)
iter = 669, accuracy (avg) = 0.797943 (all), 0.775273 (pos), 0.822083 (neg)
data reader: epoch = 0, batch = 670 / 4040
iter = 670, cls_loss (cur) = 0.438682, cls_loss (avg) = 0.434201, lr = 0.010000
iter = 670, accuracy (cur) = 0.820000 (all), 0.842105 (pos), 0.806452 (neg)
iter = 670, accuracy (avg) = 0.798164 (all), 0.775942 (pos), 0.821926 (neg)
data reader: epoch = 0, batch = 671 / 4040
iter = 671, cls_loss (cur) = 0.435916, cls_loss (avg) = 0.434218, lr = 0.010000
iter = 671, accuracy (cur) = 0.860000 (all), 0.909091 (pos), 0.821429 (neg)
iter = 671, accuracy (avg) = 0.798782 (all), 0.777273 (pos), 0.821921 (neg)
data reader: epoch = 0, batch = 672 / 4040
iter = 672, cls_loss (cur) = 0.444960, cls_loss (avg) = 0.434326, lr = 0.010000
iter = 672, accuracy (cur) = 0.820000 (all), 0.793103 (pos), 0.857143 (neg)
iter = 672, accuracy (avg) = 0.798994 (all), 0.777432 (pos), 0.822274 (neg)
data reader: epoch = 0, batch = 673 / 4040
iter = 673, cls_loss (cur) = 0.434677, cls_loss (avg) = 0.434329, lr = 0.010000
iter = 673, accuracy (cur) = 0.800000 (all), 0.857143 (pos), 0.758621 (neg)
iter = 673, accuracy (avg) = 0.799004 (all), 0.778229 (pos), 0.821637 (neg)
data reader: epoch = 0, batch = 674 / 4040
iter = 674, cls_loss (cur) = 0.383408, cls_loss (avg) = 0.433820, lr = 0.010000
iter = 674, accuracy (cur) = 0.880000 (all), 0.869565 (pos), 0.888889 (neg)
iter = 674, accuracy (avg) = 0.799814 (all), 0.779142 (pos), 0.822310 (neg)
data reader: epoch = 0, batch = 675 / 4040
iter = 675, cls_loss (cur) = 0.505748, cls_loss (avg) = 0.434539, lr = 0.010000
iter = 675, accuracy (cur) = 0.760000 (all), 0.703704 (pos), 0.826087 (neg)
iter = 675, accuracy (avg) = 0.799416 (all), 0.778388 (pos), 0.822347 (neg)
data reader: epoch = 0, batch = 676 / 4040
iter = 676, cls_loss (cur) = 0.362102, cls_loss (avg) = 0.433815, lr = 0.010000
iter = 676, accuracy (cur) = 0.840000 (all), 0.739130 (pos), 0.925926 (neg)
iter = 676, accuracy (avg) = 0.799822 (all), 0.777995 (pos), 0.823383 (neg)
data reader: epoch = 0, batch = 677 / 4040
iter = 677, cls_loss (cur) = 0.436179, cls_loss (avg) = 0.433839, lr = 0.010000
iter = 677, accuracy (cur) = 0.820000 (all), 0.720000 (pos), 0.920000 (neg)
iter = 677, accuracy (avg) = 0.800024 (all), 0.777415 (pos), 0.824349 (neg)
data reader: epoch = 0, batch = 678 / 4040
iter = 678, cls_loss (cur) = 0.367575, cls_loss (avg) = 0.433176, lr = 0.010000
iter = 678, accuracy (cur) = 0.880000 (all), 0.925926 (pos), 0.826087 (neg)
iter = 678, accuracy (avg) = 0.800823 (all), 0.778900 (pos), 0.824367 (neg)
data reader: epoch = 0, batch = 679 / 4040
iter = 679, cls_loss (cur) = 0.393133, cls_loss (avg) = 0.432776, lr = 0.010000
iter = 679, accuracy (cur) = 0.800000 (all), 0.818182 (pos), 0.785714 (neg)
iter = 679, accuracy (avg) = 0.800815 (all), 0.779293 (pos), 0.823980 (neg)
data reader: epoch = 0, batch = 680 / 4040
iter = 680, cls_loss (cur) = 0.440782, cls_loss (avg) = 0.432856, lr = 0.010000
iter = 680, accuracy (cur) = 0.780000 (all), 0.769231 (pos), 0.791667 (neg)
iter = 680, accuracy (avg) = 0.800607 (all), 0.779192 (pos), 0.823657 (neg)
data reader: epoch = 0, batch = 681 / 4040
iter = 681, cls_loss (cur) = 0.408014, cls_loss (avg) = 0.432607, lr = 0.010000
iter = 681, accuracy (cur) = 0.820000 (all), 0.892857 (pos), 0.727273 (neg)
iter = 681, accuracy (avg) = 0.800801 (all), 0.780329 (pos), 0.822693 (neg)
data reader: epoch = 0, batch = 682 / 4040
iter = 682, cls_loss (cur) = 0.351522, cls_loss (avg) = 0.431796, lr = 0.010000
iter = 682, accuracy (cur) = 0.860000 (all), 0.807692 (pos), 0.916667 (neg)
iter = 682, accuracy (avg) = 0.801393 (all), 0.780603 (pos), 0.823633 (neg)
data reader: epoch = 0, batch = 683 / 4040
iter = 683, cls_loss (cur) = 0.455830, cls_loss (avg) = 0.432037, lr = 0.010000
iter = 683, accuracy (cur) = 0.800000 (all), 0.875000 (pos), 0.764706 (neg)
iter = 683, accuracy (avg) = 0.801379 (all), 0.781547 (pos), 0.823044 (neg)
data reader: epoch = 0, batch = 684 / 4040
iter = 684, cls_loss (cur) = 0.327231, cls_loss (avg) = 0.430989, lr = 0.010000
iter = 684, accuracy (cur) = 0.860000 (all), 0.807692 (pos), 0.916667 (neg)
iter = 684, accuracy (avg) = 0.801965 (all), 0.781808 (pos), 0.823980 (neg)
data reader: epoch = 0, batch = 685 / 4040
iter = 685, cls_loss (cur) = 0.390066, cls_loss (avg) = 0.430579, lr = 0.010000
iter = 685, accuracy (cur) = 0.840000 (all), 0.666667 (pos), 0.965517 (neg)
iter = 685, accuracy (avg) = 0.802346 (all), 0.780657 (pos), 0.825395 (neg)
data reader: epoch = 0, batch = 686 / 4040
iter = 686, cls_loss (cur) = 0.393230, cls_loss (avg) = 0.430206, lr = 0.010000
iter = 686, accuracy (cur) = 0.780000 (all), 0.714286 (pos), 0.827586 (neg)
iter = 686, accuracy (avg) = 0.802122 (all), 0.779993 (pos), 0.825417 (neg)
data reader: epoch = 0, batch = 687 / 4040
iter = 687, cls_loss (cur) = 0.423224, cls_loss (avg) = 0.430136, lr = 0.010000
iter = 687, accuracy (cur) = 0.840000 (all), 0.750000 (pos), 0.923077 (neg)
iter = 687, accuracy (avg) = 0.802501 (all), 0.779693 (pos), 0.826394 (neg)
data reader: epoch = 0, batch = 688 / 4040
iter = 688, cls_loss (cur) = 0.519898, cls_loss (avg) = 0.431034, lr = 0.010000
iter = 688, accuracy (cur) = 0.740000 (all), 0.760000 (pos), 0.720000 (neg)
iter = 688, accuracy (avg) = 0.801876 (all), 0.779496 (pos), 0.825330 (neg)
data reader: epoch = 0, batch = 689 / 4040
iter = 689, cls_loss (cur) = 0.463546, cls_loss (avg) = 0.431359, lr = 0.010000
iter = 689, accuracy (cur) = 0.760000 (all), 0.818182 (pos), 0.714286 (neg)
iter = 689, accuracy (avg) = 0.801457 (all), 0.779883 (pos), 0.824219 (neg)
data reader: epoch = 0, batch = 690 / 4040
iter = 690, cls_loss (cur) = 0.436260, cls_loss (avg) = 0.431408, lr = 0.010000
iter = 690, accuracy (cur) = 0.840000 (all), 0.807692 (pos), 0.875000 (neg)
iter = 690, accuracy (avg) = 0.801843 (all), 0.780161 (pos), 0.824727 (neg)
data reader: epoch = 0, batch = 691 / 4040
iter = 691, cls_loss (cur) = 0.374666, cls_loss (avg) = 0.430841, lr = 0.010000
iter = 691, accuracy (cur) = 0.820000 (all), 0.800000 (pos), 0.840000 (neg)
iter = 691, accuracy (avg) = 0.802024 (all), 0.780359 (pos), 0.824880 (neg)
data reader: epoch = 0, batch = 692 / 4040
iter = 692, cls_loss (cur) = 0.437204, cls_loss (avg) = 0.430904, lr = 0.010000
iter = 692, accuracy (cur) = 0.780000 (all), 0.851852 (pos), 0.695652 (neg)
iter = 692, accuracy (avg) = 0.801804 (all), 0.781074 (pos), 0.823588 (neg)
data reader: epoch = 0, batch = 693 / 4040
iter = 693, cls_loss (cur) = 0.386847, cls_loss (avg) = 0.430464, lr = 0.010000
iter = 693, accuracy (cur) = 0.800000 (all), 0.750000 (pos), 0.846154 (neg)
iter = 693, accuracy (avg) = 0.801786 (all), 0.780764 (pos), 0.823813 (neg)
data reader: epoch = 0, batch = 694 / 4040
iter = 694, cls_loss (cur) = 0.451682, cls_loss (avg) = 0.430676, lr = 0.010000
iter = 694, accuracy (cur) = 0.800000 (all), 0.724138 (pos), 0.904762 (neg)
iter = 694, accuracy (avg) = 0.801768 (all), 0.780197 (pos), 0.824623 (neg)
data reader: epoch = 0, batch = 695 / 4040
iter = 695, cls_loss (cur) = 0.503794, cls_loss (avg) = 0.431407, lr = 0.010000
iter = 695, accuracy (cur) = 0.800000 (all), 0.793103 (pos), 0.809524 (neg)
iter = 695, accuracy (avg) = 0.801750 (all), 0.780326 (pos), 0.824472 (neg)
data reader: epoch = 0, batch = 696 / 4040
iter = 696, cls_loss (cur) = 0.469892, cls_loss (avg) = 0.431792, lr = 0.010000
iter = 696, accuracy (cur) = 0.740000 (all), 0.840000 (pos), 0.640000 (neg)
iter = 696, accuracy (avg) = 0.801133 (all), 0.780923 (pos), 0.822627 (neg)
data reader: epoch = 0, batch = 697 / 4040
iter = 697, cls_loss (cur) = 0.325254, cls_loss (avg) = 0.430726, lr = 0.010000
iter = 697, accuracy (cur) = 0.900000 (all), 0.888889 (pos), 0.913043 (neg)
iter = 697, accuracy (avg) = 0.802121 (all), 0.782003 (pos), 0.823531 (neg)
data reader: epoch = 0, batch = 698 / 4040
iter = 698, cls_loss (cur) = 0.407663, cls_loss (avg) = 0.430496, lr = 0.010000
iter = 698, accuracy (cur) = 0.860000 (all), 0.931034 (pos), 0.761905 (neg)
iter = 698, accuracy (avg) = 0.802700 (all), 0.783493 (pos), 0.822915 (neg)
data reader: epoch = 0, batch = 699 / 4040
iter = 699, cls_loss (cur) = 0.370838, cls_loss (avg) = 0.429899, lr = 0.010000
iter = 699, accuracy (cur) = 0.900000 (all), 0.952381 (pos), 0.862069 (neg)
iter = 699, accuracy (avg) = 0.803673 (all), 0.785182 (pos), 0.823307 (neg)
data reader: epoch = 0, batch = 700 / 4040
iter = 700, cls_loss (cur) = 0.413436, cls_loss (avg) = 0.429735, lr = 0.010000
iter = 700, accuracy (cur) = 0.780000 (all), 0.758621 (pos), 0.809524 (neg)
iter = 700, accuracy (avg) = 0.803437 (all), 0.784916 (pos), 0.823169 (neg)
data reader: epoch = 0, batch = 701 / 4040
iter = 701, cls_loss (cur) = 0.430845, cls_loss (avg) = 0.429746, lr = 0.010000
iter = 701, accuracy (cur) = 0.780000 (all), 0.692308 (pos), 0.875000 (neg)
iter = 701, accuracy (avg) = 0.803202 (all), 0.783990 (pos), 0.823687 (neg)
data reader: epoch = 0, batch = 702 / 4040
iter = 702, cls_loss (cur) = 0.502118, cls_loss (avg) = 0.430469, lr = 0.010000
iter = 702, accuracy (cur) = 0.740000 (all), 0.750000 (pos), 0.727273 (neg)
iter = 702, accuracy (avg) = 0.802570 (all), 0.783650 (pos), 0.822723 (neg)
data reader: epoch = 0, batch = 703 / 4040
iter = 703, cls_loss (cur) = 0.457884, cls_loss (avg) = 0.430744, lr = 0.010000
iter = 703, accuracy (cur) = 0.780000 (all), 0.821429 (pos), 0.727273 (neg)
iter = 703, accuracy (avg) = 0.802344 (all), 0.784028 (pos), 0.821768 (neg)
data reader: epoch = 0, batch = 704 / 4040
iter = 704, cls_loss (cur) = 0.469821, cls_loss (avg) = 0.431134, lr = 0.010000
iter = 704, accuracy (cur) = 0.680000 (all), 0.724138 (pos), 0.619048 (neg)
iter = 704, accuracy (avg) = 0.801121 (all), 0.783429 (pos), 0.819741 (neg)
data reader: epoch = 0, batch = 705 / 4040
iter = 705, cls_loss (cur) = 0.404867, cls_loss (avg) = 0.430872, lr = 0.010000
iter = 705, accuracy (cur) = 0.840000 (all), 0.842105 (pos), 0.838710 (neg)
iter = 705, accuracy (avg) = 0.801510 (all), 0.784016 (pos), 0.819931 (neg)
data reader: epoch = 0, batch = 706 / 4040
iter = 706, cls_loss (cur) = 0.399616, cls_loss (avg) = 0.430559, lr = 0.010000
iter = 706, accuracy (cur) = 0.860000 (all), 0.760000 (pos), 0.960000 (neg)
iter = 706, accuracy (avg) = 0.802095 (all), 0.783776 (pos), 0.821332 (neg)
data reader: epoch = 0, batch = 707 / 4040
iter = 707, cls_loss (cur) = 0.396158, cls_loss (avg) = 0.430215, lr = 0.010000
iter = 707, accuracy (cur) = 0.820000 (all), 0.769231 (pos), 0.875000 (neg)
iter = 707, accuracy (avg) = 0.802274 (all), 0.783630 (pos), 0.821868 (neg)
data reader: epoch = 0, batch = 708 / 4040
iter = 708, cls_loss (cur) = 0.469571, cls_loss (avg) = 0.430609, lr = 0.010000
iter = 708, accuracy (cur) = 0.740000 (all), 0.863636 (pos), 0.642857 (neg)
iter = 708, accuracy (avg) = 0.801651 (all), 0.784431 (pos), 0.820078 (neg)
data reader: epoch = 0, batch = 709 / 4040
iter = 709, cls_loss (cur) = 0.525625, cls_loss (avg) = 0.431559, lr = 0.010000
iter = 709, accuracy (cur) = 0.700000 (all), 0.709677 (pos), 0.684211 (neg)
iter = 709, accuracy (avg) = 0.800634 (all), 0.783683 (pos), 0.818720 (neg)
data reader: epoch = 0, batch = 710 / 4040
iter = 710, cls_loss (cur) = 0.431345, cls_loss (avg) = 0.431557, lr = 0.010000
iter = 710, accuracy (cur) = 0.800000 (all), 0.880000 (pos), 0.720000 (neg)
iter = 710, accuracy (avg) = 0.800628 (all), 0.784646 (pos), 0.817732 (neg)
data reader: epoch = 0, batch = 711 / 4040
iter = 711, cls_loss (cur) = 0.461330, cls_loss (avg) = 0.431854, lr = 0.010000
iter = 711, accuracy (cur) = 0.820000 (all), 0.791667 (pos), 0.846154 (neg)
iter = 711, accuracy (avg) = 0.800822 (all), 0.784716 (pos), 0.818017 (neg)
data reader: epoch = 0, batch = 712 / 4040
iter = 712, cls_loss (cur) = 0.415231, cls_loss (avg) = 0.431688, lr = 0.010000
iter = 712, accuracy (cur) = 0.740000 (all), 0.777778 (pos), 0.695652 (neg)
iter = 712, accuracy (avg) = 0.800214 (all), 0.784647 (pos), 0.816793 (neg)
data reader: epoch = 0, batch = 713 / 4040
iter = 713, cls_loss (cur) = 0.418563, cls_loss (avg) = 0.431557, lr = 0.010000
iter = 713, accuracy (cur) = 0.820000 (all), 0.950000 (pos), 0.733333 (neg)
iter = 713, accuracy (avg) = 0.800412 (all), 0.786301 (pos), 0.815958 (neg)
data reader: epoch = 0, batch = 714 / 4040
iter = 714, cls_loss (cur) = 0.393708, cls_loss (avg) = 0.431178, lr = 0.010000
iter = 714, accuracy (cur) = 0.860000 (all), 0.875000 (pos), 0.846154 (neg)
iter = 714, accuracy (avg) = 0.801007 (all), 0.787187 (pos), 0.816260 (neg)
data reader: epoch = 0, batch = 715 / 4040
iter = 715, cls_loss (cur) = 0.338501, cls_loss (avg) = 0.430252, lr = 0.010000
iter = 715, accuracy (cur) = 0.880000 (all), 0.947368 (pos), 0.838710 (neg)
iter = 715, accuracy (avg) = 0.801797 (all), 0.788789 (pos), 0.816485 (neg)
data reader: epoch = 0, batch = 716 / 4040
iter = 716, cls_loss (cur) = 0.437477, cls_loss (avg) = 0.430324, lr = 0.010000
iter = 716, accuracy (cur) = 0.760000 (all), 0.636364 (pos), 0.857143 (neg)
iter = 716, accuracy (avg) = 0.801379 (all), 0.787265 (pos), 0.816891 (neg)
data reader: epoch = 0, batch = 717 / 4040
iter = 717, cls_loss (cur) = 0.369289, cls_loss (avg) = 0.429714, lr = 0.010000
iter = 717, accuracy (cur) = 0.860000 (all), 0.833333 (pos), 0.900000 (neg)
iter = 717, accuracy (avg) = 0.801966 (all), 0.787726 (pos), 0.817722 (neg)
data reader: epoch = 0, batch = 718 / 4040
iter = 718, cls_loss (cur) = 0.469500, cls_loss (avg) = 0.430111, lr = 0.010000
iter = 718, accuracy (cur) = 0.760000 (all), 0.695652 (pos), 0.814815 (neg)
iter = 718, accuracy (avg) = 0.801546 (all), 0.786805 (pos), 0.817693 (neg)
data reader: epoch = 0, batch = 719 / 4040
iter = 719, cls_loss (cur) = 0.408612, cls_loss (avg) = 0.429896, lr = 0.010000
iter = 719, accuracy (cur) = 0.820000 (all), 0.684211 (pos), 0.903226 (neg)
iter = 719, accuracy (avg) = 0.801730 (all), 0.785779 (pos), 0.818549 (neg)
data reader: epoch = 0, batch = 720 / 4040
iter = 720, cls_loss (cur) = 0.379010, cls_loss (avg) = 0.429388, lr = 0.010000
iter = 720, accuracy (cur) = 0.820000 (all), 0.714286 (pos), 0.896552 (neg)
iter = 720, accuracy (avg) = 0.801913 (all), 0.785064 (pos), 0.819329 (neg)
data reader: epoch = 0, batch = 721 / 4040
iter = 721, cls_loss (cur) = 0.466847, cls_loss (avg) = 0.429762, lr = 0.010000
iter = 721, accuracy (cur) = 0.800000 (all), 0.791667 (pos), 0.807692 (neg)
iter = 721, accuracy (avg) = 0.801894 (all), 0.785130 (pos), 0.819212 (neg)
data reader: epoch = 0, batch = 722 / 4040
iter = 722, cls_loss (cur) = 0.420345, cls_loss (avg) = 0.429668, lr = 0.010000
iter = 722, accuracy (cur) = 0.800000 (all), 0.727273 (pos), 0.941176 (neg)
iter = 722, accuracy (avg) = 0.801875 (all), 0.784552 (pos), 0.820432 (neg)
data reader: epoch = 0, batch = 723 / 4040
iter = 723, cls_loss (cur) = 0.341208, cls_loss (avg) = 0.428783, lr = 0.010000
iter = 723, accuracy (cur) = 0.820000 (all), 0.733333 (pos), 0.950000 (neg)
iter = 723, accuracy (avg) = 0.802056 (all), 0.784039 (pos), 0.821728 (neg)
data reader: epoch = 0, batch = 724 / 4040
iter = 724, cls_loss (cur) = 0.491888, cls_loss (avg) = 0.429414, lr = 0.010000
iter = 724, accuracy (cur) = 0.640000 (all), 0.600000 (pos), 0.700000 (neg)
iter = 724, accuracy (avg) = 0.800436 (all), 0.782199 (pos), 0.820510 (neg)
data reader: epoch = 0, batch = 725 / 4040
iter = 725, cls_loss (cur) = 0.396572, cls_loss (avg) = 0.429086, lr = 0.010000
iter = 725, accuracy (cur) = 0.840000 (all), 0.923077 (pos), 0.750000 (neg)
iter = 725, accuracy (avg) = 0.800831 (all), 0.783608 (pos), 0.819805 (neg)
data reader: epoch = 0, batch = 726 / 4040
iter = 726, cls_loss (cur) = 0.436600, cls_loss (avg) = 0.429161, lr = 0.010000
iter = 726, accuracy (cur) = 0.820000 (all), 0.913043 (pos), 0.740741 (neg)
iter = 726, accuracy (avg) = 0.801023 (all), 0.784902 (pos), 0.819015 (neg)
data reader: epoch = 0, batch = 727 / 4040
iter = 727, cls_loss (cur) = 0.515926, cls_loss (avg) = 0.430029, lr = 0.010000
iter = 727, accuracy (cur) = 0.680000 (all), 0.772727 (pos), 0.607143 (neg)
iter = 727, accuracy (avg) = 0.799813 (all), 0.784780 (pos), 0.816896 (neg)
data reader: epoch = 0, batch = 728 / 4040
iter = 728, cls_loss (cur) = 0.404102, cls_loss (avg) = 0.429770, lr = 0.010000
iter = 728, accuracy (cur) = 0.760000 (all), 0.848485 (pos), 0.588235 (neg)
iter = 728, accuracy (avg) = 0.799415 (all), 0.785417 (pos), 0.814609 (neg)
data reader: epoch = 0, batch = 729 / 4040
iter = 729, cls_loss (cur) = 0.321400, cls_loss (avg) = 0.428686, lr = 0.010000
iter = 729, accuracy (cur) = 0.860000 (all), 0.888889 (pos), 0.826087 (neg)
iter = 729, accuracy (avg) = 0.800021 (all), 0.786452 (pos), 0.814724 (neg)
data reader: epoch = 0, batch = 730 / 4040
iter = 730, cls_loss (cur) = 0.385034, cls_loss (avg) = 0.428249, lr = 0.010000
iter = 730, accuracy (cur) = 0.840000 (all), 1.000000 (pos), 0.692308 (neg)
iter = 730, accuracy (avg) = 0.800420 (all), 0.788588 (pos), 0.813500 (neg)
data reader: epoch = 0, batch = 731 / 4040
iter = 731, cls_loss (cur) = 0.441685, cls_loss (avg) = 0.428384, lr = 0.010000
iter = 731, accuracy (cur) = 0.760000 (all), 0.666667 (pos), 0.827586 (neg)
iter = 731, accuracy (avg) = 0.800016 (all), 0.787368 (pos), 0.813641 (neg)
data reader: epoch = 0, batch = 732 / 4040
iter = 732, cls_loss (cur) = 0.392851, cls_loss (avg) = 0.428028, lr = 0.010000
iter = 732, accuracy (cur) = 0.800000 (all), 0.781250 (pos), 0.833333 (neg)
iter = 732, accuracy (avg) = 0.800016 (all), 0.787307 (pos), 0.813838 (neg)
data reader: epoch = 0, batch = 733 / 4040
iter = 733, cls_loss (cur) = 0.446744, cls_loss (avg) = 0.428215, lr = 0.010000
iter = 733, accuracy (cur) = 0.780000 (all), 0.700000 (pos), 0.833333 (neg)
iter = 733, accuracy (avg) = 0.799816 (all), 0.786434 (pos), 0.814033 (neg)
data reader: epoch = 0, batch = 734 / 4040
iter = 734, cls_loss (cur) = 0.433416, cls_loss (avg) = 0.428268, lr = 0.010000
iter = 734, accuracy (cur) = 0.780000 (all), 0.724138 (pos), 0.857143 (neg)
iter = 734, accuracy (avg) = 0.799618 (all), 0.785811 (pos), 0.814464 (neg)
data reader: epoch = 0, batch = 735 / 4040
iter = 735, cls_loss (cur) = 0.330993, cls_loss (avg) = 0.427295, lr = 0.010000
iter = 735, accuracy (cur) = 0.820000 (all), 0.923077 (pos), 0.783784 (neg)
iter = 735, accuracy (avg) = 0.799822 (all), 0.787184 (pos), 0.814157 (neg)
data reader: epoch = 0, batch = 736 / 4040
iter = 736, cls_loss (cur) = 0.497305, cls_loss (avg) = 0.427995, lr = 0.010000
iter = 736, accuracy (cur) = 0.760000 (all), 0.700000 (pos), 0.850000 (neg)
iter = 736, accuracy (avg) = 0.799423 (all), 0.786312 (pos), 0.814515 (neg)
data reader: epoch = 0, batch = 737 / 4040
iter = 737, cls_loss (cur) = 0.456468, cls_loss (avg) = 0.428280, lr = 0.010000
iter = 737, accuracy (cur) = 0.800000 (all), 0.750000 (pos), 0.846154 (neg)
iter = 737, accuracy (avg) = 0.799429 (all), 0.785949 (pos), 0.814832 (neg)
data reader: epoch = 0, batch = 738 / 4040
iter = 738, cls_loss (cur) = 0.525049, cls_loss (avg) = 0.429247, lr = 0.010000
iter = 738, accuracy (cur) = 0.680000 (all), 0.500000 (pos), 0.781250 (neg)
iter = 738, accuracy (avg) = 0.798235 (all), 0.783089 (pos), 0.814496 (neg)
data reader: epoch = 0, batch = 739 / 4040
iter = 739, cls_loss (cur) = 0.442546, cls_loss (avg) = 0.429380, lr = 0.010000
iter = 739, accuracy (cur) = 0.840000 (all), 0.826087 (pos), 0.851852 (neg)
iter = 739, accuracy (avg) = 0.798652 (all), 0.783519 (pos), 0.814870 (neg)
data reader: epoch = 0, batch = 740 / 4040
iter = 740, cls_loss (cur) = 0.374928, cls_loss (avg) = 0.428836, lr = 0.010000
iter = 740, accuracy (cur) = 0.840000 (all), 0.793103 (pos), 0.904762 (neg)
iter = 740, accuracy (avg) = 0.799066 (all), 0.783615 (pos), 0.815768 (neg)
data reader: epoch = 0, batch = 741 / 4040
iter = 741, cls_loss (cur) = 0.396044, cls_loss (avg) = 0.428508, lr = 0.010000
iter = 741, accuracy (cur) = 0.900000 (all), 0.916667 (pos), 0.884615 (neg)
iter = 741, accuracy (avg) = 0.800075 (all), 0.784946 (pos), 0.816457 (neg)
data reader: epoch = 0, batch = 742 / 4040
iter = 742, cls_loss (cur) = 0.530152, cls_loss (avg) = 0.429524, lr = 0.010000
iter = 742, accuracy (cur) = 0.760000 (all), 0.777778 (pos), 0.739130 (neg)
iter = 742, accuracy (avg) = 0.799674 (all), 0.784874 (pos), 0.815684 (neg)
data reader: epoch = 0, batch = 743 / 4040
iter = 743, cls_loss (cur) = 0.421864, cls_loss (avg) = 0.429448, lr = 0.010000
iter = 743, accuracy (cur) = 0.820000 (all), 0.760000 (pos), 0.880000 (neg)
iter = 743, accuracy (avg) = 0.799878 (all), 0.784625 (pos), 0.816327 (neg)
data reader: epoch = 0, batch = 744 / 4040
iter = 744, cls_loss (cur) = 0.429511, cls_loss (avg) = 0.429448, lr = 0.010000
iter = 744, accuracy (cur) = 0.800000 (all), 0.722222 (pos), 0.843750 (neg)
iter = 744, accuracy (avg) = 0.799879 (all), 0.784001 (pos), 0.816601 (neg)
data reader: epoch = 0, batch = 745 / 4040
iter = 745, cls_loss (cur) = 0.313861, cls_loss (avg) = 0.428292, lr = 0.010000
iter = 745, accuracy (cur) = 0.920000 (all), 0.966667 (pos), 0.850000 (neg)
iter = 745, accuracy (avg) = 0.801080 (all), 0.785828 (pos), 0.816935 (neg)
data reader: epoch = 0, batch = 746 / 4040
iter = 746, cls_loss (cur) = 0.402237, cls_loss (avg) = 0.428032, lr = 0.010000
iter = 746, accuracy (cur) = 0.820000 (all), 0.840000 (pos), 0.800000 (neg)
iter = 746, accuracy (avg) = 0.801269 (all), 0.786370 (pos), 0.816766 (neg)
data reader: epoch = 0, batch = 747 / 4040
iter = 747, cls_loss (cur) = 0.467852, cls_loss (avg) = 0.428430, lr = 0.010000
iter = 747, accuracy (cur) = 0.740000 (all), 0.750000 (pos), 0.730769 (neg)
iter = 747, accuracy (avg) = 0.800657 (all), 0.786006 (pos), 0.815906 (neg)
data reader: epoch = 0, batch = 748 / 4040
iter = 748, cls_loss (cur) = 0.346690, cls_loss (avg) = 0.427613, lr = 0.010000
iter = 748, accuracy (cur) = 0.840000 (all), 0.782609 (pos), 0.888889 (neg)
iter = 748, accuracy (avg) = 0.801050 (all), 0.785972 (pos), 0.816636 (neg)
data reader: epoch = 0, batch = 749 / 4040
iter = 749, cls_loss (cur) = 0.349776, cls_loss (avg) = 0.426834, lr = 0.010000
iter = 749, accuracy (cur) = 0.840000 (all), 0.809524 (pos), 0.862069 (neg)
iter = 749, accuracy (avg) = 0.801440 (all), 0.786208 (pos), 0.817090 (neg)
data reader: epoch = 0, batch = 750 / 4040
iter = 750, cls_loss (cur) = 0.353742, cls_loss (avg) = 0.426103, lr = 0.010000
iter = 750, accuracy (cur) = 0.880000 (all), 0.920000 (pos), 0.840000 (neg)
iter = 750, accuracy (avg) = 0.802225 (all), 0.787545 (pos), 0.817319 (neg)
data reader: epoch = 0, batch = 751 / 4040
iter = 751, cls_loss (cur) = 0.456608, cls_loss (avg) = 0.426408, lr = 0.010000
iter = 751, accuracy (cur) = 0.760000 (all), 0.642857 (pos), 0.909091 (neg)
iter = 751, accuracy (avg) = 0.801803 (all), 0.786099 (pos), 0.818237 (neg)
data reader: epoch = 0, batch = 752 / 4040
iter = 752, cls_loss (cur) = 0.335923, cls_loss (avg) = 0.425504, lr = 0.010000
iter = 752, accuracy (cur) = 0.900000 (all), 0.956522 (pos), 0.851852 (neg)
iter = 752, accuracy (avg) = 0.802785 (all), 0.787803 (pos), 0.818573 (neg)
data reader: epoch = 0, batch = 753 / 4040
iter = 753, cls_loss (cur) = 0.380917, cls_loss (avg) = 0.425058, lr = 0.010000
iter = 753, accuracy (cur) = 0.860000 (all), 0.950000 (pos), 0.800000 (neg)
iter = 753, accuracy (avg) = 0.803357 (all), 0.789425 (pos), 0.818387 (neg)
data reader: epoch = 0, batch = 754 / 4040
iter = 754, cls_loss (cur) = 0.408275, cls_loss (avg) = 0.424890, lr = 0.010000
iter = 754, accuracy (cur) = 0.840000 (all), 0.888889 (pos), 0.782609 (neg)
iter = 754, accuracy (avg) = 0.803724 (all), 0.790419 (pos), 0.818029 (neg)
data reader: epoch = 0, batch = 755 / 4040
iter = 755, cls_loss (cur) = 0.358937, cls_loss (avg) = 0.424230, lr = 0.010000
iter = 755, accuracy (cur) = 0.860000 (all), 0.880000 (pos), 0.840000 (neg)
iter = 755, accuracy (avg) = 0.804286 (all), 0.791315 (pos), 0.818249 (neg)
data reader: epoch = 0, batch = 756 / 4040
iter = 756, cls_loss (cur) = 0.432827, cls_loss (avg) = 0.424316, lr = 0.010000
iter = 756, accuracy (cur) = 0.780000 (all), 0.703704 (pos), 0.869565 (neg)
iter = 756, accuracy (avg) = 0.804043 (all), 0.790439 (pos), 0.818762 (neg)
data reader: epoch = 0, batch = 757 / 4040
iter = 757, cls_loss (cur) = 0.516105, cls_loss (avg) = 0.425234, lr = 0.010000
iter = 757, accuracy (cur) = 0.800000 (all), 0.766667 (pos), 0.850000 (neg)
iter = 757, accuracy (avg) = 0.804003 (all), 0.790201 (pos), 0.819075 (neg)
data reader: epoch = 0, batch = 758 / 4040
iter = 758, cls_loss (cur) = 0.315884, cls_loss (avg) = 0.424141, lr = 0.010000
iter = 758, accuracy (cur) = 0.840000 (all), 0.769231 (pos), 0.916667 (neg)
iter = 758, accuracy (avg) = 0.804363 (all), 0.789992 (pos), 0.820051 (neg)
data reader: epoch = 0, batch = 759 / 4040
iter = 759, cls_loss (cur) = 0.330983, cls_loss (avg) = 0.423209, lr = 0.010000
iter = 759, accuracy (cur) = 0.900000 (all), 0.842105 (pos), 0.935484 (neg)
iter = 759, accuracy (avg) = 0.805319 (all), 0.790513 (pos), 0.821205 (neg)
data reader: epoch = 0, batch = 760 / 4040
iter = 760, cls_loss (cur) = 0.421840, cls_loss (avg) = 0.423195, lr = 0.010000
iter = 760, accuracy (cur) = 0.760000 (all), 0.791667 (pos), 0.730769 (neg)
iter = 760, accuracy (avg) = 0.804866 (all), 0.790524 (pos), 0.820300 (neg)
data reader: epoch = 0, batch = 761 / 4040
iter = 761, cls_loss (cur) = 0.412919, cls_loss (avg) = 0.423093, lr = 0.010000
iter = 761, accuracy (cur) = 0.820000 (all), 0.777778 (pos), 0.869565 (neg)
iter = 761, accuracy (avg) = 0.805017 (all), 0.790397 (pos), 0.820793 (neg)
data reader: epoch = 0, batch = 762 / 4040
iter = 762, cls_loss (cur) = 0.359300, cls_loss (avg) = 0.422455, lr = 0.010000
iter = 762, accuracy (cur) = 0.880000 (all), 0.880000 (pos), 0.880000 (neg)
iter = 762, accuracy (avg) = 0.805767 (all), 0.791293 (pos), 0.821385 (neg)
data reader: epoch = 0, batch = 763 / 4040
iter = 763, cls_loss (cur) = 0.378792, cls_loss (avg) = 0.422018, lr = 0.010000
iter = 763, accuracy (cur) = 0.780000 (all), 0.625000 (pos), 0.923077 (neg)
iter = 763, accuracy (avg) = 0.805510 (all), 0.789630 (pos), 0.822402 (neg)
data reader: epoch = 0, batch = 764 / 4040
iter = 764, cls_loss (cur) = 0.425415, cls_loss (avg) = 0.422052, lr = 0.010000
iter = 764, accuracy (cur) = 0.740000 (all), 0.791667 (pos), 0.692308 (neg)
iter = 764, accuracy (avg) = 0.804855 (all), 0.789650 (pos), 0.821101 (neg)
data reader: epoch = 0, batch = 765 / 4040
iter = 765, cls_loss (cur) = 0.389490, cls_loss (avg) = 0.421727, lr = 0.010000
iter = 765, accuracy (cur) = 0.840000 (all), 0.800000 (pos), 0.866667 (neg)
iter = 765, accuracy (avg) = 0.805206 (all), 0.789754 (pos), 0.821557 (neg)
data reader: epoch = 0, batch = 766 / 4040
iter = 766, cls_loss (cur) = 0.346675, cls_loss (avg) = 0.420976, lr = 0.010000
iter = 766, accuracy (cur) = 0.880000 (all), 0.862069 (pos), 0.904762 (neg)
iter = 766, accuracy (avg) = 0.805954 (all), 0.790477 (pos), 0.822389 (neg)
data reader: epoch = 0, batch = 767 / 4040
iter = 767, cls_loss (cur) = 0.419179, cls_loss (avg) = 0.420958, lr = 0.010000
iter = 767, accuracy (cur) = 0.820000 (all), 0.750000 (pos), 0.909091 (neg)
iter = 767, accuracy (avg) = 0.806094 (all), 0.790072 (pos), 0.823256 (neg)
data reader: epoch = 0, batch = 768 / 4040
iter = 768, cls_loss (cur) = 0.399165, cls_loss (avg) = 0.420740, lr = 0.010000
iter = 768, accuracy (cur) = 0.840000 (all), 0.807692 (pos), 0.875000 (neg)
iter = 768, accuracy (avg) = 0.806433 (all), 0.790248 (pos), 0.823773 (neg)
data reader: epoch = 0, batch = 769 / 4040
iter = 769, cls_loss (cur) = 0.438296, cls_loss (avg) = 0.420916, lr = 0.010000
iter = 769, accuracy (cur) = 0.740000 (all), 0.653846 (pos), 0.833333 (neg)
iter = 769, accuracy (avg) = 0.805769 (all), 0.788884 (pos), 0.823869 (neg)
data reader: epoch = 0, batch = 770 / 4040
iter = 770, cls_loss (cur) = 0.372486, cls_loss (avg) = 0.420431, lr = 0.010000
iter = 770, accuracy (cur) = 0.820000 (all), 0.740741 (pos), 0.913043 (neg)
iter = 770, accuracy (avg) = 0.805911 (all), 0.788403 (pos), 0.824761 (neg)
data reader: epoch = 0, batch = 771 / 4040
iter = 771, cls_loss (cur) = 0.366226, cls_loss (avg) = 0.419889, lr = 0.010000
iter = 771, accuracy (cur) = 0.900000 (all), 0.869565 (pos), 0.925926 (neg)
iter = 771, accuracy (avg) = 0.806852 (all), 0.789215 (pos), 0.825772 (neg)
data reader: epoch = 0, batch = 772 / 4040
iter = 772, cls_loss (cur) = 0.445171, cls_loss (avg) = 0.420142, lr = 0.010000
iter = 772, accuracy (cur) = 0.820000 (all), 0.782609 (pos), 0.851852 (neg)
iter = 772, accuracy (avg) = 0.806984 (all), 0.789149 (pos), 0.826033 (neg)
data reader: epoch = 0, batch = 773 / 4040
iter = 773, cls_loss (cur) = 0.299689, cls_loss (avg) = 0.418938, lr = 0.010000
iter = 773, accuracy (cur) = 0.880000 (all), 0.846154 (pos), 0.916667 (neg)
iter = 773, accuracy (avg) = 0.807714 (all), 0.789719 (pos), 0.826939 (neg)
data reader: epoch = 0, batch = 774 / 4040
iter = 774, cls_loss (cur) = 0.425827, cls_loss (avg) = 0.419006, lr = 0.010000
iter = 774, accuracy (cur) = 0.760000 (all), 0.793103 (pos), 0.714286 (neg)
iter = 774, accuracy (avg) = 0.807237 (all), 0.789752 (pos), 0.825813 (neg)
data reader: epoch = 0, batch = 775 / 4040
iter = 775, cls_loss (cur) = 0.393475, cls_loss (avg) = 0.418751, lr = 0.010000
iter = 775, accuracy (cur) = 0.800000 (all), 0.956522 (pos), 0.666667 (neg)
iter = 775, accuracy (avg) = 0.807164 (all), 0.791420 (pos), 0.824221 (neg)
data reader: epoch = 0, batch = 776 / 4040
iter = 776, cls_loss (cur) = 0.392744, cls_loss (avg) = 0.418491, lr = 0.010000
iter = 776, accuracy (cur) = 0.800000 (all), 0.818182 (pos), 0.785714 (neg)
iter = 776, accuracy (avg) = 0.807093 (all), 0.791688 (pos), 0.823836 (neg)
data reader: epoch = 0, batch = 777 / 4040
iter = 777, cls_loss (cur) = 0.401865, cls_loss (avg) = 0.418325, lr = 0.010000
iter = 777, accuracy (cur) = 0.760000 (all), 0.740741 (pos), 0.782609 (neg)
iter = 777, accuracy (avg) = 0.806622 (all), 0.791178 (pos), 0.823424 (neg)
data reader: epoch = 0, batch = 778 / 4040
iter = 778, cls_loss (cur) = 0.343903, cls_loss (avg) = 0.417581, lr = 0.010000
iter = 778, accuracy (cur) = 0.840000 (all), 0.772727 (pos), 0.892857 (neg)
iter = 778, accuracy (avg) = 0.806956 (all), 0.790994 (pos), 0.824118 (neg)
data reader: epoch = 0, batch = 779 / 4040
iter = 779, cls_loss (cur) = 0.342846, cls_loss (avg) = 0.416833, lr = 0.010000
iter = 779, accuracy (cur) = 0.900000 (all), 0.826087 (pos), 0.962963 (neg)
iter = 779, accuracy (avg) = 0.807886 (all), 0.791345 (pos), 0.825507 (neg)
data reader: epoch = 0, batch = 780 / 4040
iter = 780, cls_loss (cur) = 0.308481, cls_loss (avg) = 0.415750, lr = 0.010000
iter = 780, accuracy (cur) = 0.880000 (all), 0.826087 (pos), 0.925926 (neg)
iter = 780, accuracy (avg) = 0.808607 (all), 0.791692 (pos), 0.826511 (neg)
data reader: epoch = 0, batch = 781 / 4040
iter = 781, cls_loss (cur) = 0.335308, cls_loss (avg) = 0.414945, lr = 0.010000
iter = 781, accuracy (cur) = 0.860000 (all), 0.700000 (pos), 0.966667 (neg)
iter = 781, accuracy (avg) = 0.809121 (all), 0.790775 (pos), 0.827913 (neg)
data reader: epoch = 0, batch = 782 / 4040
iter = 782, cls_loss (cur) = 0.467945, cls_loss (avg) = 0.415475, lr = 0.010000
iter = 782, accuracy (cur) = 0.700000 (all), 0.650000 (pos), 0.733333 (neg)
iter = 782, accuracy (avg) = 0.808030 (all), 0.789367 (pos), 0.826967 (neg)
data reader: epoch = 0, batch = 783 / 4040
iter = 783, cls_loss (cur) = 0.515592, cls_loss (avg) = 0.416477, lr = 0.010000
iter = 783, accuracy (cur) = 0.700000 (all), 0.800000 (pos), 0.633333 (neg)
iter = 783, accuracy (avg) = 0.806950 (all), 0.789474 (pos), 0.825031 (neg)
data reader: epoch = 0, batch = 784 / 4040
iter = 784, cls_loss (cur) = 0.339788, cls_loss (avg) = 0.415710, lr = 0.010000
iter = 784, accuracy (cur) = 0.840000 (all), 0.791667 (pos), 0.884615 (neg)
iter = 784, accuracy (avg) = 0.807280 (all), 0.789496 (pos), 0.825626 (neg)
data reader: epoch = 0, batch = 785 / 4040
iter = 785, cls_loss (cur) = 0.431459, cls_loss (avg) = 0.415867, lr = 0.010000
iter = 785, accuracy (cur) = 0.720000 (all), 0.666667 (pos), 0.782609 (neg)
iter = 785, accuracy (avg) = 0.806407 (all), 0.788267 (pos), 0.825196 (neg)
data reader: epoch = 0, batch = 786 / 4040
iter = 786, cls_loss (cur) = 0.338387, cls_loss (avg) = 0.415092, lr = 0.010000
iter = 786, accuracy (cur) = 0.880000 (all), 0.920000 (pos), 0.840000 (neg)
iter = 786, accuracy (avg) = 0.807143 (all), 0.789585 (pos), 0.825344 (neg)
data reader: epoch = 0, batch = 787 / 4040
iter = 787, cls_loss (cur) = 0.334325, cls_loss (avg) = 0.414285, lr = 0.010000
iter = 787, accuracy (cur) = 0.880000 (all), 0.850000 (pos), 0.900000 (neg)
iter = 787, accuracy (avg) = 0.807872 (all), 0.790189 (pos), 0.826091 (neg)
data reader: epoch = 0, batch = 788 / 4040
iter = 788, cls_loss (cur) = 0.394590, cls_loss (avg) = 0.414088, lr = 0.010000
iter = 788, accuracy (cur) = 0.780000 (all), 0.750000 (pos), 0.818182 (neg)
iter = 788, accuracy (avg) = 0.807593 (all), 0.789787 (pos), 0.826012 (neg)
data reader: epoch = 0, batch = 789 / 4040
iter = 789, cls_loss (cur) = 0.418600, cls_loss (avg) = 0.414133, lr = 0.010000
iter = 789, accuracy (cur) = 0.800000 (all), 0.761905 (pos), 0.827586 (neg)
iter = 789, accuracy (avg) = 0.807517 (all), 0.789508 (pos), 0.826027 (neg)
data reader: epoch = 0, batch = 790 / 4040
iter = 790, cls_loss (cur) = 0.461240, cls_loss (avg) = 0.414604, lr = 0.010000
iter = 790, accuracy (cur) = 0.760000 (all), 0.827586 (pos), 0.666667 (neg)
iter = 790, accuracy (avg) = 0.807042 (all), 0.789889 (pos), 0.824434 (neg)
data reader: epoch = 0, batch = 791 / 4040
iter = 791, cls_loss (cur) = 0.396477, cls_loss (avg) = 0.414423, lr = 0.010000
iter = 791, accuracy (cur) = 0.860000 (all), 0.888889 (pos), 0.826087 (neg)
iter = 791, accuracy (avg) = 0.807572 (all), 0.790879 (pos), 0.824450 (neg)
data reader: epoch = 0, batch = 792 / 4040
iter = 792, cls_loss (cur) = 0.361080, cls_loss (avg) = 0.413889, lr = 0.010000
iter = 792, accuracy (cur) = 0.840000 (all), 0.866667 (pos), 0.800000 (neg)
iter = 792, accuracy (avg) = 0.807896 (all), 0.791637 (pos), 0.824206 (neg)
data reader: epoch = 0, batch = 793 / 4040
iter = 793, cls_loss (cur) = 0.341854, cls_loss (avg) = 0.413169, lr = 0.010000
iter = 793, accuracy (cur) = 0.880000 (all), 0.851852 (pos), 0.913043 (neg)
iter = 793, accuracy (avg) = 0.808617 (all), 0.792239 (pos), 0.825094 (neg)
data reader: epoch = 0, batch = 794 / 4040
iter = 794, cls_loss (cur) = 0.459256, cls_loss (avg) = 0.413630, lr = 0.010000
iter = 794, accuracy (cur) = 0.760000 (all), 0.703704 (pos), 0.826087 (neg)
iter = 794, accuracy (avg) = 0.808131 (all), 0.791354 (pos), 0.825104 (neg)
data reader: epoch = 0, batch = 795 / 4040
iter = 795, cls_loss (cur) = 0.277499, cls_loss (avg) = 0.412268, lr = 0.010000
iter = 795, accuracy (cur) = 0.880000 (all), 0.863636 (pos), 0.892857 (neg)
iter = 795, accuracy (avg) = 0.808849 (all), 0.792076 (pos), 0.825782 (neg)
data reader: epoch = 0, batch = 796 / 4040
iter = 796, cls_loss (cur) = 0.410544, cls_loss (avg) = 0.412251, lr = 0.010000
iter = 796, accuracy (cur) = 0.740000 (all), 0.761905 (pos), 0.724138 (neg)
iter = 796, accuracy (avg) = 0.808161 (all), 0.791775 (pos), 0.824765 (neg)
data reader: epoch = 0, batch = 797 / 4040
iter = 797, cls_loss (cur) = 0.483495, cls_loss (avg) = 0.412964, lr = 0.010000
iter = 797, accuracy (cur) = 0.740000 (all), 0.850000 (pos), 0.666667 (neg)
iter = 797, accuracy (avg) = 0.807479 (all), 0.792357 (pos), 0.823184 (neg)
data reader: epoch = 0, batch = 798 / 4040
iter = 798, cls_loss (cur) = 0.297395, cls_loss (avg) = 0.411808, lr = 0.010000
iter = 798, accuracy (cur) = 0.900000 (all), 0.888889 (pos), 0.913043 (neg)
iter = 798, accuracy (avg) = 0.808405 (all), 0.793322 (pos), 0.824083 (neg)
data reader: epoch = 0, batch = 799 / 4040
iter = 799, cls_loss (cur) = 0.553653, cls_loss (avg) = 0.413226, lr = 0.010000
iter = 799, accuracy (cur) = 0.680000 (all), 0.760000 (pos), 0.600000 (neg)
iter = 799, accuracy (avg) = 0.807120 (all), 0.792989 (pos), 0.821842 (neg)
data reader: epoch = 0, batch = 800 / 4040
iter = 800, cls_loss (cur) = 0.297001, cls_loss (avg) = 0.412064, lr = 0.010000
iter = 800, accuracy (cur) = 0.840000 (all), 0.900000 (pos), 0.800000 (neg)
iter = 800, accuracy (avg) = 0.807449 (all), 0.794059 (pos), 0.821624 (neg)
data reader: epoch = 0, batch = 801 / 4040
iter = 801, cls_loss (cur) = 0.328091, cls_loss (avg) = 0.411224, lr = 0.010000
iter = 801, accuracy (cur) = 0.880000 (all), 0.840000 (pos), 0.920000 (neg)
iter = 801, accuracy (avg) = 0.808175 (all), 0.794519 (pos), 0.822607 (neg)
data reader: epoch = 0, batch = 802 / 4040
iter = 802, cls_loss (cur) = 0.619637, cls_loss (avg) = 0.413308, lr = 0.010000
iter = 802, accuracy (cur) = 0.680000 (all), 0.548387 (pos), 0.894737 (neg)
iter = 802, accuracy (avg) = 0.806893 (all), 0.792057 (pos), 0.823329 (neg)
data reader: epoch = 0, batch = 803 / 4040
iter = 803, cls_loss (cur) = 0.418892, cls_loss (avg) = 0.413364, lr = 0.010000
iter = 803, accuracy (cur) = 0.820000 (all), 0.863636 (pos), 0.785714 (neg)
iter = 803, accuracy (avg) = 0.807024 (all), 0.792773 (pos), 0.822953 (neg)
data reader: epoch = 0, batch = 804 / 4040
iter = 804, cls_loss (cur) = 0.358238, cls_loss (avg) = 0.412813, lr = 0.010000
iter = 804, accuracy (cur) = 0.860000 (all), 0.863636 (pos), 0.857143 (neg)
iter = 804, accuracy (avg) = 0.807554 (all), 0.793482 (pos), 0.823294 (neg)
data reader: epoch = 0, batch = 805 / 4040
iter = 805, cls_loss (cur) = 0.502192, cls_loss (avg) = 0.413707, lr = 0.010000
iter = 805, accuracy (cur) = 0.720000 (all), 0.692308 (pos), 0.750000 (neg)
iter = 805, accuracy (avg) = 0.806678 (all), 0.792470 (pos), 0.822561 (neg)
data reader: epoch = 0, batch = 806 / 4040
iter = 806, cls_loss (cur) = 0.411313, cls_loss (avg) = 0.413683, lr = 0.010000
iter = 806, accuracy (cur) = 0.820000 (all), 0.740741 (pos), 0.913043 (neg)
iter = 806, accuracy (avg) = 0.806812 (all), 0.791953 (pos), 0.823466 (neg)
data reader: epoch = 0, batch = 807 / 4040
iter = 807, cls_loss (cur) = 0.442962, cls_loss (avg) = 0.413976, lr = 0.010000
iter = 807, accuracy (cur) = 0.740000 (all), 0.681818 (pos), 0.785714 (neg)
iter = 807, accuracy (avg) = 0.806143 (all), 0.790851 (pos), 0.823089 (neg)
data reader: epoch = 0, batch = 808 / 4040
iter = 808, cls_loss (cur) = 0.448354, cls_loss (avg) = 0.414319, lr = 0.010000
iter = 808, accuracy (cur) = 0.780000 (all), 0.850000 (pos), 0.733333 (neg)
iter = 808, accuracy (avg) = 0.805882 (all), 0.791443 (pos), 0.822191 (neg)
data reader: epoch = 0, batch = 809 / 4040
iter = 809, cls_loss (cur) = 0.407061, cls_loss (avg) = 0.414247, lr = 0.010000
iter = 809, accuracy (cur) = 0.780000 (all), 0.809524 (pos), 0.758621 (neg)
iter = 809, accuracy (avg) = 0.805623 (all), 0.791624 (pos), 0.821556 (neg)
data reader: epoch = 0, batch = 810 / 4040
iter = 810, cls_loss (cur) = 0.274720, cls_loss (avg) = 0.412852, lr = 0.010000
iter = 810, accuracy (cur) = 0.900000 (all), 0.962963 (pos), 0.826087 (neg)
iter = 810, accuracy (avg) = 0.806567 (all), 0.793337 (pos), 0.821601 (neg)
data reader: epoch = 0, batch = 811 / 4040
iter = 811, cls_loss (cur) = 0.432112, cls_loss (avg) = 0.413044, lr = 0.010000
iter = 811, accuracy (cur) = 0.800000 (all), 0.681818 (pos), 0.892857 (neg)
iter = 811, accuracy (avg) = 0.806501 (all), 0.792222 (pos), 0.822313 (neg)
data reader: epoch = 0, batch = 812 / 4040
iter = 812, cls_loss (cur) = 0.518432, cls_loss (avg) = 0.414098, lr = 0.010000
iter = 812, accuracy (cur) = 0.760000 (all), 0.619048 (pos), 0.862069 (neg)
iter = 812, accuracy (avg) = 0.806036 (all), 0.790490 (pos), 0.822711 (neg)
data reader: epoch = 0, batch = 813 / 4040
iter = 813, cls_loss (cur) = 0.358566, cls_loss (avg) = 0.413543, lr = 0.010000
iter = 813, accuracy (cur) = 0.840000 (all), 0.800000 (pos), 0.866667 (neg)
iter = 813, accuracy (avg) = 0.806376 (all), 0.790585 (pos), 0.823151 (neg)
data reader: epoch = 0, batch = 814 / 4040
iter = 814, cls_loss (cur) = 0.438592, cls_loss (avg) = 0.413793, lr = 0.010000
iter = 814, accuracy (cur) = 0.820000 (all), 0.724138 (pos), 0.952381 (neg)
iter = 814, accuracy (avg) = 0.806512 (all), 0.789921 (pos), 0.824443 (neg)
data reader: epoch = 0, batch = 815 / 4040
iter = 815, cls_loss (cur) = 0.462927, cls_loss (avg) = 0.414285, lr = 0.010000
iter = 815, accuracy (cur) = 0.740000 (all), 0.714286 (pos), 0.758621 (neg)
iter = 815, accuracy (avg) = 0.805847 (all), 0.789164 (pos), 0.823785 (neg)
data reader: epoch = 0, batch = 816 / 4040
iter = 816, cls_loss (cur) = 0.343443, cls_loss (avg) = 0.413576, lr = 0.010000
iter = 816, accuracy (cur) = 0.860000 (all), 0.761905 (pos), 0.931034 (neg)
iter = 816, accuracy (avg) = 0.806389 (all), 0.788892 (pos), 0.824857 (neg)
data reader: epoch = 0, batch = 817 / 4040
iter = 817, cls_loss (cur) = 0.433248, cls_loss (avg) = 0.413773, lr = 0.010000
iter = 817, accuracy (cur) = 0.840000 (all), 0.840000 (pos), 0.840000 (neg)
iter = 817, accuracy (avg) = 0.806725 (all), 0.789403 (pos), 0.825009 (neg)
data reader: epoch = 0, batch = 818 / 4040
iter = 818, cls_loss (cur) = 0.409636, cls_loss (avg) = 0.413732, lr = 0.010000
iter = 818, accuracy (cur) = 0.840000 (all), 0.833333 (pos), 0.846154 (neg)
iter = 818, accuracy (avg) = 0.807057 (all), 0.789842 (pos), 0.825220 (neg)
data reader: epoch = 0, batch = 819 / 4040
iter = 819, cls_loss (cur) = 0.440073, cls_loss (avg) = 0.413995, lr = 0.010000
iter = 819, accuracy (cur) = 0.780000 (all), 0.700000 (pos), 0.833333 (neg)
iter = 819, accuracy (avg) = 0.806787 (all), 0.788944 (pos), 0.825301 (neg)
data reader: epoch = 0, batch = 820 / 4040
iter = 820, cls_loss (cur) = 0.417799, cls_loss (avg) = 0.414033, lr = 0.010000
iter = 820, accuracy (cur) = 0.860000 (all), 0.863636 (pos), 0.857143 (neg)
iter = 820, accuracy (avg) = 0.807319 (all), 0.789691 (pos), 0.825620 (neg)
data reader: epoch = 0, batch = 821 / 4040
iter = 821, cls_loss (cur) = 0.413553, cls_loss (avg) = 0.414028, lr = 0.010000
iter = 821, accuracy (cur) = 0.820000 (all), 0.695652 (pos), 0.925926 (neg)
iter = 821, accuracy (avg) = 0.807446 (all), 0.788750 (pos), 0.826623 (neg)
data reader: epoch = 0, batch = 822 / 4040
iter = 822, cls_loss (cur) = 0.339958, cls_loss (avg) = 0.413288, lr = 0.010000
iter = 822, accuracy (cur) = 0.840000 (all), 0.884615 (pos), 0.791667 (neg)
iter = 822, accuracy (avg) = 0.807771 (all), 0.789709 (pos), 0.826273 (neg)
data reader: epoch = 0, batch = 823 / 4040
iter = 823, cls_loss (cur) = 0.427368, cls_loss (avg) = 0.413428, lr = 0.010000
iter = 823, accuracy (cur) = 0.820000 (all), 0.809524 (pos), 0.827586 (neg)
iter = 823, accuracy (avg) = 0.807894 (all), 0.789907 (pos), 0.826286 (neg)
data reader: epoch = 0, batch = 824 / 4040
iter = 824, cls_loss (cur) = 0.475571, cls_loss (avg) = 0.414050, lr = 0.010000
iter = 824, accuracy (cur) = 0.760000 (all), 0.771429 (pos), 0.733333 (neg)
iter = 824, accuracy (avg) = 0.807415 (all), 0.789722 (pos), 0.825357 (neg)
data reader: epoch = 0, batch = 825 / 4040
iter = 825, cls_loss (cur) = 0.458336, cls_loss (avg) = 0.414493, lr = 0.010000
iter = 825, accuracy (cur) = 0.760000 (all), 0.652174 (pos), 0.851852 (neg)
iter = 825, accuracy (avg) = 0.806941 (all), 0.788347 (pos), 0.825622 (neg)
data reader: epoch = 0, batch = 826 / 4040
iter = 826, cls_loss (cur) = 0.504860, cls_loss (avg) = 0.415396, lr = 0.010000
iter = 826, accuracy (cur) = 0.700000 (all), 0.761905 (pos), 0.655172 (neg)
iter = 826, accuracy (avg) = 0.805871 (all), 0.788082 (pos), 0.823917 (neg)
data reader: epoch = 0, batch = 827 / 4040
iter = 827, cls_loss (cur) = 0.352904, cls_loss (avg) = 0.414771, lr = 0.010000
iter = 827, accuracy (cur) = 0.780000 (all), 0.833333 (pos), 0.730769 (neg)
iter = 827, accuracy (avg) = 0.805612 (all), 0.788535 (pos), 0.822986 (neg)
data reader: epoch = 0, batch = 828 / 4040
iter = 828, cls_loss (cur) = 0.382764, cls_loss (avg) = 0.414451, lr = 0.010000
iter = 828, accuracy (cur) = 0.840000 (all), 0.900000 (pos), 0.800000 (neg)
iter = 828, accuracy (avg) = 0.805956 (all), 0.789650 (pos), 0.822756 (neg)
data reader: epoch = 0, batch = 829 / 4040
iter = 829, cls_loss (cur) = 0.445617, cls_loss (avg) = 0.414763, lr = 0.010000
iter = 829, accuracy (cur) = 0.800000 (all), 0.833333 (pos), 0.769231 (neg)
iter = 829, accuracy (avg) = 0.805897 (all), 0.790086 (pos), 0.822221 (neg)
data reader: epoch = 0, batch = 830 / 4040
iter = 830, cls_loss (cur) = 0.370348, cls_loss (avg) = 0.414319, lr = 0.010000
iter = 830, accuracy (cur) = 0.800000 (all), 0.760000 (pos), 0.840000 (neg)
iter = 830, accuracy (avg) = 0.805838 (all), 0.789786 (pos), 0.822398 (neg)
data reader: epoch = 0, batch = 831 / 4040
iter = 831, cls_loss (cur) = 0.428626, cls_loss (avg) = 0.414462, lr = 0.010000
iter = 831, accuracy (cur) = 0.820000 (all), 0.727273 (pos), 0.892857 (neg)
iter = 831, accuracy (avg) = 0.805979 (all), 0.789160 (pos), 0.823103 (neg)
data reader: epoch = 0, batch = 832 / 4040
iter = 832, cls_loss (cur) = 0.475230, cls_loss (avg) = 0.415070, lr = 0.010000
iter = 832, accuracy (cur) = 0.760000 (all), 0.600000 (pos), 0.866667 (neg)
iter = 832, accuracy (avg) = 0.805520 (all), 0.787269 (pos), 0.823539 (neg)
data reader: epoch = 0, batch = 833 / 4040
iter = 833, cls_loss (cur) = 0.419568, cls_loss (avg) = 0.415115, lr = 0.010000
iter = 833, accuracy (cur) = 0.840000 (all), 0.739130 (pos), 0.925926 (neg)
iter = 833, accuracy (avg) = 0.805864 (all), 0.786787 (pos), 0.824562 (neg)
data reader: epoch = 0, batch = 834 / 4040
iter = 834, cls_loss (cur) = 0.380086, cls_loss (avg) = 0.414764, lr = 0.010000
iter = 834, accuracy (cur) = 0.780000 (all), 0.631579 (pos), 0.870968 (neg)
iter = 834, accuracy (avg) = 0.805606 (all), 0.785235 (pos), 0.825026 (neg)
data reader: epoch = 0, batch = 835 / 4040
iter = 835, cls_loss (cur) = 0.413596, cls_loss (avg) = 0.414753, lr = 0.010000
iter = 835, accuracy (cur) = 0.760000 (all), 0.703704 (pos), 0.826087 (neg)
iter = 835, accuracy (avg) = 0.805150 (all), 0.784420 (pos), 0.825037 (neg)
data reader: epoch = 0, batch = 836 / 4040
iter = 836, cls_loss (cur) = 0.391296, cls_loss (avg) = 0.414518, lr = 0.010000
iter = 836, accuracy (cur) = 0.820000 (all), 0.720000 (pos), 0.920000 (neg)
iter = 836, accuracy (avg) = 0.805298 (all), 0.783776 (pos), 0.825987 (neg)
data reader: epoch = 0, batch = 837 / 4040
iter = 837, cls_loss (cur) = 0.424618, cls_loss (avg) = 0.414619, lr = 0.010000
iter = 837, accuracy (cur) = 0.840000 (all), 0.807692 (pos), 0.875000 (neg)
iter = 837, accuracy (avg) = 0.805645 (all), 0.784015 (pos), 0.826477 (neg)
data reader: epoch = 0, batch = 838 / 4040
iter = 838, cls_loss (cur) = 0.349081, cls_loss (avg) = 0.413964, lr = 0.010000
iter = 838, accuracy (cur) = 0.860000 (all), 0.846154 (pos), 0.875000 (neg)
iter = 838, accuracy (avg) = 0.806189 (all), 0.784636 (pos), 0.826962 (neg)
data reader: epoch = 0, batch = 839 / 4040
iter = 839, cls_loss (cur) = 0.308065, cls_loss (avg) = 0.412905, lr = 0.010000
iter = 839, accuracy (cur) = 0.840000 (all), 0.809524 (pos), 0.862069 (neg)
iter = 839, accuracy (avg) = 0.806527 (all), 0.784885 (pos), 0.827313 (neg)
data reader: epoch = 0, batch = 840 / 4040
iter = 840, cls_loss (cur) = 0.326007, cls_loss (avg) = 0.412036, lr = 0.010000
iter = 840, accuracy (cur) = 0.820000 (all), 0.846154 (pos), 0.791667 (neg)
iter = 840, accuracy (avg) = 0.806662 (all), 0.785498 (pos), 0.826957 (neg)
data reader: epoch = 0, batch = 841 / 4040
iter = 841, cls_loss (cur) = 0.444179, cls_loss (avg) = 0.412357, lr = 0.010000
iter = 841, accuracy (cur) = 0.780000 (all), 0.875000 (pos), 0.692308 (neg)
iter = 841, accuracy (avg) = 0.806395 (all), 0.786393 (pos), 0.825610 (neg)
data reader: epoch = 0, batch = 842 / 4040
iter = 842, cls_loss (cur) = 0.375179, cls_loss (avg) = 0.411985, lr = 0.010000
iter = 842, accuracy (cur) = 0.820000 (all), 0.785714 (pos), 0.863636 (neg)
iter = 842, accuracy (avg) = 0.806531 (all), 0.786386 (pos), 0.825990 (neg)
data reader: epoch = 0, batch = 843 / 4040
iter = 843, cls_loss (cur) = 0.403401, cls_loss (avg) = 0.411899, lr = 0.010000
iter = 843, accuracy (cur) = 0.860000 (all), 0.888889 (pos), 0.826087 (neg)
iter = 843, accuracy (avg) = 0.807066 (all), 0.787411 (pos), 0.825991 (neg)
data reader: epoch = 0, batch = 844 / 4040
iter = 844, cls_loss (cur) = 0.432143, cls_loss (avg) = 0.412102, lr = 0.010000
iter = 844, accuracy (cur) = 0.740000 (all), 0.909091 (pos), 0.607143 (neg)
iter = 844, accuracy (avg) = 0.806395 (all), 0.788628 (pos), 0.823803 (neg)
data reader: epoch = 0, batch = 845 / 4040
iter = 845, cls_loss (cur) = 0.406156, cls_loss (avg) = 0.412042, lr = 0.010000
iter = 845, accuracy (cur) = 0.820000 (all), 0.892857 (pos), 0.727273 (neg)
iter = 845, accuracy (avg) = 0.806531 (all), 0.789670 (pos), 0.822838 (neg)
data reader: epoch = 0, batch = 846 / 4040
iter = 846, cls_loss (cur) = 0.358887, cls_loss (avg) = 0.411511, lr = 0.010000
iter = 846, accuracy (cur) = 0.880000 (all), 0.894737 (pos), 0.870968 (neg)
iter = 846, accuracy (avg) = 0.807266 (all), 0.790721 (pos), 0.823319 (neg)
data reader: epoch = 0, batch = 847 / 4040
iter = 847, cls_loss (cur) = 0.469031, cls_loss (avg) = 0.412086, lr = 0.010000
iter = 847, accuracy (cur) = 0.800000 (all), 0.764706 (pos), 0.818182 (neg)
iter = 847, accuracy (avg) = 0.807193 (all), 0.790461 (pos), 0.823268 (neg)
data reader: epoch = 0, batch = 848 / 4040
iter = 848, cls_loss (cur) = 0.321596, cls_loss (avg) = 0.411181, lr = 0.010000
iter = 848, accuracy (cur) = 0.860000 (all), 0.800000 (pos), 0.950000 (neg)
iter = 848, accuracy (avg) = 0.807721 (all), 0.790556 (pos), 0.824535 (neg)
data reader: epoch = 0, batch = 849 / 4040
iter = 849, cls_loss (cur) = 0.655927, cls_loss (avg) = 0.413629, lr = 0.010000
iter = 849, accuracy (cur) = 0.720000 (all), 0.541667 (pos), 0.884615 (neg)
iter = 849, accuracy (avg) = 0.806844 (all), 0.788067 (pos), 0.825136 (neg)
data reader: epoch = 0, batch = 850 / 4040
iter = 850, cls_loss (cur) = 0.381538, cls_loss (avg) = 0.413308, lr = 0.010000
iter = 850, accuracy (cur) = 0.840000 (all), 0.741935 (pos), 1.000000 (neg)
iter = 850, accuracy (avg) = 0.807176 (all), 0.787606 (pos), 0.826884 (neg)
data reader: epoch = 0, batch = 851 / 4040
iter = 851, cls_loss (cur) = 0.425208, cls_loss (avg) = 0.413427, lr = 0.010000
iter = 851, accuracy (cur) = 0.760000 (all), 0.653846 (pos), 0.875000 (neg)
iter = 851, accuracy (avg) = 0.806704 (all), 0.786268 (pos), 0.827365 (neg)
data reader: epoch = 0, batch = 852 / 4040
iter = 852, cls_loss (cur) = 0.386478, cls_loss (avg) = 0.413157, lr = 0.010000
iter = 852, accuracy (cur) = 0.760000 (all), 0.807692 (pos), 0.708333 (neg)
iter = 852, accuracy (avg) = 0.806237 (all), 0.786483 (pos), 0.826175 (neg)
data reader: epoch = 0, batch = 853 / 4040
iter = 853, cls_loss (cur) = 0.393504, cls_loss (avg) = 0.412961, lr = 0.010000
iter = 853, accuracy (cur) = 0.780000 (all), 0.806452 (pos), 0.736842 (neg)
iter = 853, accuracy (avg) = 0.805974 (all), 0.786682 (pos), 0.825282 (neg)
data reader: epoch = 0, batch = 854 / 4040
iter = 854, cls_loss (cur) = 0.360330, cls_loss (avg) = 0.412434, lr = 0.010000
iter = 854, accuracy (cur) = 0.840000 (all), 0.958333 (pos), 0.730769 (neg)
iter = 854, accuracy (avg) = 0.806315 (all), 0.788399 (pos), 0.824337 (neg)
data reader: epoch = 0, batch = 855 / 4040
iter = 855, cls_loss (cur) = 0.329578, cls_loss (avg) = 0.411606, lr = 0.010000
iter = 855, accuracy (cur) = 0.880000 (all), 0.964286 (pos), 0.772727 (neg)
iter = 855, accuracy (avg) = 0.807052 (all), 0.790158 (pos), 0.823821 (neg)
data reader: epoch = 0, batch = 856 / 4040
iter = 856, cls_loss (cur) = 0.354429, cls_loss (avg) = 0.411034, lr = 0.010000
iter = 856, accuracy (cur) = 0.900000 (all), 0.958333 (pos), 0.846154 (neg)
iter = 856, accuracy (avg) = 0.807981 (all), 0.791839 (pos), 0.824044 (neg)
data reader: epoch = 0, batch = 857 / 4040
iter = 857, cls_loss (cur) = 0.467287, cls_loss (avg) = 0.411597, lr = 0.010000
iter = 857, accuracy (cur) = 0.820000 (all), 0.892857 (pos), 0.727273 (neg)
iter = 857, accuracy (avg) = 0.808101 (all), 0.792850 (pos), 0.823076 (neg)
data reader: epoch = 0, batch = 858 / 4040
iter = 858, cls_loss (cur) = 0.339996, cls_loss (avg) = 0.410881, lr = 0.010000
iter = 858, accuracy (cur) = 0.840000 (all), 0.884615 (pos), 0.791667 (neg)
iter = 858, accuracy (avg) = 0.808420 (all), 0.793767 (pos), 0.822762 (neg)
data reader: epoch = 0, batch = 859 / 4040
iter = 859, cls_loss (cur) = 0.512593, cls_loss (avg) = 0.411898, lr = 0.010000
iter = 859, accuracy (cur) = 0.700000 (all), 0.708333 (pos), 0.692308 (neg)
iter = 859, accuracy (avg) = 0.807336 (all), 0.792913 (pos), 0.821458 (neg)
data reader: epoch = 0, batch = 860 / 4040
iter = 860, cls_loss (cur) = 0.315281, cls_loss (avg) = 0.410932, lr = 0.010000
iter = 860, accuracy (cur) = 0.880000 (all), 0.863636 (pos), 0.892857 (neg)
iter = 860, accuracy (avg) = 0.808063 (all), 0.793620 (pos), 0.822172 (neg)
data reader: epoch = 0, batch = 861 / 4040
iter = 861, cls_loss (cur) = 0.416201, cls_loss (avg) = 0.410984, lr = 0.010000
iter = 861, accuracy (cur) = 0.760000 (all), 0.640000 (pos), 0.880000 (neg)
iter = 861, accuracy (avg) = 0.807582 (all), 0.792084 (pos), 0.822750 (neg)
data reader: epoch = 0, batch = 862 / 4040
iter = 862, cls_loss (cur) = 0.463851, cls_loss (avg) = 0.411513, lr = 0.010000
iter = 862, accuracy (cur) = 0.760000 (all), 0.666667 (pos), 0.900000 (neg)
iter = 862, accuracy (avg) = 0.807106 (all), 0.790830 (pos), 0.823522 (neg)
data reader: epoch = 0, batch = 863 / 4040
iter = 863, cls_loss (cur) = 0.351442, cls_loss (avg) = 0.410912, lr = 0.010000
iter = 863, accuracy (cur) = 0.860000 (all), 0.900000 (pos), 0.833333 (neg)
iter = 863, accuracy (avg) = 0.807635 (all), 0.791921 (pos), 0.823620 (neg)
data reader: epoch = 0, batch = 864 / 4040
iter = 864, cls_loss (cur) = 0.344409, cls_loss (avg) = 0.410247, lr = 0.010000
iter = 864, accuracy (cur) = 0.840000 (all), 0.739130 (pos), 0.925926 (neg)
iter = 864, accuracy (avg) = 0.807959 (all), 0.791394 (pos), 0.824644 (neg)
data reader: epoch = 0, batch = 865 / 4040
iter = 865, cls_loss (cur) = 0.347454, cls_loss (avg) = 0.409619, lr = 0.010000
iter = 865, accuracy (cur) = 0.820000 (all), 0.739130 (pos), 0.888889 (neg)
iter = 865, accuracy (avg) = 0.808079 (all), 0.790871 (pos), 0.825286 (neg)
data reader: epoch = 0, batch = 866 / 4040
iter = 866, cls_loss (cur) = 0.278206, cls_loss (avg) = 0.408305, lr = 0.010000
iter = 866, accuracy (cur) = 0.900000 (all), 0.888889 (pos), 0.913043 (neg)
iter = 866, accuracy (avg) = 0.808998 (all), 0.791851 (pos), 0.826164 (neg)
data reader: epoch = 0, batch = 867 / 4040
iter = 867, cls_loss (cur) = 0.357941, cls_loss (avg) = 0.407801, lr = 0.010000
iter = 867, accuracy (cur) = 0.780000 (all), 0.714286 (pos), 0.863636 (neg)
iter = 867, accuracy (avg) = 0.808708 (all), 0.791075 (pos), 0.826538 (neg)
data reader: epoch = 0, batch = 868 / 4040
iter = 868, cls_loss (cur) = 0.311708, cls_loss (avg) = 0.406841, lr = 0.010000
iter = 868, accuracy (cur) = 0.900000 (all), 0.920000 (pos), 0.880000 (neg)
iter = 868, accuracy (avg) = 0.809621 (all), 0.792365 (pos), 0.827073 (neg)
data reader: epoch = 0, batch = 869 / 4040
iter = 869, cls_loss (cur) = 0.395631, cls_loss (avg) = 0.406728, lr = 0.010000
iter = 869, accuracy (cur) = 0.820000 (all), 0.846154 (pos), 0.791667 (neg)
iter = 869, accuracy (avg) = 0.809725 (all), 0.792903 (pos), 0.826719 (neg)
data reader: epoch = 0, batch = 870 / 4040
iter = 870, cls_loss (cur) = 0.408413, cls_loss (avg) = 0.406745, lr = 0.010000
iter = 870, accuracy (cur) = 0.800000 (all), 0.909091 (pos), 0.714286 (neg)
iter = 870, accuracy (avg) = 0.809628 (all), 0.794064 (pos), 0.825595 (neg)
data reader: epoch = 0, batch = 871 / 4040
iter = 871, cls_loss (cur) = 0.383366, cls_loss (avg) = 0.406511, lr = 0.010000
iter = 871, accuracy (cur) = 0.860000 (all), 0.884615 (pos), 0.833333 (neg)
iter = 871, accuracy (avg) = 0.810132 (all), 0.794970 (pos), 0.825672 (neg)
data reader: epoch = 0, batch = 872 / 4040
iter = 872, cls_loss (cur) = 0.385275, cls_loss (avg) = 0.406299, lr = 0.010000
iter = 872, accuracy (cur) = 0.820000 (all), 0.722222 (pos), 0.875000 (neg)
iter = 872, accuracy (avg) = 0.810230 (all), 0.794243 (pos), 0.826165 (neg)
data reader: epoch = 0, batch = 873 / 4040
iter = 873, cls_loss (cur) = 0.343345, cls_loss (avg) = 0.405670, lr = 0.010000
iter = 873, accuracy (cur) = 0.840000 (all), 0.916667 (pos), 0.769231 (neg)
iter = 873, accuracy (avg) = 0.810528 (all), 0.795467 (pos), 0.825596 (neg)
data reader: epoch = 0, batch = 874 / 4040
iter = 874, cls_loss (cur) = 0.350973, cls_loss (avg) = 0.405123, lr = 0.010000
iter = 874, accuracy (cur) = 0.880000 (all), 0.956522 (pos), 0.814815 (neg)
iter = 874, accuracy (avg) = 0.811223 (all), 0.797077 (pos), 0.825488 (neg)
data reader: epoch = 0, batch = 875 / 4040
iter = 875, cls_loss (cur) = 0.347822, cls_loss (avg) = 0.404550, lr = 0.010000
iter = 875, accuracy (cur) = 0.900000 (all), 0.827586 (pos), 1.000000 (neg)
iter = 875, accuracy (avg) = 0.812110 (all), 0.797382 (pos), 0.827233 (neg)
data reader: epoch = 0, batch = 876 / 4040
iter = 876, cls_loss (cur) = 0.347760, cls_loss (avg) = 0.403982, lr = 0.010000
iter = 876, accuracy (cur) = 0.800000 (all), 0.666667 (pos), 0.956522 (neg)
iter = 876, accuracy (avg) = 0.811989 (all), 0.796075 (pos), 0.828526 (neg)
data reader: epoch = 0, batch = 877 / 4040
iter = 877, cls_loss (cur) = 0.408496, cls_loss (avg) = 0.404027, lr = 0.010000
iter = 877, accuracy (cur) = 0.760000 (all), 0.636364 (pos), 0.857143 (neg)
iter = 877, accuracy (avg) = 0.811469 (all), 0.794478 (pos), 0.828812 (neg)
data reader: epoch = 0, batch = 878 / 4040
iter = 878, cls_loss (cur) = 0.357128, cls_loss (avg) = 0.403558, lr = 0.010000
iter = 878, accuracy (cur) = 0.880000 (all), 0.920000 (pos), 0.840000 (neg)
iter = 878, accuracy (avg) = 0.812155 (all), 0.795733 (pos), 0.828924 (neg)
data reader: epoch = 0, batch = 879 / 4040
iter = 879, cls_loss (cur) = 0.464545, cls_loss (avg) = 0.404168, lr = 0.010000
iter = 879, accuracy (cur) = 0.760000 (all), 0.703704 (pos), 0.826087 (neg)
iter = 879, accuracy (avg) = 0.811633 (all), 0.794813 (pos), 0.828896 (neg)
data reader: epoch = 0, batch = 880 / 4040
iter = 880, cls_loss (cur) = 0.441451, cls_loss (avg) = 0.404541, lr = 0.010000
iter = 880, accuracy (cur) = 0.760000 (all), 0.880000 (pos), 0.640000 (neg)
iter = 880, accuracy (avg) = 0.811117 (all), 0.795665 (pos), 0.827007 (neg)
data reader: epoch = 0, batch = 881 / 4040
iter = 881, cls_loss (cur) = 0.355858, cls_loss (avg) = 0.404054, lr = 0.010000
iter = 881, accuracy (cur) = 0.820000 (all), 0.782609 (pos), 0.851852 (neg)
iter = 881, accuracy (avg) = 0.811206 (all), 0.795534 (pos), 0.827255 (neg)
data reader: epoch = 0, batch = 882 / 4040
iter = 882, cls_loss (cur) = 0.384307, cls_loss (avg) = 0.403856, lr = 0.010000
iter = 882, accuracy (cur) = 0.860000 (all), 0.800000 (pos), 0.920000 (neg)
iter = 882, accuracy (avg) = 0.811694 (all), 0.795579 (pos), 0.828183 (neg)
data reader: epoch = 0, batch = 883 / 4040
iter = 883, cls_loss (cur) = 0.439409, cls_loss (avg) = 0.404212, lr = 0.010000
iter = 883, accuracy (cur) = 0.740000 (all), 0.709677 (pos), 0.789474 (neg)
iter = 883, accuracy (avg) = 0.810977 (all), 0.794720 (pos), 0.827796 (neg)
data reader: epoch = 0, batch = 884 / 4040
iter = 884, cls_loss (cur) = 0.368011, cls_loss (avg) = 0.403850, lr = 0.010000
iter = 884, accuracy (cur) = 0.820000 (all), 0.833333 (pos), 0.807692 (neg)
iter = 884, accuracy (avg) = 0.811067 (all), 0.795106 (pos), 0.827595 (neg)
data reader: epoch = 0, batch = 885 / 4040
iter = 885, cls_loss (cur) = 0.316808, cls_loss (avg) = 0.402979, lr = 0.010000
iter = 885, accuracy (cur) = 0.860000 (all), 0.818182 (pos), 0.892857 (neg)
iter = 885, accuracy (avg) = 0.811556 (all), 0.795337 (pos), 0.828247 (neg)
data reader: epoch = 0, batch = 886 / 4040
iter = 886, cls_loss (cur) = 0.326564, cls_loss (avg) = 0.402215, lr = 0.010000
iter = 886, accuracy (cur) = 0.880000 (all), 0.913043 (pos), 0.851852 (neg)
iter = 886, accuracy (avg) = 0.812241 (all), 0.796514 (pos), 0.828483 (neg)
data reader: epoch = 0, batch = 887 / 4040
iter = 887, cls_loss (cur) = 0.490222, cls_loss (avg) = 0.403095, lr = 0.010000
iter = 887, accuracy (cur) = 0.740000 (all), 0.730769 (pos), 0.750000 (neg)
iter = 887, accuracy (avg) = 0.811518 (all), 0.795857 (pos), 0.827698 (neg)
data reader: epoch = 0, batch = 888 / 4040
iter = 888, cls_loss (cur) = 0.385108, cls_loss (avg) = 0.402915, lr = 0.010000
iter = 888, accuracy (cur) = 0.840000 (all), 0.931034 (pos), 0.714286 (neg)
iter = 888, accuracy (avg) = 0.811803 (all), 0.797208 (pos), 0.826564 (neg)
data reader: epoch = 0, batch = 889 / 4040
iter = 889, cls_loss (cur) = 0.352562, cls_loss (avg) = 0.402412, lr = 0.010000
iter = 889, accuracy (cur) = 0.840000 (all), 0.958333 (pos), 0.730769 (neg)
iter = 889, accuracy (avg) = 0.812085 (all), 0.798820 (pos), 0.825606 (neg)
data reader: epoch = 0, batch = 890 / 4040
iter = 890, cls_loss (cur) = 0.297315, cls_loss (avg) = 0.401361, lr = 0.010000
iter = 890, accuracy (cur) = 0.880000 (all), 0.833333 (pos), 0.923077 (neg)
iter = 890, accuracy (avg) = 0.812764 (all), 0.799165 (pos), 0.826581 (neg)
data reader: epoch = 0, batch = 891 / 4040
iter = 891, cls_loss (cur) = 0.375034, cls_loss (avg) = 0.401098, lr = 0.010000
iter = 891, accuracy (cur) = 0.880000 (all), 0.869565 (pos), 0.888889 (neg)
iter = 891, accuracy (avg) = 0.813437 (all), 0.799869 (pos), 0.827204 (neg)
data reader: epoch = 0, batch = 892 / 4040
iter = 892, cls_loss (cur) = 0.300672, cls_loss (avg) = 0.400093, lr = 0.010000
iter = 892, accuracy (cur) = 0.900000 (all), 0.833333 (pos), 0.961538 (neg)
iter = 892, accuracy (avg) = 0.814302 (all), 0.800203 (pos), 0.828547 (neg)
data reader: epoch = 0, batch = 893 / 4040
iter = 893, cls_loss (cur) = 0.413223, cls_loss (avg) = 0.400225, lr = 0.010000
iter = 893, accuracy (cur) = 0.820000 (all), 0.821429 (pos), 0.818182 (neg)
iter = 893, accuracy (avg) = 0.814359 (all), 0.800416 (pos), 0.828444 (neg)
data reader: epoch = 0, batch = 894 / 4040
iter = 894, cls_loss (cur) = 0.390934, cls_loss (avg) = 0.400132, lr = 0.010000
iter = 894, accuracy (cur) = 0.780000 (all), 0.727273 (pos), 0.821429 (neg)
iter = 894, accuracy (avg) = 0.814016 (all), 0.799684 (pos), 0.828374 (neg)
data reader: epoch = 0, batch = 895 / 4040
iter = 895, cls_loss (cur) = 0.382550, cls_loss (avg) = 0.399956, lr = 0.010000
iter = 895, accuracy (cur) = 0.800000 (all), 0.800000 (pos), 0.800000 (neg)
iter = 895, accuracy (avg) = 0.813875 (all), 0.799687 (pos), 0.828090 (neg)
data reader: epoch = 0, batch = 896 / 4040
iter = 896, cls_loss (cur) = 0.394760, cls_loss (avg) = 0.399904, lr = 0.010000
iter = 896, accuracy (cur) = 0.820000 (all), 0.900000 (pos), 0.766667 (neg)
iter = 896, accuracy (avg) = 0.813937 (all), 0.800690 (pos), 0.827476 (neg)
data reader: epoch = 0, batch = 897 / 4040
iter = 897, cls_loss (cur) = 0.381609, cls_loss (avg) = 0.399721, lr = 0.010000
iter = 897, accuracy (cur) = 0.820000 (all), 0.884615 (pos), 0.750000 (neg)
iter = 897, accuracy (avg) = 0.813997 (all), 0.801530 (pos), 0.826701 (neg)
data reader: epoch = 0, batch = 898 / 4040
iter = 898, cls_loss (cur) = 0.444182, cls_loss (avg) = 0.400166, lr = 0.010000
iter = 898, accuracy (cur) = 0.760000 (all), 0.741935 (pos), 0.789474 (neg)
iter = 898, accuracy (avg) = 0.813457 (all), 0.800934 (pos), 0.826329 (neg)
data reader: epoch = 0, batch = 899 / 4040
iter = 899, cls_loss (cur) = 0.430271, cls_loss (avg) = 0.400467, lr = 0.010000
iter = 899, accuracy (cur) = 0.820000 (all), 0.842105 (pos), 0.806452 (neg)
iter = 899, accuracy (avg) = 0.813523 (all), 0.801345 (pos), 0.826130 (neg)
data reader: epoch = 0, batch = 900 / 4040
iter = 900, cls_loss (cur) = 0.365468, cls_loss (avg) = 0.400117, lr = 0.010000
iter = 900, accuracy (cur) = 0.920000 (all), 0.964286 (pos), 0.863636 (neg)
iter = 900, accuracy (avg) = 0.814588 (all), 0.802975 (pos), 0.826505 (neg)
data reader: epoch = 0, batch = 901 / 4040
iter = 901, cls_loss (cur) = 0.379007, cls_loss (avg) = 0.399906, lr = 0.010000
iter = 901, accuracy (cur) = 0.800000 (all), 0.818182 (pos), 0.785714 (neg)
iter = 901, accuracy (avg) = 0.814442 (all), 0.803127 (pos), 0.826097 (neg)
data reader: epoch = 0, batch = 902 / 4040
iter = 902, cls_loss (cur) = 0.330915, cls_loss (avg) = 0.399216, lr = 0.010000
iter = 902, accuracy (cur) = 0.880000 (all), 0.900000 (pos), 0.850000 (neg)
iter = 902, accuracy (avg) = 0.815097 (all), 0.804096 (pos), 0.826336 (neg)
data reader: epoch = 0, batch = 903 / 4040
iter = 903, cls_loss (cur) = 0.386000, cls_loss (avg) = 0.399084, lr = 0.010000
iter = 903, accuracy (cur) = 0.880000 (all), 0.863636 (pos), 0.892857 (neg)
iter = 903, accuracy (avg) = 0.815746 (all), 0.804691 (pos), 0.827001 (neg)
data reader: epoch = 0, batch = 904 / 4040
iter = 904, cls_loss (cur) = 0.340153, cls_loss (avg) = 0.398494, lr = 0.010000
iter = 904, accuracy (cur) = 0.880000 (all), 0.818182 (pos), 0.928571 (neg)
iter = 904, accuracy (avg) = 0.816389 (all), 0.804826 (pos), 0.828017 (neg)
data reader: epoch = 0, batch = 905 / 4040
iter = 905, cls_loss (cur) = 0.392754, cls_loss (avg) = 0.398437, lr = 0.010000
iter = 905, accuracy (cur) = 0.800000 (all), 0.652174 (pos), 0.925926 (neg)
iter = 905, accuracy (avg) = 0.816225 (all), 0.803299 (pos), 0.828996 (neg)
data reader: epoch = 0, batch = 906 / 4040
iter = 906, cls_loss (cur) = 0.296035, cls_loss (avg) = 0.397413, lr = 0.010000
iter = 906, accuracy (cur) = 0.920000 (all), 0.888889 (pos), 0.956522 (neg)
iter = 906, accuracy (avg) = 0.817263 (all), 0.804155 (pos), 0.830271 (neg)
data reader: epoch = 0, batch = 907 / 4040
iter = 907, cls_loss (cur) = 0.457452, cls_loss (avg) = 0.398013, lr = 0.010000
iter = 907, accuracy (cur) = 0.720000 (all), 0.578947 (pos), 0.806452 (neg)
iter = 907, accuracy (avg) = 0.816290 (all), 0.801903 (pos), 0.830033 (neg)
data reader: epoch = 0, batch = 908 / 4040
iter = 908, cls_loss (cur) = 0.396702, cls_loss (avg) = 0.398000, lr = 0.010000
iter = 908, accuracy (cur) = 0.820000 (all), 0.842105 (pos), 0.806452 (neg)
iter = 908, accuracy (avg) = 0.816327 (all), 0.802305 (pos), 0.829797 (neg)
data reader: epoch = 0, batch = 909 / 4040
iter = 909, cls_loss (cur) = 0.372269, cls_loss (avg) = 0.397743, lr = 0.010000
iter = 909, accuracy (cur) = 0.820000 (all), 0.619048 (pos), 0.965517 (neg)
iter = 909, accuracy (avg) = 0.816364 (all), 0.800473 (pos), 0.831154 (neg)
data reader: epoch = 0, batch = 910 / 4040
iter = 910, cls_loss (cur) = 0.437205, cls_loss (avg) = 0.398137, lr = 0.010000
iter = 910, accuracy (cur) = 0.780000 (all), 0.806452 (pos), 0.736842 (neg)
iter = 910, accuracy (avg) = 0.816000 (all), 0.800533 (pos), 0.830211 (neg)
data reader: epoch = 0, batch = 911 / 4040
iter = 911, cls_loss (cur) = 0.390748, cls_loss (avg) = 0.398064, lr = 0.010000
iter = 911, accuracy (cur) = 0.820000 (all), 0.880000 (pos), 0.760000 (neg)
iter = 911, accuracy (avg) = 0.816040 (all), 0.801327 (pos), 0.829509 (neg)
data reader: epoch = 0, batch = 912 / 4040
iter = 912, cls_loss (cur) = 0.495692, cls_loss (avg) = 0.399040, lr = 0.010000
iter = 912, accuracy (cur) = 0.760000 (all), 0.740741 (pos), 0.782609 (neg)
iter = 912, accuracy (avg) = 0.815480 (all), 0.800721 (pos), 0.829040 (neg)
data reader: epoch = 0, batch = 913 / 4040
iter = 913, cls_loss (cur) = 0.497580, cls_loss (avg) = 0.400025, lr = 0.010000
iter = 913, accuracy (cur) = 0.780000 (all), 0.833333 (pos), 0.750000 (neg)
iter = 913, accuracy (avg) = 0.815125 (all), 0.801047 (pos), 0.828250 (neg)
data reader: epoch = 0, batch = 914 / 4040
iter = 914, cls_loss (cur) = 0.486088, cls_loss (avg) = 0.400886, lr = 0.010000
iter = 914, accuracy (cur) = 0.720000 (all), 0.681818 (pos), 0.750000 (neg)
iter = 914, accuracy (avg) = 0.814174 (all), 0.799855 (pos), 0.827467 (neg)
data reader: epoch = 0, batch = 915 / 4040
iter = 915, cls_loss (cur) = 0.347411, cls_loss (avg) = 0.400351, lr = 0.010000
iter = 915, accuracy (cur) = 0.880000 (all), 0.818182 (pos), 0.928571 (neg)
iter = 915, accuracy (avg) = 0.814832 (all), 0.800038 (pos), 0.828478 (neg)
data reader: epoch = 0, batch = 916 / 4040
iter = 916, cls_loss (cur) = 0.403087, cls_loss (avg) = 0.400378, lr = 0.010000
iter = 916, accuracy (cur) = 0.820000 (all), 0.750000 (pos), 0.909091 (neg)
iter = 916, accuracy (avg) = 0.814884 (all), 0.799538 (pos), 0.829285 (neg)
data reader: epoch = 0, batch = 917 / 4040
iter = 917, cls_loss (cur) = 0.357598, cls_loss (avg) = 0.399951, lr = 0.010000
iter = 917, accuracy (cur) = 0.860000 (all), 0.833333 (pos), 0.884615 (neg)
iter = 917, accuracy (avg) = 0.815335 (all), 0.799876 (pos), 0.829838 (neg)
data reader: epoch = 0, batch = 918 / 4040
iter = 918, cls_loss (cur) = 0.297391, cls_loss (avg) = 0.398925, lr = 0.010000
iter = 918, accuracy (cur) = 0.920000 (all), 0.884615 (pos), 0.958333 (neg)
iter = 918, accuracy (avg) = 0.816382 (all), 0.800723 (pos), 0.831123 (neg)
data reader: epoch = 0, batch = 919 / 4040
iter = 919, cls_loss (cur) = 0.342118, cls_loss (avg) = 0.398357, lr = 0.010000
iter = 919, accuracy (cur) = 0.820000 (all), 0.884615 (pos), 0.750000 (neg)
iter = 919, accuracy (avg) = 0.816418 (all), 0.801562 (pos), 0.830312 (neg)
data reader: epoch = 0, batch = 920 / 4040
iter = 920, cls_loss (cur) = 0.430883, cls_loss (avg) = 0.398682, lr = 0.010000
iter = 920, accuracy (cur) = 0.760000 (all), 0.904762 (pos), 0.655172 (neg)
iter = 920, accuracy (avg) = 0.815854 (all), 0.802594 (pos), 0.828560 (neg)
data reader: epoch = 0, batch = 921 / 4040
iter = 921, cls_loss (cur) = 0.320387, cls_loss (avg) = 0.397899, lr = 0.010000
iter = 921, accuracy (cur) = 0.880000 (all), 0.962963 (pos), 0.782609 (neg)
iter = 921, accuracy (avg) = 0.816495 (all), 0.804198 (pos), 0.828101 (neg)
data reader: epoch = 0, batch = 922 / 4040
iter = 922, cls_loss (cur) = 0.394431, cls_loss (avg) = 0.397865, lr = 0.010000
iter = 922, accuracy (cur) = 0.740000 (all), 0.821429 (pos), 0.636364 (neg)
iter = 922, accuracy (avg) = 0.815730 (all), 0.804370 (pos), 0.826183 (neg)
data reader: epoch = 0, batch = 923 / 4040
iter = 923, cls_loss (cur) = 0.425217, cls_loss (avg) = 0.398138, lr = 0.010000
iter = 923, accuracy (cur) = 0.780000 (all), 0.750000 (pos), 0.818182 (neg)
iter = 923, accuracy (avg) = 0.815373 (all), 0.803827 (pos), 0.826103 (neg)
data reader: epoch = 0, batch = 924 / 4040
iter = 924, cls_loss (cur) = 0.356817, cls_loss (avg) = 0.397725, lr = 0.010000
iter = 924, accuracy (cur) = 0.880000 (all), 0.909091 (pos), 0.857143 (neg)
iter = 924, accuracy (avg) = 0.816019 (all), 0.804879 (pos), 0.826414 (neg)
data reader: epoch = 0, batch = 925 / 4040
iter = 925, cls_loss (cur) = 0.439838, cls_loss (avg) = 0.398146, lr = 0.010000
iter = 925, accuracy (cur) = 0.880000 (all), 0.818182 (pos), 0.928571 (neg)
iter = 925, accuracy (avg) = 0.816659 (all), 0.805012 (pos), 0.827435 (neg)
data reader: epoch = 0, batch = 926 / 4040
iter = 926, cls_loss (cur) = 0.296769, cls_loss (avg) = 0.397132, lr = 0.010000
iter = 926, accuracy (cur) = 0.880000 (all), 0.827586 (pos), 0.952381 (neg)
iter = 926, accuracy (avg) = 0.817292 (all), 0.805238 (pos), 0.828685 (neg)
data reader: epoch = 0, batch = 927 / 4040
iter = 927, cls_loss (cur) = 0.388303, cls_loss (avg) = 0.397044, lr = 0.010000
iter = 927, accuracy (cur) = 0.820000 (all), 0.800000 (pos), 0.840000 (neg)
iter = 927, accuracy (avg) = 0.817319 (all), 0.805186 (pos), 0.828798 (neg)
data reader: epoch = 0, batch = 928 / 4040
iter = 928, cls_loss (cur) = 0.422251, cls_loss (avg) = 0.397296, lr = 0.010000
iter = 928, accuracy (cur) = 0.760000 (all), 0.842105 (pos), 0.709677 (neg)
iter = 928, accuracy (avg) = 0.816746 (all), 0.805555 (pos), 0.827607 (neg)
data reader: epoch = 0, batch = 929 / 4040
iter = 929, cls_loss (cur) = 0.361382, cls_loss (avg) = 0.396937, lr = 0.010000
iter = 929, accuracy (cur) = 0.780000 (all), 0.869565 (pos), 0.703704 (neg)
iter = 929, accuracy (avg) = 0.816379 (all), 0.806195 (pos), 0.826368 (neg)
data reader: epoch = 0, batch = 930 / 4040
iter = 930, cls_loss (cur) = 0.529567, cls_loss (avg) = 0.398263, lr = 0.010000
iter = 930, accuracy (cur) = 0.720000 (all), 0.666667 (pos), 0.782609 (neg)
iter = 930, accuracy (avg) = 0.815415 (all), 0.804800 (pos), 0.825930 (neg)
data reader: epoch = 0, batch = 931 / 4040
iter = 931, cls_loss (cur) = 0.365019, cls_loss (avg) = 0.397931, lr = 0.010000
iter = 931, accuracy (cur) = 0.820000 (all), 0.823529 (pos), 0.812500 (neg)
iter = 931, accuracy (avg) = 0.815461 (all), 0.804987 (pos), 0.825796 (neg)
data reader: epoch = 0, batch = 932 / 4040
iter = 932, cls_loss (cur) = 0.339951, cls_loss (avg) = 0.397351, lr = 0.010000
iter = 932, accuracy (cur) = 0.840000 (all), 0.846154 (pos), 0.833333 (neg)
iter = 932, accuracy (avg) = 0.815706 (all), 0.805399 (pos), 0.825871 (neg)
data reader: epoch = 0, batch = 933 / 4040
iter = 933, cls_loss (cur) = 0.332455, cls_loss (avg) = 0.396702, lr = 0.010000
iter = 933, accuracy (cur) = 0.880000 (all), 0.880000 (pos), 0.880000 (neg)
iter = 933, accuracy (avg) = 0.816349 (all), 0.806145 (pos), 0.826412 (neg)
data reader: epoch = 0, batch = 934 / 4040
iter = 934, cls_loss (cur) = 0.336575, cls_loss (avg) = 0.396101, lr = 0.010000
iter = 934, accuracy (cur) = 0.900000 (all), 1.000000 (pos), 0.772727 (neg)
iter = 934, accuracy (avg) = 0.817186 (all), 0.808083 (pos), 0.825876 (neg)
data reader: epoch = 0, batch = 935 / 4040
iter = 935, cls_loss (cur) = 0.430220, cls_loss (avg) = 0.396442, lr = 0.010000
iter = 935, accuracy (cur) = 0.820000 (all), 0.875000 (pos), 0.769231 (neg)
iter = 935, accuracy (avg) = 0.817214 (all), 0.808752 (pos), 0.825309 (neg)
data reader: epoch = 0, batch = 936 / 4040
iter = 936, cls_loss (cur) = 0.449376, cls_loss (avg) = 0.396971, lr = 0.010000
iter = 936, accuracy (cur) = 0.800000 (all), 0.833333 (pos), 0.781250 (neg)
iter = 936, accuracy (avg) = 0.817042 (all), 0.808998 (pos), 0.824868 (neg)
data reader: epoch = 0, batch = 937 / 4040
iter = 937, cls_loss (cur) = 0.374196, cls_loss (avg) = 0.396744, lr = 0.010000
iter = 937, accuracy (cur) = 0.860000 (all), 0.894737 (pos), 0.838710 (neg)
iter = 937, accuracy (avg) = 0.817471 (all), 0.809856 (pos), 0.825007 (neg)
data reader: epoch = 0, batch = 938 / 4040
iter = 938, cls_loss (cur) = 0.420449, cls_loss (avg) = 0.396981, lr = 0.010000
iter = 938, accuracy (cur) = 0.820000 (all), 0.869565 (pos), 0.777778 (neg)
iter = 938, accuracy (avg) = 0.817496 (all), 0.810453 (pos), 0.824535 (neg)
data reader: epoch = 0, batch = 939 / 4040
iter = 939, cls_loss (cur) = 0.400460, cls_loss (avg) = 0.397015, lr = 0.010000
iter = 939, accuracy (cur) = 0.840000 (all), 0.900000 (pos), 0.800000 (neg)
iter = 939, accuracy (avg) = 0.817722 (all), 0.811348 (pos), 0.824289 (neg)
data reader: epoch = 0, batch = 940 / 4040
iter = 940, cls_loss (cur) = 0.336919, cls_loss (avg) = 0.396414, lr = 0.010000
iter = 940, accuracy (cur) = 0.840000 (all), 0.760000 (pos), 0.920000 (neg)
iter = 940, accuracy (avg) = 0.817944 (all), 0.810835 (pos), 0.825246 (neg)
data reader: epoch = 0, batch = 941 / 4040
iter = 941, cls_loss (cur) = 0.424406, cls_loss (avg) = 0.396694, lr = 0.010000
iter = 941, accuracy (cur) = 0.860000 (all), 0.777778 (pos), 0.906250 (neg)
iter = 941, accuracy (avg) = 0.818365 (all), 0.810504 (pos), 0.826056 (neg)
data reader: epoch = 0, batch = 942 / 4040
iter = 942, cls_loss (cur) = 0.395647, cls_loss (avg) = 0.396684, lr = 0.010000
iter = 942, accuracy (cur) = 0.760000 (all), 0.619048 (pos), 0.862069 (neg)
iter = 942, accuracy (avg) = 0.817781 (all), 0.808589 (pos), 0.826417 (neg)
data reader: epoch = 0, batch = 943 / 4040
iter = 943, cls_loss (cur) = 0.435817, cls_loss (avg) = 0.397075, lr = 0.010000
iter = 943, accuracy (cur) = 0.780000 (all), 0.730769 (pos), 0.833333 (neg)
iter = 943, accuracy (avg) = 0.817403 (all), 0.807811 (pos), 0.826486 (neg)
data reader: epoch = 0, batch = 944 / 4040
iter = 944, cls_loss (cur) = 0.344624, cls_loss (avg) = 0.396551, lr = 0.010000
iter = 944, accuracy (cur) = 0.840000 (all), 0.750000 (pos), 0.923077 (neg)
iter = 944, accuracy (avg) = 0.817629 (all), 0.807233 (pos), 0.827452 (neg)
data reader: epoch = 0, batch = 945 / 4040
iter = 945, cls_loss (cur) = 0.319550, cls_loss (avg) = 0.395781, lr = 0.010000
iter = 945, accuracy (cur) = 0.860000 (all), 0.846154 (pos), 0.875000 (neg)
iter = 945, accuracy (avg) = 0.818053 (all), 0.807622 (pos), 0.827927 (neg)
data reader: epoch = 0, batch = 946 / 4040
iter = 946, cls_loss (cur) = 0.342087, cls_loss (avg) = 0.395244, lr = 0.010000
iter = 946, accuracy (cur) = 0.920000 (all), 0.880000 (pos), 0.960000 (neg)
iter = 946, accuracy (avg) = 0.819073 (all), 0.808346 (pos), 0.829248 (neg)
data reader: epoch = 0, batch = 947 / 4040
iter = 947, cls_loss (cur) = 0.439543, cls_loss (avg) = 0.395687, lr = 0.010000
iter = 947, accuracy (cur) = 0.760000 (all), 0.700000 (pos), 0.850000 (neg)
iter = 947, accuracy (avg) = 0.818482 (all), 0.807263 (pos), 0.829455 (neg)
data reader: epoch = 0, batch = 948 / 4040
iter = 948, cls_loss (cur) = 0.309929, cls_loss (avg) = 0.394829, lr = 0.010000
iter = 948, accuracy (cur) = 0.840000 (all), 0.851852 (pos), 0.826087 (neg)
iter = 948, accuracy (avg) = 0.818697 (all), 0.807709 (pos), 0.829422 (neg)
data reader: epoch = 0, batch = 949 / 4040
iter = 949, cls_loss (cur) = 0.354428, cls_loss (avg) = 0.394425, lr = 0.010000
iter = 949, accuracy (cur) = 0.800000 (all), 0.880000 (pos), 0.720000 (neg)
iter = 949, accuracy (avg) = 0.818510 (all), 0.808431 (pos), 0.828327 (neg)
data reader: epoch = 0, batch = 950 / 4040
iter = 950, cls_loss (cur) = 0.322077, cls_loss (avg) = 0.393702, lr = 0.010000
iter = 950, accuracy (cur) = 0.900000 (all), 0.964286 (pos), 0.818182 (neg)
iter = 950, accuracy (avg) = 0.819325 (all), 0.809990 (pos), 0.828226 (neg)
data reader: epoch = 0, batch = 951 / 4040
iter = 951, cls_loss (cur) = 0.462097, cls_loss (avg) = 0.394386, lr = 0.010000
iter = 951, accuracy (cur) = 0.800000 (all), 0.894737 (pos), 0.741935 (neg)
iter = 951, accuracy (avg) = 0.819132 (all), 0.810838 (pos), 0.827363 (neg)
data reader: epoch = 0, batch = 952 / 4040
iter = 952, cls_loss (cur) = 0.296578, cls_loss (avg) = 0.393408, lr = 0.010000
iter = 952, accuracy (cur) = 0.880000 (all), 0.962963 (pos), 0.782609 (neg)
iter = 952, accuracy (avg) = 0.819740 (all), 0.812359 (pos), 0.826916 (neg)
data reader: epoch = 0, batch = 953 / 4040
iter = 953, cls_loss (cur) = 0.395624, cls_loss (avg) = 0.393430, lr = 0.010000
iter = 953, accuracy (cur) = 0.800000 (all), 0.954545 (pos), 0.678571 (neg)
iter = 953, accuracy (avg) = 0.819543 (all), 0.813781 (pos), 0.825432 (neg)
data reader: epoch = 0, batch = 954 / 4040
iter = 954, cls_loss (cur) = 0.326606, cls_loss (avg) = 0.392761, lr = 0.010000
iter = 954, accuracy (cur) = 0.800000 (all), 0.769231 (pos), 0.833333 (neg)
iter = 954, accuracy (avg) = 0.819348 (all), 0.813335 (pos), 0.825511 (neg)
data reader: epoch = 0, batch = 955 / 4040
iter = 955, cls_loss (cur) = 0.532726, cls_loss (avg) = 0.394161, lr = 0.010000
iter = 955, accuracy (cur) = 0.800000 (all), 0.913043 (pos), 0.703704 (neg)
iter = 955, accuracy (avg) = 0.819154 (all), 0.814332 (pos), 0.824293 (neg)
data reader: epoch = 0, batch = 956 / 4040
iter = 956, cls_loss (cur) = 0.377048, cls_loss (avg) = 0.393990, lr = 0.010000
iter = 956, accuracy (cur) = 0.880000 (all), 0.925926 (pos), 0.826087 (neg)
iter = 956, accuracy (avg) = 0.819763 (all), 0.815448 (pos), 0.824311 (neg)
data reader: epoch = 0, batch = 957 / 4040
iter = 957, cls_loss (cur) = 0.398702, cls_loss (avg) = 0.394037, lr = 0.010000
iter = 957, accuracy (cur) = 0.820000 (all), 0.652174 (pos), 0.962963 (neg)
iter = 957, accuracy (avg) = 0.819765 (all), 0.813815 (pos), 0.825697 (neg)
data reader: epoch = 0, batch = 958 / 4040
iter = 958, cls_loss (cur) = 0.441972, cls_loss (avg) = 0.394516, lr = 0.010000
iter = 958, accuracy (cur) = 0.800000 (all), 0.708333 (pos), 0.884615 (neg)
iter = 958, accuracy (avg) = 0.819567 (all), 0.812761 (pos), 0.826287 (neg)
data reader: epoch = 0, batch = 959 / 4040
iter = 959, cls_loss (cur) = 0.381630, cls_loss (avg) = 0.394388, lr = 0.010000
iter = 959, accuracy (cur) = 0.820000 (all), 0.714286 (pos), 0.954545 (neg)
iter = 959, accuracy (avg) = 0.819572 (all), 0.811776 (pos), 0.827569 (neg)
data reader: epoch = 0, batch = 960 / 4040
iter = 960, cls_loss (cur) = 0.400921, cls_loss (avg) = 0.394453, lr = 0.010000
iter = 960, accuracy (cur) = 0.800000 (all), 0.733333 (pos), 0.900000 (neg)
iter = 960, accuracy (avg) = 0.819376 (all), 0.810991 (pos), 0.828294 (neg)
data reader: epoch = 0, batch = 961 / 4040
iter = 961, cls_loss (cur) = 0.579048, cls_loss (avg) = 0.396299, lr = 0.010000
iter = 961, accuracy (cur) = 0.720000 (all), 0.645161 (pos), 0.842105 (neg)
iter = 961, accuracy (avg) = 0.818382 (all), 0.809333 (pos), 0.828432 (neg)
data reader: epoch = 0, batch = 962 / 4040
iter = 962, cls_loss (cur) = 0.348360, cls_loss (avg) = 0.395820, lr = 0.010000
iter = 962, accuracy (cur) = 0.840000 (all), 0.896552 (pos), 0.761905 (neg)
iter = 962, accuracy (avg) = 0.818598 (all), 0.810205 (pos), 0.827766 (neg)
data reader: epoch = 0, batch = 963 / 4040
iter = 963, cls_loss (cur) = 0.495301, cls_loss (avg) = 0.396814, lr = 0.010000
iter = 963, accuracy (cur) = 0.780000 (all), 0.761905 (pos), 0.793103 (neg)
iter = 963, accuracy (avg) = 0.818212 (all), 0.809722 (pos), 0.827420 (neg)
data reader: epoch = 0, batch = 964 / 4040
iter = 964, cls_loss (cur) = 0.390337, cls_loss (avg) = 0.396750, lr = 0.010000
iter = 964, accuracy (cur) = 0.800000 (all), 0.888889 (pos), 0.695652 (neg)
iter = 964, accuracy (avg) = 0.818030 (all), 0.810514 (pos), 0.826102 (neg)
data reader: epoch = 0, batch = 965 / 4040
iter = 965, cls_loss (cur) = 0.490275, cls_loss (avg) = 0.397685, lr = 0.010000
iter = 965, accuracy (cur) = 0.760000 (all), 0.703704 (pos), 0.826087 (neg)
iter = 965, accuracy (avg) = 0.817450 (all), 0.809446 (pos), 0.826102 (neg)
data reader: epoch = 0, batch = 966 / 4040
iter = 966, cls_loss (cur) = 0.409598, cls_loss (avg) = 0.397804, lr = 0.010000
iter = 966, accuracy (cur) = 0.780000 (all), 0.900000 (pos), 0.700000 (neg)
iter = 966, accuracy (avg) = 0.817075 (all), 0.810351 (pos), 0.824841 (neg)
data reader: epoch = 0, batch = 967 / 4040
iter = 967, cls_loss (cur) = 0.482556, cls_loss (avg) = 0.398651, lr = 0.010000
iter = 967, accuracy (cur) = 0.780000 (all), 0.863636 (pos), 0.714286 (neg)
iter = 967, accuracy (avg) = 0.816705 (all), 0.810884 (pos), 0.823735 (neg)
data reader: epoch = 0, batch = 968 / 4040
iter = 968, cls_loss (cur) = 0.455640, cls_loss (avg) = 0.399221, lr = 0.010000
iter = 968, accuracy (cur) = 0.760000 (all), 0.714286 (pos), 0.818182 (neg)
iter = 968, accuracy (avg) = 0.816138 (all), 0.809918 (pos), 0.823680 (neg)
data reader: epoch = 0, batch = 969 / 4040
iter = 969, cls_loss (cur) = 0.397194, cls_loss (avg) = 0.399201, lr = 0.010000
iter = 969, accuracy (cur) = 0.780000 (all), 0.846154 (pos), 0.708333 (neg)
iter = 969, accuracy (avg) = 0.815776 (all), 0.810281 (pos), 0.822526 (neg)
data reader: epoch = 0, batch = 970 / 4040
iter = 970, cls_loss (cur) = 0.387689, cls_loss (avg) = 0.399086, lr = 0.010000
iter = 970, accuracy (cur) = 0.820000 (all), 0.826087 (pos), 0.814815 (neg)
iter = 970, accuracy (avg) = 0.815818 (all), 0.810439 (pos), 0.822449 (neg)
data reader: epoch = 0, batch = 971 / 4040
iter = 971, cls_loss (cur) = 0.397686, cls_loss (avg) = 0.399072, lr = 0.010000
iter = 971, accuracy (cur) = 0.800000 (all), 0.772727 (pos), 0.821429 (neg)
iter = 971, accuracy (avg) = 0.815660 (all), 0.810062 (pos), 0.822439 (neg)
data reader: epoch = 0, batch = 972 / 4040
iter = 972, cls_loss (cur) = 0.376083, cls_loss (avg) = 0.398842, lr = 0.010000
iter = 972, accuracy (cur) = 0.840000 (all), 0.840000 (pos), 0.840000 (neg)
iter = 972, accuracy (avg) = 0.815904 (all), 0.810361 (pos), 0.822615 (neg)
data reader: epoch = 0, batch = 973 / 4040
iter = 973, cls_loss (cur) = 0.416315, cls_loss (avg) = 0.399017, lr = 0.010000
iter = 973, accuracy (cur) = 0.840000 (all), 0.896552 (pos), 0.761905 (neg)
iter = 973, accuracy (avg) = 0.816145 (all), 0.811223 (pos), 0.822008 (neg)
data reader: epoch = 0, batch = 974 / 4040
iter = 974, cls_loss (cur) = 0.309455, cls_loss (avg) = 0.398121, lr = 0.010000
iter = 974, accuracy (cur) = 0.900000 (all), 0.928571 (pos), 0.863636 (neg)
iter = 974, accuracy (avg) = 0.816983 (all), 0.812396 (pos), 0.822424 (neg)
data reader: epoch = 0, batch = 975 / 4040
iter = 975, cls_loss (cur) = 0.491232, cls_loss (avg) = 0.399052, lr = 0.010000
iter = 975, accuracy (cur) = 0.760000 (all), 0.650000 (pos), 0.833333 (neg)
iter = 975, accuracy (avg) = 0.816413 (all), 0.810772 (pos), 0.822533 (neg)
data reader: epoch = 0, batch = 976 / 4040
iter = 976, cls_loss (cur) = 0.500392, cls_loss (avg) = 0.400066, lr = 0.010000
iter = 976, accuracy (cur) = 0.760000 (all), 0.821429 (pos), 0.681818 (neg)
iter = 976, accuracy (avg) = 0.815849 (all), 0.810879 (pos), 0.821126 (neg)
data reader: epoch = 0, batch = 977 / 4040
iter = 977, cls_loss (cur) = 0.344327, cls_loss (avg) = 0.399508, lr = 0.010000
iter = 977, accuracy (cur) = 0.880000 (all), 0.892857 (pos), 0.863636 (neg)
iter = 977, accuracy (avg) = 0.816491 (all), 0.811699 (pos), 0.821551 (neg)
data reader: epoch = 0, batch = 978 / 4040
iter = 978, cls_loss (cur) = 0.331063, cls_loss (avg) = 0.398824, lr = 0.010000
iter = 978, accuracy (cur) = 0.840000 (all), 0.695652 (pos), 0.962963 (neg)
iter = 978, accuracy (avg) = 0.816726 (all), 0.810538 (pos), 0.822965 (neg)
data reader: epoch = 0, batch = 979 / 4040
iter = 979, cls_loss (cur) = 0.396514, cls_loss (avg) = 0.398801, lr = 0.010000
iter = 979, accuracy (cur) = 0.820000 (all), 0.793103 (pos), 0.857143 (neg)
iter = 979, accuracy (avg) = 0.816759 (all), 0.810364 (pos), 0.823307 (neg)
data reader: epoch = 0, batch = 980 / 4040
iter = 980, cls_loss (cur) = 0.333476, cls_loss (avg) = 0.398148, lr = 0.010000
iter = 980, accuracy (cur) = 0.860000 (all), 0.888889 (pos), 0.826087 (neg)
iter = 980, accuracy (avg) = 0.817191 (all), 0.811149 (pos), 0.823335 (neg)
data reader: epoch = 0, batch = 981 / 4040
iter = 981, cls_loss (cur) = 0.454918, cls_loss (avg) = 0.398715, lr = 0.010000
iter = 981, accuracy (cur) = 0.780000 (all), 0.761905 (pos), 0.793103 (neg)
iter = 981, accuracy (avg) = 0.816819 (all), 0.810657 (pos), 0.823032 (neg)
data reader: epoch = 0, batch = 982 / 4040
iter = 982, cls_loss (cur) = 0.482096, cls_loss (avg) = 0.399549, lr = 0.010000
iter = 982, accuracy (cur) = 0.780000 (all), 0.708333 (pos), 0.846154 (neg)
iter = 982, accuracy (avg) = 0.816451 (all), 0.809633 (pos), 0.823264 (neg)
data reader: epoch = 0, batch = 983 / 4040
iter = 983, cls_loss (cur) = 0.471534, cls_loss (avg) = 0.400269, lr = 0.010000
iter = 983, accuracy (cur) = 0.760000 (all), 0.750000 (pos), 0.769231 (neg)
iter = 983, accuracy (avg) = 0.815886 (all), 0.809037 (pos), 0.822723 (neg)
data reader: epoch = 0, batch = 984 / 4040
iter = 984, cls_loss (cur) = 0.459431, cls_loss (avg) = 0.400860, lr = 0.010000
iter = 984, accuracy (cur) = 0.760000 (all), 0.741935 (pos), 0.789474 (neg)
iter = 984, accuracy (avg) = 0.815327 (all), 0.808366 (pos), 0.822391 (neg)
data reader: epoch = 0, batch = 985 / 4040
iter = 985, cls_loss (cur) = 0.337574, cls_loss (avg) = 0.400228, lr = 0.010000
iter = 985, accuracy (cur) = 0.860000 (all), 0.875000 (pos), 0.852941 (neg)
iter = 985, accuracy (avg) = 0.815774 (all), 0.809032 (pos), 0.822696 (neg)
data reader: epoch = 0, batch = 986 / 4040
iter = 986, cls_loss (cur) = 0.420790, cls_loss (avg) = 0.400433, lr = 0.010000
iter = 986, accuracy (cur) = 0.780000 (all), 0.730769 (pos), 0.833333 (neg)
iter = 986, accuracy (avg) = 0.815416 (all), 0.808250 (pos), 0.822803 (neg)
data reader: epoch = 0, batch = 987 / 4040
iter = 987, cls_loss (cur) = 0.361486, cls_loss (avg) = 0.400044, lr = 0.010000
iter = 987, accuracy (cur) = 0.880000 (all), 0.958333 (pos), 0.807692 (neg)
iter = 987, accuracy (avg) = 0.816062 (all), 0.809751 (pos), 0.822651 (neg)
data reader: epoch = 0, batch = 988 / 4040
iter = 988, cls_loss (cur) = 0.379445, cls_loss (avg) = 0.399838, lr = 0.010000
iter = 988, accuracy (cur) = 0.800000 (all), 0.840000 (pos), 0.760000 (neg)
iter = 988, accuracy (avg) = 0.815902 (all), 0.810053 (pos), 0.822025 (neg)
data reader: epoch = 0, batch = 989 / 4040
iter = 989, cls_loss (cur) = 0.469465, cls_loss (avg) = 0.400534, lr = 0.010000
iter = 989, accuracy (cur) = 0.780000 (all), 0.782609 (pos), 0.777778 (neg)
iter = 989, accuracy (avg) = 0.815543 (all), 0.809779 (pos), 0.821582 (neg)
data reader: epoch = 0, batch = 990 / 4040
iter = 990, cls_loss (cur) = 0.314054, cls_loss (avg) = 0.399669, lr = 0.010000
iter = 990, accuracy (cur) = 0.880000 (all), 0.791667 (pos), 0.961538 (neg)
iter = 990, accuracy (avg) = 0.816187 (all), 0.809598 (pos), 0.822982 (neg)
data reader: epoch = 0, batch = 991 / 4040
iter = 991, cls_loss (cur) = 0.478623, cls_loss (avg) = 0.400459, lr = 0.010000
iter = 991, accuracy (cur) = 0.740000 (all), 0.666667 (pos), 0.807692 (neg)
iter = 991, accuracy (avg) = 0.815425 (all), 0.808168 (pos), 0.822829 (neg)
data reader: epoch = 0, batch = 992 / 4040
iter = 992, cls_loss (cur) = 0.350609, cls_loss (avg) = 0.399960, lr = 0.010000
iter = 992, accuracy (cur) = 0.820000 (all), 0.807692 (pos), 0.833333 (neg)
iter = 992, accuracy (avg) = 0.815471 (all), 0.808164 (pos), 0.822934 (neg)
data reader: epoch = 0, batch = 993 / 4040
iter = 993, cls_loss (cur) = 0.337409, cls_loss (avg) = 0.399335, lr = 0.010000
iter = 993, accuracy (cur) = 0.900000 (all), 0.923077 (pos), 0.875000 (neg)
iter = 993, accuracy (avg) = 0.816316 (all), 0.809313 (pos), 0.823455 (neg)
data reader: epoch = 0, batch = 994 / 4040
iter = 994, cls_loss (cur) = 0.471860, cls_loss (avg) = 0.400060, lr = 0.010000
iter = 994, accuracy (cur) = 0.800000 (all), 0.720000 (pos), 0.880000 (neg)
iter = 994, accuracy (avg) = 0.816153 (all), 0.808420 (pos), 0.824020 (neg)
data reader: epoch = 0, batch = 995 / 4040
iter = 995, cls_loss (cur) = 0.459150, cls_loss (avg) = 0.400651, lr = 0.010000
iter = 995, accuracy (cur) = 0.740000 (all), 0.772727 (pos), 0.714286 (neg)
iter = 995, accuracy (avg) = 0.815392 (all), 0.808063 (pos), 0.822923 (neg)
data reader: epoch = 0, batch = 996 / 4040
iter = 996, cls_loss (cur) = 0.433077, cls_loss (avg) = 0.400975, lr = 0.010000
iter = 996, accuracy (cur) = 0.820000 (all), 0.821429 (pos), 0.818182 (neg)
iter = 996, accuracy (avg) = 0.815438 (all), 0.808196 (pos), 0.822876 (neg)
data reader: epoch = 0, batch = 997 / 4040
iter = 997, cls_loss (cur) = 0.300164, cls_loss (avg) = 0.399967, lr = 0.010000
iter = 997, accuracy (cur) = 0.880000 (all), 0.809524 (pos), 0.931034 (neg)
iter = 997, accuracy (avg) = 0.816083 (all), 0.808210 (pos), 0.823957 (neg)
data reader: epoch = 0, batch = 998 / 4040
iter = 998, cls_loss (cur) = 0.331109, cls_loss (avg) = 0.399279, lr = 0.010000
iter = 998, accuracy (cur) = 0.900000 (all), 0.909091 (pos), 0.892857 (neg)
iter = 998, accuracy (avg) = 0.816923 (all), 0.809218 (pos), 0.824646 (neg)
data reader: epoch = 0, batch = 999 / 4040
iter = 999, cls_loss (cur) = 0.397014, cls_loss (avg) = 0.399256, lr = 0.010000
iter = 999, accuracy (cur) = 0.820000 (all), 0.962963 (pos), 0.652174 (neg)
iter = 999, accuracy (avg) = 0.816953 (all), 0.810756 (pos), 0.822921 (neg)
data reader: epoch = 0, batch = 1000 / 4040
iter = 1000, cls_loss (cur) = 0.351667, cls_loss (avg) = 0.398780, lr = 0.010000
iter = 1000, accuracy (cur) = 0.780000 (all), 0.720000 (pos), 0.840000 (neg)
iter = 1000, accuracy (avg) = 0.816584 (all), 0.809848 (pos), 0.823092 (neg)
data reader: epoch = 0, batch = 1001 / 4040
iter = 1001, cls_loss (cur) = 0.423069, cls_loss (avg) = 0.399023, lr = 0.010000
iter = 1001, accuracy (cur) = 0.800000 (all), 0.791667 (pos), 0.807692 (neg)
iter = 1001, accuracy (avg) = 0.816418 (all), 0.809666 (pos), 0.822938 (neg)
data reader: epoch = 0, batch = 1002 / 4040
iter = 1002, cls_loss (cur) = 0.326699, cls_loss (avg) = 0.398300, lr = 0.010000
iter = 1002, accuracy (cur) = 0.840000 (all), 0.888889 (pos), 0.782609 (neg)
iter = 1002, accuracy (avg) = 0.816654 (all), 0.810459 (pos), 0.822535 (neg)
data reader: epoch = 0, batch = 1003 / 4040
iter = 1003, cls_loss (cur) = 0.517119, cls_loss (avg) = 0.399488, lr = 0.010000
iter = 1003, accuracy (cur) = 0.760000 (all), 0.739130 (pos), 0.777778 (neg)
iter = 1003, accuracy (avg) = 0.816087 (all), 0.809745 (pos), 0.822087 (neg)
data reader: epoch = 0, batch = 1004 / 4040
iter = 1004, cls_loss (cur) = 0.522899, cls_loss (avg) = 0.400722, lr = 0.010000
iter = 1004, accuracy (cur) = 0.720000 (all), 0.666667 (pos), 0.769231 (neg)
iter = 1004, accuracy (avg) = 0.815126 (all), 0.808315 (pos), 0.821559 (neg)
data reader: epoch = 0, batch = 1005 / 4040
iter = 1005, cls_loss (cur) = 0.364137, cls_loss (avg) = 0.400356, lr = 0.010000
iter = 1005, accuracy (cur) = 0.840000 (all), 0.884615 (pos), 0.791667 (neg)
iter = 1005, accuracy (avg) = 0.815375 (all), 0.809078 (pos), 0.821260 (neg)
data reader: epoch = 0, batch = 1006 / 4040
iter = 1006, cls_loss (cur) = 0.360049, cls_loss (avg) = 0.399953, lr = 0.010000
iter = 1006, accuracy (cur) = 0.860000 (all), 0.884615 (pos), 0.833333 (neg)
iter = 1006, accuracy (avg) = 0.815821 (all), 0.809833 (pos), 0.821381 (neg)
data reader: epoch = 0, batch = 1007 / 4040
iter = 1007, cls_loss (cur) = 0.406940, cls_loss (avg) = 0.400023, lr = 0.010000
iter = 1007, accuracy (cur) = 0.840000 (all), 0.806452 (pos), 0.894737 (neg)
iter = 1007, accuracy (avg) = 0.816063 (all), 0.809799 (pos), 0.822114 (neg)
data reader: epoch = 0, batch = 1008 / 4040
iter = 1008, cls_loss (cur) = 0.411506, cls_loss (avg) = 0.400138, lr = 0.010000
iter = 1008, accuracy (cur) = 0.840000 (all), 0.793103 (pos), 0.904762 (neg)
iter = 1008, accuracy (avg) = 0.816303 (all), 0.809632 (pos), 0.822941 (neg)
data reader: epoch = 0, batch = 1009 / 4040
iter = 1009, cls_loss (cur) = 0.362574, cls_loss (avg) = 0.399762, lr = 0.010000
iter = 1009, accuracy (cur) = 0.840000 (all), 0.750000 (pos), 0.900000 (neg)
iter = 1009, accuracy (avg) = 0.816539 (all), 0.809036 (pos), 0.823711 (neg)
data reader: epoch = 0, batch = 1010 / 4040
iter = 1010, cls_loss (cur) = 0.411705, cls_loss (avg) = 0.399882, lr = 0.010000
iter = 1010, accuracy (cur) = 0.800000 (all), 0.913043 (pos), 0.703704 (neg)
iter = 1010, accuracy (avg) = 0.816374 (all), 0.810076 (pos), 0.822511 (neg)
data reader: epoch = 0, batch = 1011 / 4040
iter = 1011, cls_loss (cur) = 0.367065, cls_loss (avg) = 0.399553, lr = 0.010000
iter = 1011, accuracy (cur) = 0.860000 (all), 0.896552 (pos), 0.809524 (neg)
iter = 1011, accuracy (avg) = 0.816810 (all), 0.810941 (pos), 0.822381 (neg)
data reader: epoch = 0, batch = 1012 / 4040
iter = 1012, cls_loss (cur) = 0.350175, cls_loss (avg) = 0.399060, lr = 0.010000
iter = 1012, accuracy (cur) = 0.860000 (all), 0.954545 (pos), 0.785714 (neg)
iter = 1012, accuracy (avg) = 0.817242 (all), 0.812377 (pos), 0.822015 (neg)
data reader: epoch = 0, batch = 1013 / 4040
iter = 1013, cls_loss (cur) = 0.369798, cls_loss (avg) = 0.398767, lr = 0.010000
iter = 1013, accuracy (cur) = 0.840000 (all), 0.800000 (pos), 0.880000 (neg)
iter = 1013, accuracy (avg) = 0.817470 (all), 0.812253 (pos), 0.822594 (neg)
data reader: epoch = 0, batch = 1014 / 4040
iter = 1014, cls_loss (cur) = 0.367546, cls_loss (avg) = 0.398455, lr = 0.010000
iter = 1014, accuracy (cur) = 0.800000 (all), 0.833333 (pos), 0.769231 (neg)
iter = 1014, accuracy (avg) = 0.817295 (all), 0.812464 (pos), 0.822061 (neg)
data reader: epoch = 0, batch = 1015 / 4040
iter = 1015, cls_loss (cur) = 0.383433, cls_loss (avg) = 0.398305, lr = 0.010000
iter = 1015, accuracy (cur) = 0.900000 (all), 0.966667 (pos), 0.800000 (neg)
iter = 1015, accuracy (avg) = 0.818122 (all), 0.814006 (pos), 0.821840 (neg)
data reader: epoch = 0, batch = 1016 / 4040
iter = 1016, cls_loss (cur) = 0.351815, cls_loss (avg) = 0.397840, lr = 0.010000
iter = 1016, accuracy (cur) = 0.800000 (all), 0.863636 (pos), 0.750000 (neg)
iter = 1016, accuracy (avg) = 0.817941 (all), 0.814502 (pos), 0.821122 (neg)
data reader: epoch = 0, batch = 1017 / 4040
iter = 1017, cls_loss (cur) = 0.432178, cls_loss (avg) = 0.398183, lr = 0.010000
iter = 1017, accuracy (cur) = 0.780000 (all), 0.800000 (pos), 0.771429 (neg)
iter = 1017, accuracy (avg) = 0.817562 (all), 0.814357 (pos), 0.820625 (neg)
data reader: epoch = 0, batch = 1018 / 4040
iter = 1018, cls_loss (cur) = 0.333058, cls_loss (avg) = 0.397532, lr = 0.010000
iter = 1018, accuracy (cur) = 0.880000 (all), 0.833333 (pos), 0.950000 (neg)
iter = 1018, accuracy (avg) = 0.818186 (all), 0.814547 (pos), 0.821919 (neg)
data reader: epoch = 0, batch = 1019 / 4040
iter = 1019, cls_loss (cur) = 0.437166, cls_loss (avg) = 0.397928, lr = 0.010000
iter = 1019, accuracy (cur) = 0.780000 (all), 0.652174 (pos), 0.888889 (neg)
iter = 1019, accuracy (avg) = 0.817804 (all), 0.812923 (pos), 0.822588 (neg)
data reader: epoch = 0, batch = 1020 / 4040
iter = 1020, cls_loss (cur) = 0.361865, cls_loss (avg) = 0.397567, lr = 0.010000
iter = 1020, accuracy (cur) = 0.820000 (all), 0.689655 (pos), 1.000000 (neg)
iter = 1020, accuracy (avg) = 0.817826 (all), 0.811690 (pos), 0.824362 (neg)
data reader: epoch = 0, batch = 1021 / 4040
iter = 1021, cls_loss (cur) = 0.389464, cls_loss (avg) = 0.397486, lr = 0.010000
iter = 1021, accuracy (cur) = 0.780000 (all), 0.758621 (pos), 0.809524 (neg)
iter = 1021, accuracy (avg) = 0.817448 (all), 0.811160 (pos), 0.824214 (neg)
data reader: epoch = 0, batch = 1022 / 4040
iter = 1022, cls_loss (cur) = 0.483777, cls_loss (avg) = 0.398349, lr = 0.010000
iter = 1022, accuracy (cur) = 0.800000 (all), 0.800000 (pos), 0.800000 (neg)
iter = 1022, accuracy (avg) = 0.817273 (all), 0.811048 (pos), 0.823972 (neg)
data reader: epoch = 0, batch = 1023 / 4040
iter = 1023, cls_loss (cur) = 0.383854, cls_loss (avg) = 0.398204, lr = 0.010000
iter = 1023, accuracy (cur) = 0.820000 (all), 0.758621 (pos), 0.904762 (neg)
iter = 1023, accuracy (avg) = 0.817301 (all), 0.810524 (pos), 0.824780 (neg)
data reader: epoch = 0, batch = 1024 / 4040
iter = 1024, cls_loss (cur) = 0.420372, cls_loss (avg) = 0.398426, lr = 0.010000
iter = 1024, accuracy (cur) = 0.800000 (all), 0.821429 (pos), 0.772727 (neg)
iter = 1024, accuracy (avg) = 0.817128 (all), 0.810633 (pos), 0.824259 (neg)
data reader: epoch = 0, batch = 1025 / 4040
iter = 1025, cls_loss (cur) = 0.450764, cls_loss (avg) = 0.398949, lr = 0.010000
iter = 1025, accuracy (cur) = 0.780000 (all), 0.681818 (pos), 0.857143 (neg)
iter = 1025, accuracy (avg) = 0.816756 (all), 0.809345 (pos), 0.824588 (neg)
data reader: epoch = 0, batch = 1026 / 4040
iter = 1026, cls_loss (cur) = 0.418511, cls_loss (avg) = 0.399145, lr = 0.010000
iter = 1026, accuracy (cur) = 0.920000 (all), 0.960000 (pos), 0.880000 (neg)
iter = 1026, accuracy (avg) = 0.817789 (all), 0.810851 (pos), 0.825142 (neg)
data reader: epoch = 0, batch = 1027 / 4040
iter = 1027, cls_loss (cur) = 0.481507, cls_loss (avg) = 0.399969, lr = 0.010000
iter = 1027, accuracy (cur) = 0.800000 (all), 0.720000 (pos), 0.880000 (neg)
iter = 1027, accuracy (avg) = 0.817611 (all), 0.809943 (pos), 0.825691 (neg)
data reader: epoch = 0, batch = 1028 / 4040
iter = 1028, cls_loss (cur) = 0.381962, cls_loss (avg) = 0.399789, lr = 0.010000
iter = 1028, accuracy (cur) = 0.820000 (all), 0.814815 (pos), 0.826087 (neg)
iter = 1028, accuracy (avg) = 0.817635 (all), 0.809992 (pos), 0.825695 (neg)
data reader: epoch = 0, batch = 1029 / 4040
iter = 1029, cls_loss (cur) = 0.473778, cls_loss (avg) = 0.400529, lr = 0.010000
iter = 1029, accuracy (cur) = 0.760000 (all), 0.772727 (pos), 0.750000 (neg)
iter = 1029, accuracy (avg) = 0.817058 (all), 0.809619 (pos), 0.824938 (neg)
data reader: epoch = 0, batch = 1030 / 4040
iter = 1030, cls_loss (cur) = 0.448565, cls_loss (avg) = 0.401009, lr = 0.010000
iter = 1030, accuracy (cur) = 0.720000 (all), 0.720000 (pos), 0.720000 (neg)
iter = 1030, accuracy (avg) = 0.816088 (all), 0.808723 (pos), 0.823888 (neg)
data reader: epoch = 0, batch = 1031 / 4040
iter = 1031, cls_loss (cur) = 0.403889, cls_loss (avg) = 0.401038, lr = 0.010000
iter = 1031, accuracy (cur) = 0.760000 (all), 0.920000 (pos), 0.600000 (neg)
iter = 1031, accuracy (avg) = 0.815527 (all), 0.809835 (pos), 0.821650 (neg)
data reader: epoch = 0, batch = 1032 / 4040
iter = 1032, cls_loss (cur) = 0.445481, cls_loss (avg) = 0.401482, lr = 0.010000
iter = 1032, accuracy (cur) = 0.840000 (all), 0.925926 (pos), 0.739130 (neg)
iter = 1032, accuracy (avg) = 0.815772 (all), 0.810996 (pos), 0.820824 (neg)
data reader: epoch = 0, batch = 1033 / 4040
iter = 1033, cls_loss (cur) = 0.333954, cls_loss (avg) = 0.400807, lr = 0.010000
iter = 1033, accuracy (cur) = 0.900000 (all), 0.880000 (pos), 0.920000 (neg)
iter = 1033, accuracy (avg) = 0.816614 (all), 0.811686 (pos), 0.821816 (neg)
data reader: epoch = 0, batch = 1034 / 4040
iter = 1034, cls_loss (cur) = 0.408488, cls_loss (avg) = 0.400884, lr = 0.010000
iter = 1034, accuracy (cur) = 0.760000 (all), 0.703704 (pos), 0.826087 (neg)
iter = 1034, accuracy (avg) = 0.816048 (all), 0.810607 (pos), 0.821859 (neg)
data reader: epoch = 0, batch = 1035 / 4040
iter = 1035, cls_loss (cur) = 0.448568, cls_loss (avg) = 0.401360, lr = 0.010000
iter = 1035, accuracy (cur) = 0.800000 (all), 0.833333 (pos), 0.769231 (neg)
iter = 1035, accuracy (avg) = 0.815887 (all), 0.810834 (pos), 0.821333 (neg)
data reader: epoch = 0, batch = 1036 / 4040
iter = 1036, cls_loss (cur) = 0.398332, cls_loss (avg) = 0.401330, lr = 0.010000
iter = 1036, accuracy (cur) = 0.820000 (all), 0.806452 (pos), 0.842105 (neg)
iter = 1036, accuracy (avg) = 0.815928 (all), 0.810790 (pos), 0.821540 (neg)
data reader: epoch = 0, batch = 1037 / 4040
iter = 1037, cls_loss (cur) = 0.409920, cls_loss (avg) = 0.401416, lr = 0.010000
iter = 1037, accuracy (cur) = 0.760000 (all), 0.700000 (pos), 0.800000 (neg)
iter = 1037, accuracy (avg) = 0.815369 (all), 0.809682 (pos), 0.821325 (neg)
data reader: epoch = 0, batch = 1038 / 4040
iter = 1038, cls_loss (cur) = 0.409275, cls_loss (avg) = 0.401495, lr = 0.010000
iter = 1038, accuracy (cur) = 0.760000 (all), 0.681818 (pos), 0.821429 (neg)
iter = 1038, accuracy (avg) = 0.814815 (all), 0.808404 (pos), 0.821326 (neg)
data reader: epoch = 0, batch = 1039 / 4040
iter = 1039, cls_loss (cur) = 0.436916, cls_loss (avg) = 0.401849, lr = 0.010000
iter = 1039, accuracy (cur) = 0.820000 (all), 0.750000 (pos), 0.866667 (neg)
iter = 1039, accuracy (avg) = 0.814867 (all), 0.807819 (pos), 0.821779 (neg)
data reader: epoch = 0, batch = 1040 / 4040
iter = 1040, cls_loss (cur) = 0.472098, cls_loss (avg) = 0.402551, lr = 0.010000
iter = 1040, accuracy (cur) = 0.760000 (all), 0.640000 (pos), 0.880000 (neg)
iter = 1040, accuracy (avg) = 0.814319 (all), 0.806141 (pos), 0.822362 (neg)
data reader: epoch = 0, batch = 1041 / 4040
iter = 1041, cls_loss (cur) = 0.283204, cls_loss (avg) = 0.401358, lr = 0.010000
iter = 1041, accuracy (cur) = 0.900000 (all), 0.906250 (pos), 0.888889 (neg)
iter = 1041, accuracy (avg) = 0.815175 (all), 0.807142 (pos), 0.823027 (neg)
data reader: epoch = 0, batch = 1042 / 4040
iter = 1042, cls_loss (cur) = 0.428218, cls_loss (avg) = 0.401627, lr = 0.010000
iter = 1042, accuracy (cur) = 0.740000 (all), 0.760000 (pos), 0.720000 (neg)
iter = 1042, accuracy (avg) = 0.814424 (all), 0.806671 (pos), 0.821997 (neg)
data reader: epoch = 0, batch = 1043 / 4040
iter = 1043, cls_loss (cur) = 0.392079, cls_loss (avg) = 0.401531, lr = 0.010000
iter = 1043, accuracy (cur) = 0.820000 (all), 0.928571 (pos), 0.681818 (neg)
iter = 1043, accuracy (avg) = 0.814479 (all), 0.807890 (pos), 0.820595 (neg)
data reader: epoch = 0, batch = 1044 / 4040
iter = 1044, cls_loss (cur) = 0.384833, cls_loss (avg) = 0.401364, lr = 0.010000
iter = 1044, accuracy (cur) = 0.860000 (all), 0.892857 (pos), 0.818182 (neg)
iter = 1044, accuracy (avg) = 0.814935 (all), 0.808740 (pos), 0.820571 (neg)
data reader: epoch = 0, batch = 1045 / 4040
iter = 1045, cls_loss (cur) = 0.350258, cls_loss (avg) = 0.400853, lr = 0.010000
iter = 1045, accuracy (cur) = 0.900000 (all), 0.928571 (pos), 0.863636 (neg)
iter = 1045, accuracy (avg) = 0.815785 (all), 0.809938 (pos), 0.821001 (neg)
data reader: epoch = 0, batch = 1046 / 4040
iter = 1046, cls_loss (cur) = 0.402020, cls_loss (avg) = 0.400865, lr = 0.010000
iter = 1046, accuracy (cur) = 0.800000 (all), 0.956522 (pos), 0.666667 (neg)
iter = 1046, accuracy (avg) = 0.815627 (all), 0.811404 (pos), 0.819458 (neg)
data reader: epoch = 0, batch = 1047 / 4040
iter = 1047, cls_loss (cur) = 0.476681, cls_loss (avg) = 0.401623, lr = 0.010000
iter = 1047, accuracy (cur) = 0.780000 (all), 0.814815 (pos), 0.739130 (neg)
iter = 1047, accuracy (avg) = 0.815271 (all), 0.811438 (pos), 0.818655 (neg)
data reader: epoch = 0, batch = 1048 / 4040
iter = 1048, cls_loss (cur) = 0.366285, cls_loss (avg) = 0.401269, lr = 0.010000
iter = 1048, accuracy (cur) = 0.840000 (all), 0.962963 (pos), 0.695652 (neg)
iter = 1048, accuracy (avg) = 0.815518 (all), 0.812953 (pos), 0.817425 (neg)
data reader: epoch = 0, batch = 1049 / 4040
iter = 1049, cls_loss (cur) = 0.422920, cls_loss (avg) = 0.401486, lr = 0.010000
iter = 1049, accuracy (cur) = 0.760000 (all), 0.818182 (pos), 0.714286 (neg)
iter = 1049, accuracy (avg) = 0.814963 (all), 0.813005 (pos), 0.816393 (neg)
data reader: epoch = 0, batch = 1050 / 4040
iter = 1050, cls_loss (cur) = 0.449349, cls_loss (avg) = 0.401965, lr = 0.010000
iter = 1050, accuracy (cur) = 0.800000 (all), 0.880000 (pos), 0.720000 (neg)
iter = 1050, accuracy (avg) = 0.814814 (all), 0.813675 (pos), 0.815429 (neg)
data reader: epoch = 0, batch = 1051 / 4040
iter = 1051, cls_loss (cur) = 0.389638, cls_loss (avg) = 0.401841, lr = 0.010000
iter = 1051, accuracy (cur) = 0.780000 (all), 0.814815 (pos), 0.739130 (neg)
iter = 1051, accuracy (avg) = 0.814466 (all), 0.813687 (pos), 0.814666 (neg)
data reader: epoch = 0, batch = 1052 / 4040
iter = 1052, cls_loss (cur) = 0.355500, cls_loss (avg) = 0.401378, lr = 0.010000
iter = 1052, accuracy (cur) = 0.860000 (all), 0.826087 (pos), 0.888889 (neg)
iter = 1052, accuracy (avg) = 0.814921 (all), 0.813811 (pos), 0.815409 (neg)
data reader: epoch = 0, batch = 1053 / 4040
iter = 1053, cls_loss (cur) = 0.268560, cls_loss (avg) = 0.400050, lr = 0.010000
iter = 1053, accuracy (cur) = 0.900000 (all), 0.931034 (pos), 0.857143 (neg)
iter = 1053, accuracy (avg) = 0.815772 (all), 0.814983 (pos), 0.815826 (neg)
data reader: epoch = 0, batch = 1054 / 4040
iter = 1054, cls_loss (cur) = 0.354212, cls_loss (avg) = 0.399591, lr = 0.010000
iter = 1054, accuracy (cur) = 0.840000 (all), 0.809524 (pos), 0.862069 (neg)
iter = 1054, accuracy (avg) = 0.816014 (all), 0.814928 (pos), 0.816288 (neg)
data reader: epoch = 0, batch = 1055 / 4040
iter = 1055, cls_loss (cur) = 0.379791, cls_loss (avg) = 0.399393, lr = 0.010000
iter = 1055, accuracy (cur) = 0.820000 (all), 0.793103 (pos), 0.857143 (neg)
iter = 1055, accuracy (avg) = 0.816054 (all), 0.814710 (pos), 0.816697 (neg)
data reader: epoch = 0, batch = 1056 / 4040
iter = 1056, cls_loss (cur) = 0.377045, cls_loss (avg) = 0.399170, lr = 0.010000
iter = 1056, accuracy (cur) = 0.840000 (all), 0.760000 (pos), 0.920000 (neg)
iter = 1056, accuracy (avg) = 0.816293 (all), 0.814163 (pos), 0.817730 (neg)
data reader: epoch = 0, batch = 1057 / 4040
iter = 1057, cls_loss (cur) = 0.378867, cls_loss (avg) = 0.398967, lr = 0.010000
iter = 1057, accuracy (cur) = 0.860000 (all), 0.880000 (pos), 0.840000 (neg)
iter = 1057, accuracy (avg) = 0.816730 (all), 0.814821 (pos), 0.817953 (neg)
data reader: epoch = 0, batch = 1058 / 4040
iter = 1058, cls_loss (cur) = 0.501384, cls_loss (avg) = 0.399991, lr = 0.010000
iter = 1058, accuracy (cur) = 0.700000 (all), 0.709677 (pos), 0.684211 (neg)
iter = 1058, accuracy (avg) = 0.815563 (all), 0.813770 (pos), 0.816615 (neg)
data reader: epoch = 0, batch = 1059 / 4040
iter = 1059, cls_loss (cur) = 0.367710, cls_loss (avg) = 0.399668, lr = 0.010000
iter = 1059, accuracy (cur) = 0.820000 (all), 0.769231 (pos), 0.875000 (neg)
iter = 1059, accuracy (avg) = 0.815607 (all), 0.813325 (pos), 0.817199 (neg)
data reader: epoch = 0, batch = 1060 / 4040
iter = 1060, cls_loss (cur) = 0.484036, cls_loss (avg) = 0.400512, lr = 0.010000
iter = 1060, accuracy (cur) = 0.840000 (all), 0.866667 (pos), 0.800000 (neg)
iter = 1060, accuracy (avg) = 0.815851 (all), 0.813858 (pos), 0.817027 (neg)
data reader: epoch = 0, batch = 1061 / 4040
iter = 1061, cls_loss (cur) = 0.377077, cls_loss (avg) = 0.400278, lr = 0.010000
iter = 1061, accuracy (cur) = 0.860000 (all), 0.892857 (pos), 0.818182 (neg)
iter = 1061, accuracy (avg) = 0.816293 (all), 0.814648 (pos), 0.817039 (neg)
data reader: epoch = 0, batch = 1062 / 4040
iter = 1062, cls_loss (cur) = 0.317403, cls_loss (avg) = 0.399449, lr = 0.010000
iter = 1062, accuracy (cur) = 0.900000 (all), 0.958333 (pos), 0.846154 (neg)
iter = 1062, accuracy (avg) = 0.817130 (all), 0.816085 (pos), 0.817330 (neg)
data reader: epoch = 0, batch = 1063 / 4040
iter = 1063, cls_loss (cur) = 0.319518, cls_loss (avg) = 0.398649, lr = 0.010000
iter = 1063, accuracy (cur) = 0.880000 (all), 0.909091 (pos), 0.857143 (neg)
iter = 1063, accuracy (avg) = 0.817759 (all), 0.817015 (pos), 0.817728 (neg)
data reader: epoch = 0, batch = 1064 / 4040
iter = 1064, cls_loss (cur) = 0.410084, cls_loss (avg) = 0.398764, lr = 0.010000
iter = 1064, accuracy (cur) = 0.760000 (all), 0.846154 (pos), 0.666667 (neg)
iter = 1064, accuracy (avg) = 0.817181 (all), 0.817306 (pos), 0.816217 (neg)
data reader: epoch = 0, batch = 1065 / 4040
iter = 1065, cls_loss (cur) = 0.342549, cls_loss (avg) = 0.398202, lr = 0.010000
iter = 1065, accuracy (cur) = 0.880000 (all), 0.965517 (pos), 0.761905 (neg)
iter = 1065, accuracy (avg) = 0.817809 (all), 0.818788 (pos), 0.815674 (neg)
data reader: epoch = 0, batch = 1066 / 4040
iter = 1066, cls_loss (cur) = 0.448483, cls_loss (avg) = 0.398704, lr = 0.010000
iter = 1066, accuracy (cur) = 0.740000 (all), 0.666667 (pos), 0.807692 (neg)
iter = 1066, accuracy (avg) = 0.817031 (all), 0.817267 (pos), 0.815594 (neg)
data reader: epoch = 0, batch = 1067 / 4040
iter = 1067, cls_loss (cur) = 0.381656, cls_loss (avg) = 0.398534, lr = 0.010000
iter = 1067, accuracy (cur) = 0.840000 (all), 0.833333 (pos), 0.846154 (neg)
iter = 1067, accuracy (avg) = 0.817261 (all), 0.817428 (pos), 0.815900 (neg)
data reader: epoch = 0, batch = 1068 / 4040
iter = 1068, cls_loss (cur) = 0.392453, cls_loss (avg) = 0.398473, lr = 0.010000
iter = 1068, accuracy (cur) = 0.780000 (all), 0.640000 (pos), 0.920000 (neg)
iter = 1068, accuracy (avg) = 0.816888 (all), 0.815654 (pos), 0.816941 (neg)
data reader: epoch = 0, batch = 1069 / 4040
iter = 1069, cls_loss (cur) = 0.409215, cls_loss (avg) = 0.398581, lr = 0.010000
iter = 1069, accuracy (cur) = 0.820000 (all), 0.785714 (pos), 0.863636 (neg)
iter = 1069, accuracy (avg) = 0.816919 (all), 0.815354 (pos), 0.817408 (neg)
data reader: epoch = 0, batch = 1070 / 4040
iter = 1070, cls_loss (cur) = 0.394270, cls_loss (avg) = 0.398538, lr = 0.010000
iter = 1070, accuracy (cur) = 0.760000 (all), 0.842105 (pos), 0.709677 (neg)
iter = 1070, accuracy (avg) = 0.816350 (all), 0.815622 (pos), 0.816331 (neg)
data reader: epoch = 0, batch = 1071 / 4040
iter = 1071, cls_loss (cur) = 0.317902, cls_loss (avg) = 0.397731, lr = 0.010000
iter = 1071, accuracy (cur) = 0.860000 (all), 0.857143 (pos), 0.863636 (neg)
iter = 1071, accuracy (avg) = 0.816787 (all), 0.816037 (pos), 0.816804 (neg)
data reader: epoch = 0, batch = 1072 / 4040
iter = 1072, cls_loss (cur) = 0.431076, cls_loss (avg) = 0.398065, lr = 0.010000
iter = 1072, accuracy (cur) = 0.780000 (all), 0.741935 (pos), 0.842105 (neg)
iter = 1072, accuracy (avg) = 0.816419 (all), 0.815296 (pos), 0.817057 (neg)
data reader: epoch = 0, batch = 1073 / 4040
iter = 1073, cls_loss (cur) = 0.337350, cls_loss (avg) = 0.397457, lr = 0.010000
iter = 1073, accuracy (cur) = 0.800000 (all), 0.863636 (pos), 0.750000 (neg)
iter = 1073, accuracy (avg) = 0.816255 (all), 0.815779 (pos), 0.816386 (neg)
data reader: epoch = 0, batch = 1074 / 4040
iter = 1074, cls_loss (cur) = 0.333154, cls_loss (avg) = 0.396814, lr = 0.010000
iter = 1074, accuracy (cur) = 0.880000 (all), 0.857143 (pos), 0.909091 (neg)
iter = 1074, accuracy (avg) = 0.816892 (all), 0.816193 (pos), 0.817313 (neg)
data reader: epoch = 0, batch = 1075 / 4040
iter = 1075, cls_loss (cur) = 0.337431, cls_loss (avg) = 0.396221, lr = 0.010000
iter = 1075, accuracy (cur) = 0.860000 (all), 0.920000 (pos), 0.800000 (neg)
iter = 1075, accuracy (avg) = 0.817323 (all), 0.817231 (pos), 0.817140 (neg)
data reader: epoch = 0, batch = 1076 / 4040
iter = 1076, cls_loss (cur) = 0.406792, cls_loss (avg) = 0.396326, lr = 0.010000
iter = 1076, accuracy (cur) = 0.840000 (all), 0.923077 (pos), 0.750000 (neg)
iter = 1076, accuracy (avg) = 0.817550 (all), 0.818289 (pos), 0.816469 (neg)
data reader: epoch = 0, batch = 1077 / 4040
iter = 1077, cls_loss (cur) = 0.400365, cls_loss (avg) = 0.396367, lr = 0.010000
iter = 1077, accuracy (cur) = 0.840000 (all), 0.821429 (pos), 0.863636 (neg)
iter = 1077, accuracy (avg) = 0.817774 (all), 0.818321 (pos), 0.816940 (neg)
data reader: epoch = 0, batch = 1078 / 4040
iter = 1078, cls_loss (cur) = 0.432211, cls_loss (avg) = 0.396725, lr = 0.010000
iter = 1078, accuracy (cur) = 0.800000 (all), 0.909091 (pos), 0.714286 (neg)
iter = 1078, accuracy (avg) = 0.817597 (all), 0.819229 (pos), 0.815914 (neg)
data reader: epoch = 0, batch = 1079 / 4040
iter = 1079, cls_loss (cur) = 0.265813, cls_loss (avg) = 0.395416, lr = 0.010000
iter = 1079, accuracy (cur) = 0.900000 (all), 0.954545 (pos), 0.857143 (neg)
iter = 1079, accuracy (avg) = 0.818421 (all), 0.820582 (pos), 0.816326 (neg)
data reader: epoch = 0, batch = 1080 / 4040
iter = 1080, cls_loss (cur) = 0.496972, cls_loss (avg) = 0.396432, lr = 0.010000
iter = 1080, accuracy (cur) = 0.760000 (all), 0.807692 (pos), 0.708333 (neg)
iter = 1080, accuracy (avg) = 0.817836 (all), 0.820453 (pos), 0.815246 (neg)
data reader: epoch = 0, batch = 1081 / 4040
iter = 1081, cls_loss (cur) = 0.337426, cls_loss (avg) = 0.395842, lr = 0.010000
iter = 1081, accuracy (cur) = 0.840000 (all), 0.814815 (pos), 0.869565 (neg)
iter = 1081, accuracy (avg) = 0.818058 (all), 0.820396 (pos), 0.815789 (neg)
data reader: epoch = 0, batch = 1082 / 4040
iter = 1082, cls_loss (cur) = 0.449381, cls_loss (avg) = 0.396377, lr = 0.010000
iter = 1082, accuracy (cur) = 0.760000 (all), 0.818182 (pos), 0.647059 (neg)
iter = 1082, accuracy (avg) = 0.817477 (all), 0.820374 (pos), 0.814102 (neg)
data reader: epoch = 0, batch = 1083 / 4040
iter = 1083, cls_loss (cur) = 0.498747, cls_loss (avg) = 0.397401, lr = 0.010000
iter = 1083, accuracy (cur) = 0.780000 (all), 0.947368 (pos), 0.677419 (neg)
iter = 1083, accuracy (avg) = 0.817103 (all), 0.821644 (pos), 0.812735 (neg)
data reader: epoch = 0, batch = 1084 / 4040
iter = 1084, cls_loss (cur) = 0.381286, cls_loss (avg) = 0.397239, lr = 0.010000
iter = 1084, accuracy (cur) = 0.800000 (all), 0.840000 (pos), 0.760000 (neg)
iter = 1084, accuracy (avg) = 0.816932 (all), 0.821828 (pos), 0.812208 (neg)
data reader: epoch = 0, batch = 1085 / 4040
iter = 1085, cls_loss (cur) = 0.342247, cls_loss (avg) = 0.396690, lr = 0.010000
iter = 1085, accuracy (cur) = 0.860000 (all), 0.869565 (pos), 0.851852 (neg)
iter = 1085, accuracy (avg) = 0.817362 (all), 0.822305 (pos), 0.812604 (neg)
data reader: epoch = 0, batch = 1086 / 4040
iter = 1086, cls_loss (cur) = 0.370216, cls_loss (avg) = 0.396425, lr = 0.010000
iter = 1086, accuracy (cur) = 0.820000 (all), 0.791667 (pos), 0.846154 (neg)
iter = 1086, accuracy (avg) = 0.817389 (all), 0.821999 (pos), 0.812940 (neg)
data reader: epoch = 0, batch = 1087 / 4040
iter = 1087, cls_loss (cur) = 0.390965, cls_loss (avg) = 0.396370, lr = 0.010000
iter = 1087, accuracy (cur) = 0.800000 (all), 0.739130 (pos), 0.851852 (neg)
iter = 1087, accuracy (avg) = 0.817215 (all), 0.821170 (pos), 0.813329 (neg)
data reader: epoch = 0, batch = 1088 / 4040
iter = 1088, cls_loss (cur) = 0.298939, cls_loss (avg) = 0.395396, lr = 0.010000
iter = 1088, accuracy (cur) = 0.860000 (all), 0.818182 (pos), 0.892857 (neg)
iter = 1088, accuracy (avg) = 0.817643 (all), 0.821140 (pos), 0.814124 (neg)
data reader: epoch = 0, batch = 1089 / 4040
iter = 1089, cls_loss (cur) = 0.432403, cls_loss (avg) = 0.395766, lr = 0.010000
iter = 1089, accuracy (cur) = 0.740000 (all), 0.727273 (pos), 0.764706 (neg)
iter = 1089, accuracy (avg) = 0.816866 (all), 0.820202 (pos), 0.813630 (neg)
data reader: epoch = 0, batch = 1090 / 4040
iter = 1090, cls_loss (cur) = 0.388666, cls_loss (avg) = 0.395695, lr = 0.010000
iter = 1090, accuracy (cur) = 0.780000 (all), 0.724138 (pos), 0.857143 (neg)
iter = 1090, accuracy (avg) = 0.816498 (all), 0.819241 (pos), 0.814065 (neg)
data reader: epoch = 0, batch = 1091 / 4040
iter = 1091, cls_loss (cur) = 0.294893, cls_loss (avg) = 0.394687, lr = 0.010000
iter = 1091, accuracy (cur) = 0.860000 (all), 0.875000 (pos), 0.846154 (neg)
iter = 1091, accuracy (avg) = 0.816933 (all), 0.819799 (pos), 0.814386 (neg)
data reader: epoch = 0, batch = 1092 / 4040
iter = 1092, cls_loss (cur) = 0.416123, cls_loss (avg) = 0.394901, lr = 0.010000
iter = 1092, accuracy (cur) = 0.780000 (all), 0.800000 (pos), 0.771429 (neg)
iter = 1092, accuracy (avg) = 0.816563 (all), 0.819601 (pos), 0.813956 (neg)
data reader: epoch = 0, batch = 1093 / 4040
iter = 1093, cls_loss (cur) = 0.380167, cls_loss (avg) = 0.394754, lr = 0.010000
iter = 1093, accuracy (cur) = 0.780000 (all), 0.750000 (pos), 0.818182 (neg)
iter = 1093, accuracy (avg) = 0.816198 (all), 0.818905 (pos), 0.813999 (neg)
data reader: epoch = 0, batch = 1094 / 4040
iter = 1094, cls_loss (cur) = 0.434276, cls_loss (avg) = 0.395149, lr = 0.010000
iter = 1094, accuracy (cur) = 0.780000 (all), 0.789474 (pos), 0.774194 (neg)
iter = 1094, accuracy (avg) = 0.815836 (all), 0.818610 (pos), 0.813601 (neg)
data reader: epoch = 0, batch = 1095 / 4040
iter = 1095, cls_loss (cur) = 0.428088, cls_loss (avg) = 0.395479, lr = 0.010000
iter = 1095, accuracy (cur) = 0.760000 (all), 0.666667 (pos), 0.869565 (neg)
iter = 1095, accuracy (avg) = 0.815277 (all), 0.817091 (pos), 0.814160 (neg)
data reader: epoch = 0, batch = 1096 / 4040
iter = 1096, cls_loss (cur) = 0.453159, cls_loss (avg) = 0.396055, lr = 0.010000
iter = 1096, accuracy (cur) = 0.740000 (all), 0.750000 (pos), 0.730769 (neg)
iter = 1096, accuracy (avg) = 0.814525 (all), 0.816420 (pos), 0.813326 (neg)
data reader: epoch = 0, batch = 1097 / 4040
iter = 1097, cls_loss (cur) = 0.399736, cls_loss (avg) = 0.396092, lr = 0.010000
iter = 1097, accuracy (cur) = 0.860000 (all), 0.904762 (pos), 0.827586 (neg)
iter = 1097, accuracy (avg) = 0.814979 (all), 0.817303 (pos), 0.813469 (neg)
data reader: epoch = 0, batch = 1098 / 4040
iter = 1098, cls_loss (cur) = 0.480824, cls_loss (avg) = 0.396939, lr = 0.010000
iter = 1098, accuracy (cur) = 0.740000 (all), 0.720000 (pos), 0.760000 (neg)
iter = 1098, accuracy (avg) = 0.814230 (all), 0.816330 (pos), 0.812934 (neg)
data reader: epoch = 0, batch = 1099 / 4040
iter = 1099, cls_loss (cur) = 0.447603, cls_loss (avg) = 0.397446, lr = 0.010000
iter = 1099, accuracy (cur) = 0.780000 (all), 0.740741 (pos), 0.826087 (neg)
iter = 1099, accuracy (avg) = 0.813887 (all), 0.815574 (pos), 0.813066 (neg)
data reader: epoch = 0, batch = 1100 / 4040
iter = 1100, cls_loss (cur) = 0.342382, cls_loss (avg) = 0.396895, lr = 0.010000
iter = 1100, accuracy (cur) = 0.860000 (all), 0.821429 (pos), 0.909091 (neg)
iter = 1100, accuracy (avg) = 0.814348 (all), 0.815633 (pos), 0.814026 (neg)
data reader: epoch = 0, batch = 1101 / 4040
iter = 1101, cls_loss (cur) = 0.360698, cls_loss (avg) = 0.396534, lr = 0.010000
iter = 1101, accuracy (cur) = 0.820000 (all), 0.833333 (pos), 0.812500 (neg)
iter = 1101, accuracy (avg) = 0.814405 (all), 0.815810 (pos), 0.814011 (neg)
data reader: epoch = 0, batch = 1102 / 4040
iter = 1102, cls_loss (cur) = 0.458478, cls_loss (avg) = 0.397153, lr = 0.010000
iter = 1102, accuracy (cur) = 0.760000 (all), 0.846154 (pos), 0.666667 (neg)
iter = 1102, accuracy (avg) = 0.813861 (all), 0.816113 (pos), 0.812537 (neg)
data reader: epoch = 0, batch = 1103 / 4040
iter = 1103, cls_loss (cur) = 0.361569, cls_loss (avg) = 0.396797, lr = 0.010000
iter = 1103, accuracy (cur) = 0.820000 (all), 0.750000 (pos), 0.884615 (neg)
iter = 1103, accuracy (avg) = 0.813922 (all), 0.815452 (pos), 0.813258 (neg)
data reader: epoch = 0, batch = 1104 / 4040
iter = 1104, cls_loss (cur) = 0.313315, cls_loss (avg) = 0.395962, lr = 0.010000
iter = 1104, accuracy (cur) = 0.920000 (all), 0.960000 (pos), 0.880000 (neg)
iter = 1104, accuracy (avg) = 0.814983 (all), 0.816898 (pos), 0.813926 (neg)
data reader: epoch = 0, batch = 1105 / 4040
iter = 1105, cls_loss (cur) = 0.389808, cls_loss (avg) = 0.395901, lr = 0.010000
iter = 1105, accuracy (cur) = 0.800000 (all), 0.807692 (pos), 0.791667 (neg)
iter = 1105, accuracy (avg) = 0.814833 (all), 0.816806 (pos), 0.813703 (neg)
data reader: epoch = 0, batch = 1106 / 4040
iter = 1106, cls_loss (cur) = 0.436134, cls_loss (avg) = 0.396303, lr = 0.010000
iter = 1106, accuracy (cur) = 0.780000 (all), 0.826087 (pos), 0.740741 (neg)
iter = 1106, accuracy (avg) = 0.814485 (all), 0.816898 (pos), 0.812973 (neg)
data reader: epoch = 0, batch = 1107 / 4040
iter = 1107, cls_loss (cur) = 0.432391, cls_loss (avg) = 0.396664, lr = 0.010000
iter = 1107, accuracy (cur) = 0.760000 (all), 0.769231 (pos), 0.750000 (neg)
iter = 1107, accuracy (avg) = 0.813940 (all), 0.816422 (pos), 0.812344 (neg)
data reader: epoch = 0, batch = 1108 / 4040
iter = 1108, cls_loss (cur) = 0.404885, cls_loss (avg) = 0.396746, lr = 0.010000
iter = 1108, accuracy (cur) = 0.860000 (all), 0.846154 (pos), 0.875000 (neg)
iter = 1108, accuracy (avg) = 0.814401 (all), 0.816719 (pos), 0.812970 (neg)
data reader: epoch = 0, batch = 1109 / 4040
iter = 1109, cls_loss (cur) = 0.374110, cls_loss (avg) = 0.396520, lr = 0.010000
iter = 1109, accuracy (cur) = 0.860000 (all), 0.880000 (pos), 0.840000 (neg)
iter = 1109, accuracy (avg) = 0.814857 (all), 0.817352 (pos), 0.813240 (neg)
data reader: epoch = 0, batch = 1110 / 4040
iter = 1110, cls_loss (cur) = 0.300363, cls_loss (avg) = 0.395558, lr = 0.010000
iter = 1110, accuracy (cur) = 0.880000 (all), 0.842105 (pos), 0.903226 (neg)
iter = 1110, accuracy (avg) = 0.815508 (all), 0.817599 (pos), 0.814140 (neg)
data reader: epoch = 0, batch = 1111 / 4040
iter = 1111, cls_loss (cur) = 0.301584, cls_loss (avg) = 0.394618, lr = 0.010000
iter = 1111, accuracy (cur) = 0.900000 (all), 0.892857 (pos), 0.909091 (neg)
iter = 1111, accuracy (avg) = 0.816353 (all), 0.818352 (pos), 0.815090 (neg)
data reader: epoch = 0, batch = 1112 / 4040
iter = 1112, cls_loss (cur) = 0.384444, cls_loss (avg) = 0.394517, lr = 0.010000
iter = 1112, accuracy (cur) = 0.820000 (all), 0.787879 (pos), 0.882353 (neg)
iter = 1112, accuracy (avg) = 0.816389 (all), 0.818047 (pos), 0.815762 (neg)
data reader: epoch = 0, batch = 1113 / 4040
iter = 1113, cls_loss (cur) = 0.376195, cls_loss (avg) = 0.394334, lr = 0.010000
iter = 1113, accuracy (cur) = 0.840000 (all), 0.846154 (pos), 0.833333 (neg)
iter = 1113, accuracy (avg) = 0.816626 (all), 0.818328 (pos), 0.815938 (neg)
data reader: epoch = 0, batch = 1114 / 4040
iter = 1114, cls_loss (cur) = 0.330556, cls_loss (avg) = 0.393696, lr = 0.010000
iter = 1114, accuracy (cur) = 0.840000 (all), 0.800000 (pos), 0.880000 (neg)
iter = 1114, accuracy (avg) = 0.816859 (all), 0.818145 (pos), 0.816579 (neg)
data reader: epoch = 0, batch = 1115 / 4040
iter = 1115, cls_loss (cur) = 0.325065, cls_loss (avg) = 0.393009, lr = 0.010000
iter = 1115, accuracy (cur) = 0.880000 (all), 0.950000 (pos), 0.833333 (neg)
iter = 1115, accuracy (avg) = 0.817491 (all), 0.819464 (pos), 0.816746 (neg)
data reader: epoch = 0, batch = 1116 / 4040
iter = 1116, cls_loss (cur) = 0.271485, cls_loss (avg) = 0.391794, lr = 0.010000
iter = 1116, accuracy (cur) = 0.940000 (all), 0.925926 (pos), 0.956522 (neg)
iter = 1116, accuracy (avg) = 0.818716 (all), 0.820528 (pos), 0.818144 (neg)
data reader: epoch = 0, batch = 1117 / 4040
iter = 1117, cls_loss (cur) = 0.269520, cls_loss (avg) = 0.390571, lr = 0.010000
iter = 1117, accuracy (cur) = 0.900000 (all), 0.909091 (pos), 0.882353 (neg)
iter = 1117, accuracy (avg) = 0.819529 (all), 0.821414 (pos), 0.818786 (neg)
data reader: epoch = 0, batch = 1118 / 4040
iter = 1118, cls_loss (cur) = 0.280151, cls_loss (avg) = 0.389467, lr = 0.010000
iter = 1118, accuracy (cur) = 0.900000 (all), 0.958333 (pos), 0.846154 (neg)
iter = 1118, accuracy (avg) = 0.820333 (all), 0.822783 (pos), 0.819060 (neg)
data reader: epoch = 0, batch = 1119 / 4040
iter = 1119, cls_loss (cur) = 0.358695, cls_loss (avg) = 0.389160, lr = 0.010000
iter = 1119, accuracy (cur) = 0.820000 (all), 0.875000 (pos), 0.769231 (neg)
iter = 1119, accuracy (avg) = 0.820330 (all), 0.823305 (pos), 0.818562 (neg)
data reader: epoch = 0, batch = 1120 / 4040
iter = 1120, cls_loss (cur) = 0.284228, cls_loss (avg) = 0.388110, lr = 0.010000
iter = 1120, accuracy (cur) = 0.900000 (all), 1.000000 (pos), 0.782609 (neg)
iter = 1120, accuracy (avg) = 0.821127 (all), 0.825072 (pos), 0.818202 (neg)
data reader: epoch = 0, batch = 1121 / 4040
iter = 1121, cls_loss (cur) = 0.302069, cls_loss (avg) = 0.387250, lr = 0.010000
iter = 1121, accuracy (cur) = 0.860000 (all), 0.838710 (pos), 0.894737 (neg)
iter = 1121, accuracy (avg) = 0.821515 (all), 0.825209 (pos), 0.818967 (neg)
data reader: epoch = 0, batch = 1122 / 4040
iter = 1122, cls_loss (cur) = 0.276656, cls_loss (avg) = 0.386144, lr = 0.010000
iter = 1122, accuracy (cur) = 0.880000 (all), 0.913043 (pos), 0.851852 (neg)
iter = 1122, accuracy (avg) = 0.822100 (all), 0.826087 (pos), 0.819296 (neg)
data reader: epoch = 0, batch = 1123 / 4040
iter = 1123, cls_loss (cur) = 0.342785, cls_loss (avg) = 0.385710, lr = 0.010000
iter = 1123, accuracy (cur) = 0.880000 (all), 0.875000 (pos), 0.884615 (neg)
iter = 1123, accuracy (avg) = 0.822679 (all), 0.826576 (pos), 0.819949 (neg)
data reader: epoch = 0, batch = 1124 / 4040
iter = 1124, cls_loss (cur) = 0.416817, cls_loss (avg) = 0.386021, lr = 0.010000
iter = 1124, accuracy (cur) = 0.760000 (all), 0.833333 (pos), 0.692308 (neg)
iter = 1124, accuracy (avg) = 0.822052 (all), 0.826644 (pos), 0.818673 (neg)
data reader: epoch = 0, batch = 1125 / 4040
iter = 1125, cls_loss (cur) = 0.381492, cls_loss (avg) = 0.385976, lr = 0.010000
iter = 1125, accuracy (cur) = 0.800000 (all), 0.840000 (pos), 0.760000 (neg)
iter = 1125, accuracy (avg) = 0.821832 (all), 0.826777 (pos), 0.818086 (neg)
data reader: epoch = 0, batch = 1126 / 4040
iter = 1126, cls_loss (cur) = 0.410570, cls_loss (avg) = 0.386222, lr = 0.010000
iter = 1126, accuracy (cur) = 0.860000 (all), 0.846154 (pos), 0.875000 (neg)
iter = 1126, accuracy (avg) = 0.822214 (all), 0.826971 (pos), 0.818655 (neg)
data reader: epoch = 0, batch = 1127 / 4040
iter = 1127, cls_loss (cur) = 0.454031, cls_loss (avg) = 0.386900, lr = 0.010000
iter = 1127, accuracy (cur) = 0.780000 (all), 0.750000 (pos), 0.833333 (neg)
iter = 1127, accuracy (avg) = 0.821791 (all), 0.826201 (pos), 0.818802 (neg)
data reader: epoch = 0, batch = 1128 / 4040
iter = 1128, cls_loss (cur) = 0.315156, cls_loss (avg) = 0.386183, lr = 0.010000
iter = 1128, accuracy (cur) = 0.900000 (all), 0.909091 (pos), 0.892857 (neg)
iter = 1128, accuracy (avg) = 0.822574 (all), 0.827030 (pos), 0.819543 (neg)
data reader: epoch = 0, batch = 1129 / 4040
iter = 1129, cls_loss (cur) = 0.411256, cls_loss (avg) = 0.386433, lr = 0.010000
iter = 1129, accuracy (cur) = 0.760000 (all), 0.727273 (pos), 0.823529 (neg)
iter = 1129, accuracy (avg) = 0.821948 (all), 0.826033 (pos), 0.819583 (neg)
data reader: epoch = 0, batch = 1130 / 4040
iter = 1130, cls_loss (cur) = 0.292403, cls_loss (avg) = 0.385493, lr = 0.010000
iter = 1130, accuracy (cur) = 0.880000 (all), 0.846154 (pos), 0.916667 (neg)
iter = 1130, accuracy (avg) = 0.822528 (all), 0.826234 (pos), 0.820553 (neg)
data reader: epoch = 0, batch = 1131 / 4040
iter = 1131, cls_loss (cur) = 0.307173, cls_loss (avg) = 0.384710, lr = 0.010000
iter = 1131, accuracy (cur) = 0.880000 (all), 0.777778 (pos), 0.937500 (neg)
iter = 1131, accuracy (avg) = 0.823103 (all), 0.825749 (pos), 0.821723 (neg)
data reader: epoch = 0, batch = 1132 / 4040
iter = 1132, cls_loss (cur) = 0.318682, cls_loss (avg) = 0.384050, lr = 0.010000
iter = 1132, accuracy (cur) = 0.820000 (all), 0.850000 (pos), 0.800000 (neg)
iter = 1132, accuracy (avg) = 0.823072 (all), 0.825992 (pos), 0.821506 (neg)
data reader: epoch = 0, batch = 1133 / 4040
iter = 1133, cls_loss (cur) = 0.272315, cls_loss (avg) = 0.382932, lr = 0.010000
iter = 1133, accuracy (cur) = 0.860000 (all), 0.904762 (pos), 0.827586 (neg)
iter = 1133, accuracy (avg) = 0.823441 (all), 0.826779 (pos), 0.821566 (neg)
data reader: epoch = 0, batch = 1134 / 4040
iter = 1134, cls_loss (cur) = 0.515656, cls_loss (avg) = 0.384259, lr = 0.010000
iter = 1134, accuracy (cur) = 0.780000 (all), 0.880000 (pos), 0.680000 (neg)
iter = 1134, accuracy (avg) = 0.823007 (all), 0.827312 (pos), 0.820151 (neg)
data reader: epoch = 0, batch = 1135 / 4040
iter = 1135, cls_loss (cur) = 0.362798, cls_loss (avg) = 0.384045, lr = 0.010000
iter = 1135, accuracy (cur) = 0.860000 (all), 0.869565 (pos), 0.851852 (neg)
iter = 1135, accuracy (avg) = 0.823377 (all), 0.827734 (pos), 0.820468 (neg)
data reader: epoch = 0, batch = 1136 / 4040
iter = 1136, cls_loss (cur) = 0.510838, cls_loss (avg) = 0.385313, lr = 0.010000
iter = 1136, accuracy (cur) = 0.720000 (all), 0.600000 (pos), 0.900000 (neg)
iter = 1136, accuracy (avg) = 0.822343 (all), 0.825457 (pos), 0.821263 (neg)
data reader: epoch = 0, batch = 1137 / 4040
iter = 1137, cls_loss (cur) = 0.301790, cls_loss (avg) = 0.384478, lr = 0.010000
iter = 1137, accuracy (cur) = 0.940000 (all), 0.913043 (pos), 0.962963 (neg)
iter = 1137, accuracy (avg) = 0.823520 (all), 0.826333 (pos), 0.822680 (neg)
data reader: epoch = 0, batch = 1138 / 4040
iter = 1138, cls_loss (cur) = 0.430920, cls_loss (avg) = 0.384942, lr = 0.010000
iter = 1138, accuracy (cur) = 0.720000 (all), 0.821429 (pos), 0.590909 (neg)
iter = 1138, accuracy (avg) = 0.822484 (all), 0.826284 (pos), 0.820362 (neg)
data reader: epoch = 0, batch = 1139 / 4040
iter = 1139, cls_loss (cur) = 0.319680, cls_loss (avg) = 0.384289, lr = 0.010000
iter = 1139, accuracy (cur) = 0.860000 (all), 0.904762 (pos), 0.827586 (neg)
iter = 1139, accuracy (avg) = 0.822860 (all), 0.827068 (pos), 0.820435 (neg)
data reader: epoch = 0, batch = 1140 / 4040
iter = 1140, cls_loss (cur) = 0.417243, cls_loss (avg) = 0.384619, lr = 0.010000
iter = 1140, accuracy (cur) = 0.820000 (all), 0.782609 (pos), 0.851852 (neg)
iter = 1140, accuracy (avg) = 0.822831 (all), 0.826624 (pos), 0.820749 (neg)
data reader: epoch = 0, batch = 1141 / 4040
iter = 1141, cls_loss (cur) = 0.445664, cls_loss (avg) = 0.385229, lr = 0.010000
iter = 1141, accuracy (cur) = 0.760000 (all), 0.640000 (pos), 0.880000 (neg)
iter = 1141, accuracy (avg) = 0.822203 (all), 0.824758 (pos), 0.821341 (neg)
data reader: epoch = 0, batch = 1142 / 4040
iter = 1142, cls_loss (cur) = 0.431087, cls_loss (avg) = 0.385688, lr = 0.010000
iter = 1142, accuracy (cur) = 0.760000 (all), 0.607143 (pos), 0.954545 (neg)
iter = 1142, accuracy (avg) = 0.821581 (all), 0.822581 (pos), 0.822673 (neg)
data reader: epoch = 0, batch = 1143 / 4040
iter = 1143, cls_loss (cur) = 0.329689, cls_loss (avg) = 0.385128, lr = 0.010000
iter = 1143, accuracy (cur) = 0.940000 (all), 0.896552 (pos), 1.000000 (neg)
iter = 1143, accuracy (avg) = 0.822765 (all), 0.823321 (pos), 0.824447 (neg)
data reader: epoch = 0, batch = 1144 / 4040
iter = 1144, cls_loss (cur) = 0.339324, cls_loss (avg) = 0.384670, lr = 0.010000
iter = 1144, accuracy (cur) = 0.820000 (all), 0.846154 (pos), 0.791667 (neg)
iter = 1144, accuracy (avg) = 0.822737 (all), 0.823549 (pos), 0.824119 (neg)
data reader: epoch = 0, batch = 1145 / 4040
iter = 1145, cls_loss (cur) = 0.514566, cls_loss (avg) = 0.385969, lr = 0.010000
iter = 1145, accuracy (cur) = 0.680000 (all), 0.720000 (pos), 0.640000 (neg)
iter = 1145, accuracy (avg) = 0.821310 (all), 0.822514 (pos), 0.822278 (neg)
data reader: epoch = 0, batch = 1146 / 4040
iter = 1146, cls_loss (cur) = 0.393724, cls_loss (avg) = 0.386046, lr = 0.010000
iter = 1146, accuracy (cur) = 0.800000 (all), 0.875000 (pos), 0.730769 (neg)
iter = 1146, accuracy (avg) = 0.821097 (all), 0.823039 (pos), 0.821363 (neg)
data reader: epoch = 0, batch = 1147 / 4040
iter = 1147, cls_loss (cur) = 0.285803, cls_loss (avg) = 0.385044, lr = 0.010000
iter = 1147, accuracy (cur) = 0.900000 (all), 0.772727 (pos), 1.000000 (neg)
iter = 1147, accuracy (avg) = 0.821886 (all), 0.822536 (pos), 0.823149 (neg)
data reader: epoch = 0, batch = 1148 / 4040
iter = 1148, cls_loss (cur) = 0.352543, cls_loss (avg) = 0.384719, lr = 0.010000
iter = 1148, accuracy (cur) = 0.840000 (all), 0.857143 (pos), 0.827586 (neg)
iter = 1148, accuracy (avg) = 0.822067 (all), 0.822882 (pos), 0.823193 (neg)
data reader: epoch = 0, batch = 1149 / 4040
iter = 1149, cls_loss (cur) = 0.322182, cls_loss (avg) = 0.384094, lr = 0.010000
iter = 1149, accuracy (cur) = 0.860000 (all), 0.920000 (pos), 0.800000 (neg)
iter = 1149, accuracy (avg) = 0.822446 (all), 0.823853 (pos), 0.822961 (neg)
data reader: epoch = 0, batch = 1150 / 4040
iter = 1150, cls_loss (cur) = 0.280272, cls_loss (avg) = 0.383055, lr = 0.010000
iter = 1150, accuracy (cur) = 0.920000 (all), 0.950000 (pos), 0.900000 (neg)
iter = 1150, accuracy (avg) = 0.823422 (all), 0.825114 (pos), 0.823732 (neg)
data reader: epoch = 0, batch = 1151 / 4040
iter = 1151, cls_loss (cur) = 0.290979, cls_loss (avg) = 0.382135, lr = 0.010000
iter = 1151, accuracy (cur) = 0.880000 (all), 0.840000 (pos), 0.920000 (neg)
iter = 1151, accuracy (avg) = 0.823988 (all), 0.825263 (pos), 0.824694 (neg)
data reader: epoch = 0, batch = 1152 / 4040
iter = 1152, cls_loss (cur) = 0.250386, cls_loss (avg) = 0.380817, lr = 0.010000
iter = 1152, accuracy (cur) = 0.940000 (all), 0.920000 (pos), 0.960000 (neg)
iter = 1152, accuracy (avg) = 0.825148 (all), 0.826211 (pos), 0.826048 (neg)
data reader: epoch = 0, batch = 1153 / 4040
iter = 1153, cls_loss (cur) = 0.248598, cls_loss (avg) = 0.379495, lr = 0.010000
iter = 1153, accuracy (cur) = 0.900000 (all), 0.933333 (pos), 0.850000 (neg)
iter = 1153, accuracy (avg) = 0.825896 (all), 0.827282 (pos), 0.826287 (neg)
data reader: epoch = 0, batch = 1154 / 4040
iter = 1154, cls_loss (cur) = 0.359676, cls_loss (avg) = 0.379297, lr = 0.010000
iter = 1154, accuracy (cur) = 0.900000 (all), 0.904762 (pos), 0.896552 (neg)
iter = 1154, accuracy (avg) = 0.826637 (all), 0.828057 (pos), 0.826990 (neg)
data reader: epoch = 0, batch = 1155 / 4040
iter = 1155, cls_loss (cur) = 0.398288, cls_loss (avg) = 0.379487, lr = 0.010000
iter = 1155, accuracy (cur) = 0.800000 (all), 0.782609 (pos), 0.814815 (neg)
iter = 1155, accuracy (avg) = 0.826371 (all), 0.827602 (pos), 0.826868 (neg)
data reader: epoch = 0, batch = 1156 / 4040
iter = 1156, cls_loss (cur) = 0.450208, cls_loss (avg) = 0.380194, lr = 0.010000
iter = 1156, accuracy (cur) = 0.800000 (all), 0.695652 (pos), 0.888889 (neg)
iter = 1156, accuracy (avg) = 0.826107 (all), 0.826283 (pos), 0.827488 (neg)
data reader: epoch = 0, batch = 1157 / 4040
iter = 1157, cls_loss (cur) = 0.351692, cls_loss (avg) = 0.379909, lr = 0.010000
iter = 1157, accuracy (cur) = 0.840000 (all), 0.913043 (pos), 0.777778 (neg)
iter = 1157, accuracy (avg) = 0.826246 (all), 0.827150 (pos), 0.826991 (neg)
data reader: epoch = 0, batch = 1158 / 4040
iter = 1158, cls_loss (cur) = 0.221978, cls_loss (avg) = 0.378330, lr = 0.010000
iter = 1158, accuracy (cur) = 0.920000 (all), 0.920000 (pos), 0.920000 (neg)
iter = 1158, accuracy (avg) = 0.827184 (all), 0.828079 (pos), 0.827921 (neg)
data reader: epoch = 0, batch = 1159 / 4040
iter = 1159, cls_loss (cur) = 0.450775, cls_loss (avg) = 0.379054, lr = 0.010000
iter = 1159, accuracy (cur) = 0.800000 (all), 0.760000 (pos), 0.840000 (neg)
iter = 1159, accuracy (avg) = 0.826912 (all), 0.827398 (pos), 0.828042 (neg)
data reader: epoch = 0, batch = 1160 / 4040
iter = 1160, cls_loss (cur) = 0.346232, cls_loss (avg) = 0.378726, lr = 0.010000
iter = 1160, accuracy (cur) = 0.820000 (all), 0.722222 (pos), 0.875000 (neg)
iter = 1160, accuracy (avg) = 0.826843 (all), 0.826346 (pos), 0.828512 (neg)
data reader: epoch = 0, batch = 1161 / 4040
iter = 1161, cls_loss (cur) = 0.275966, cls_loss (avg) = 0.377698, lr = 0.010000
iter = 1161, accuracy (cur) = 0.920000 (all), 0.925926 (pos), 0.913043 (neg)
iter = 1161, accuracy (avg) = 0.827774 (all), 0.827342 (pos), 0.829357 (neg)
data reader: epoch = 0, batch = 1162 / 4040
iter = 1162, cls_loss (cur) = 0.466050, cls_loss (avg) = 0.378582, lr = 0.010000
iter = 1162, accuracy (cur) = 0.700000 (all), 0.653846 (pos), 0.750000 (neg)
iter = 1162, accuracy (avg) = 0.826497 (all), 0.825607 (pos), 0.828563 (neg)
data reader: epoch = 0, batch = 1163 / 4040
iter = 1163, cls_loss (cur) = 0.472692, cls_loss (avg) = 0.379523, lr = 0.010000
iter = 1163, accuracy (cur) = 0.760000 (all), 0.655172 (pos), 0.904762 (neg)
iter = 1163, accuracy (avg) = 0.825832 (all), 0.823903 (pos), 0.829325 (neg)
data reader: epoch = 0, batch = 1164 / 4040
iter = 1164, cls_loss (cur) = 0.294635, cls_loss (avg) = 0.378674, lr = 0.010000
iter = 1164, accuracy (cur) = 0.880000 (all), 0.888889 (pos), 0.869565 (neg)
iter = 1164, accuracy (avg) = 0.826373 (all), 0.824553 (pos), 0.829728 (neg)
data reader: epoch = 0, batch = 1165 / 4040
iter = 1165, cls_loss (cur) = 0.402351, cls_loss (avg) = 0.378911, lr = 0.010000
iter = 1165, accuracy (cur) = 0.820000 (all), 0.962963 (pos), 0.652174 (neg)
iter = 1165, accuracy (avg) = 0.826310 (all), 0.825937 (pos), 0.827952 (neg)
data reader: epoch = 0, batch = 1166 / 4040
iter = 1166, cls_loss (cur) = 0.258337, cls_loss (avg) = 0.377705, lr = 0.010000
iter = 1166, accuracy (cur) = 0.920000 (all), 0.920000 (pos), 0.920000 (neg)
iter = 1166, accuracy (avg) = 0.827246 (all), 0.826877 (pos), 0.828873 (neg)
data reader: epoch = 0, batch = 1167 / 4040
iter = 1167, cls_loss (cur) = 0.566428, cls_loss (avg) = 0.379592, lr = 0.010000
iter = 1167, accuracy (cur) = 0.700000 (all), 0.708333 (pos), 0.692308 (neg)
iter = 1167, accuracy (avg) = 0.825974 (all), 0.825692 (pos), 0.827507 (neg)
data reader: epoch = 0, batch = 1168 / 4040
iter = 1168, cls_loss (cur) = 0.303506, cls_loss (avg) = 0.378831, lr = 0.010000
iter = 1168, accuracy (cur) = 0.920000 (all), 1.000000 (pos), 0.862069 (neg)
iter = 1168, accuracy (avg) = 0.826914 (all), 0.827435 (pos), 0.827853 (neg)
data reader: epoch = 0, batch = 1169 / 4040
iter = 1169, cls_loss (cur) = 0.359136, cls_loss (avg) = 0.378634, lr = 0.010000
iter = 1169, accuracy (cur) = 0.860000 (all), 0.851852 (pos), 0.869565 (neg)
iter = 1169, accuracy (avg) = 0.827245 (all), 0.827679 (pos), 0.828270 (neg)
data reader: epoch = 0, batch = 1170 / 4040
iter = 1170, cls_loss (cur) = 0.318956, cls_loss (avg) = 0.378038, lr = 0.010000
iter = 1170, accuracy (cur) = 0.900000 (all), 0.931034 (pos), 0.857143 (neg)
iter = 1170, accuracy (avg) = 0.827973 (all), 0.828713 (pos), 0.828558 (neg)
data reader: epoch = 0, batch = 1171 / 4040
iter = 1171, cls_loss (cur) = 0.386874, cls_loss (avg) = 0.378126, lr = 0.010000
iter = 1171, accuracy (cur) = 0.820000 (all), 0.863636 (pos), 0.785714 (neg)
iter = 1171, accuracy (avg) = 0.827893 (all), 0.829062 (pos), 0.828130 (neg)
data reader: epoch = 0, batch = 1172 / 4040
iter = 1172, cls_loss (cur) = 0.324671, cls_loss (avg) = 0.377591, lr = 0.010000
iter = 1172, accuracy (cur) = 0.920000 (all), 0.960000 (pos), 0.880000 (neg)
iter = 1172, accuracy (avg) = 0.828814 (all), 0.830371 (pos), 0.828649 (neg)
data reader: epoch = 0, batch = 1173 / 4040
iter = 1173, cls_loss (cur) = 0.294330, cls_loss (avg) = 0.376759, lr = 0.010000
iter = 1173, accuracy (cur) = 0.940000 (all), 1.000000 (pos), 0.880000 (neg)
iter = 1173, accuracy (avg) = 0.829926 (all), 0.832068 (pos), 0.829162 (neg)
data reader: epoch = 0, batch = 1174 / 4040
iter = 1174, cls_loss (cur) = 0.409559, cls_loss (avg) = 0.377087, lr = 0.010000
iter = 1174, accuracy (cur) = 0.820000 (all), 0.842105 (pos), 0.806452 (neg)
iter = 1174, accuracy (avg) = 0.829827 (all), 0.832168 (pos), 0.828935 (neg)
data reader: epoch = 0, batch = 1175 / 4040
iter = 1175, cls_loss (cur) = 0.306237, cls_loss (avg) = 0.376378, lr = 0.010000
iter = 1175, accuracy (cur) = 0.900000 (all), 0.950000 (pos), 0.866667 (neg)
iter = 1175, accuracy (avg) = 0.830528 (all), 0.833346 (pos), 0.829312 (neg)
data reader: epoch = 0, batch = 1176 / 4040
iter = 1176, cls_loss (cur) = 0.438661, cls_loss (avg) = 0.377001, lr = 0.010000
iter = 1176, accuracy (cur) = 0.780000 (all), 0.772727 (pos), 0.785714 (neg)
iter = 1176, accuracy (avg) = 0.830023 (all), 0.832740 (pos), 0.828876 (neg)
data reader: epoch = 0, batch = 1177 / 4040
iter = 1177, cls_loss (cur) = 0.439065, cls_loss (avg) = 0.377622, lr = 0.010000
iter = 1177, accuracy (cur) = 0.840000 (all), 0.652174 (pos), 1.000000 (neg)
iter = 1177, accuracy (avg) = 0.830123 (all), 0.830934 (pos), 0.830588 (neg)
data reader: epoch = 0, batch = 1178 / 4040
iter = 1178, cls_loss (cur) = 0.241332, cls_loss (avg) = 0.376259, lr = 0.010000
iter = 1178, accuracy (cur) = 0.920000 (all), 0.954545 (pos), 0.892857 (neg)
iter = 1178, accuracy (avg) = 0.831022 (all), 0.832171 (pos), 0.831210 (neg)
data reader: epoch = 0, batch = 1179 / 4040
iter = 1179, cls_loss (cur) = 0.395976, cls_loss (avg) = 0.376456, lr = 0.010000
iter = 1179, accuracy (cur) = 0.820000 (all), 0.619048 (pos), 0.965517 (neg)
iter = 1179, accuracy (avg) = 0.830911 (all), 0.830039 (pos), 0.832553 (neg)
data reader: epoch = 0, batch = 1180 / 4040
iter = 1180, cls_loss (cur) = 0.407700, cls_loss (avg) = 0.376768, lr = 0.010000
iter = 1180, accuracy (cur) = 0.820000 (all), 0.785714 (pos), 0.863636 (neg)
iter = 1180, accuracy (avg) = 0.830802 (all), 0.829596 (pos), 0.832864 (neg)
data reader: epoch = 0, batch = 1181 / 4040
iter = 1181, cls_loss (cur) = 0.382103, cls_loss (avg) = 0.376822, lr = 0.010000
iter = 1181, accuracy (cur) = 0.820000 (all), 0.724138 (pos), 0.952381 (neg)
iter = 1181, accuracy (avg) = 0.830694 (all), 0.828542 (pos), 0.834059 (neg)
data reader: epoch = 0, batch = 1182 / 4040
iter = 1182, cls_loss (cur) = 0.314194, cls_loss (avg) = 0.376196, lr = 0.010000
iter = 1182, accuracy (cur) = 0.900000 (all), 0.925926 (pos), 0.869565 (neg)
iter = 1182, accuracy (avg) = 0.831387 (all), 0.829515 (pos), 0.834414 (neg)
data reader: epoch = 0, batch = 1183 / 4040
iter = 1183, cls_loss (cur) = 0.509695, cls_loss (avg) = 0.377531, lr = 0.010000
iter = 1183, accuracy (cur) = 0.780000 (all), 0.714286 (pos), 0.863636 (neg)
iter = 1183, accuracy (avg) = 0.830873 (all), 0.828363 (pos), 0.834707 (neg)
data reader: epoch = 0, batch = 1184 / 4040
iter = 1184, cls_loss (cur) = 0.334457, cls_loss (avg) = 0.377100, lr = 0.010000
iter = 1184, accuracy (cur) = 0.880000 (all), 0.892857 (pos), 0.863636 (neg)
iter = 1184, accuracy (avg) = 0.831365 (all), 0.829008 (pos), 0.834996 (neg)
data reader: epoch = 0, batch = 1185 / 4040
iter = 1185, cls_loss (cur) = 0.265209, cls_loss (avg) = 0.375981, lr = 0.010000
iter = 1185, accuracy (cur) = 0.880000 (all), 0.892857 (pos), 0.863636 (neg)
iter = 1185, accuracy (avg) = 0.831851 (all), 0.829646 (pos), 0.835282 (neg)
data reader: epoch = 0, batch = 1186 / 4040
iter = 1186, cls_loss (cur) = 0.363473, cls_loss (avg) = 0.375856, lr = 0.010000
iter = 1186, accuracy (cur) = 0.800000 (all), 0.909091 (pos), 0.714286 (neg)
iter = 1186, accuracy (avg) = 0.831533 (all), 0.830441 (pos), 0.834072 (neg)
data reader: epoch = 0, batch = 1187 / 4040
iter = 1187, cls_loss (cur) = 0.377633, cls_loss (avg) = 0.375874, lr = 0.010000
iter = 1187, accuracy (cur) = 0.840000 (all), 0.928571 (pos), 0.727273 (neg)
iter = 1187, accuracy (avg) = 0.831617 (all), 0.831422 (pos), 0.833004 (neg)
data reader: epoch = 0, batch = 1188 / 4040
iter = 1188, cls_loss (cur) = 0.450973, cls_loss (avg) = 0.376625, lr = 0.010000
iter = 1188, accuracy (cur) = 0.780000 (all), 0.894737 (pos), 0.709677 (neg)
iter = 1188, accuracy (avg) = 0.831101 (all), 0.832055 (pos), 0.831771 (neg)
data reader: epoch = 0, batch = 1189 / 4040
iter = 1189, cls_loss (cur) = 0.333482, cls_loss (avg) = 0.376193, lr = 0.010000
iter = 1189, accuracy (cur) = 0.820000 (all), 0.916667 (pos), 0.730769 (neg)
iter = 1189, accuracy (avg) = 0.830990 (all), 0.832902 (pos), 0.830761 (neg)
data reader: epoch = 0, batch = 1190 / 4040
iter = 1190, cls_loss (cur) = 0.353027, cls_loss (avg) = 0.375962, lr = 0.010000
iter = 1190, accuracy (cur) = 0.840000 (all), 0.916667 (pos), 0.769231 (neg)
iter = 1190, accuracy (avg) = 0.831080 (all), 0.833739 (pos), 0.830146 (neg)
data reader: epoch = 0, batch = 1191 / 4040
iter = 1191, cls_loss (cur) = 0.490934, cls_loss (avg) = 0.377111, lr = 0.010000
iter = 1191, accuracy (cur) = 0.760000 (all), 0.826087 (pos), 0.703704 (neg)
iter = 1191, accuracy (avg) = 0.830369 (all), 0.833663 (pos), 0.828881 (neg)
data reader: epoch = 0, batch = 1192 / 4040
iter = 1192, cls_loss (cur) = 0.461033, cls_loss (avg) = 0.377950, lr = 0.010000
iter = 1192, accuracy (cur) = 0.800000 (all), 0.727273 (pos), 0.857143 (neg)
iter = 1192, accuracy (avg) = 0.830066 (all), 0.832599 (pos), 0.829164 (neg)
data reader: epoch = 0, batch = 1193 / 4040
iter = 1193, cls_loss (cur) = 0.308282, cls_loss (avg) = 0.377254, lr = 0.010000
iter = 1193, accuracy (cur) = 0.900000 (all), 0.833333 (pos), 0.961538 (neg)
iter = 1193, accuracy (avg) = 0.830765 (all), 0.832606 (pos), 0.830488 (neg)
data reader: epoch = 0, batch = 1194 / 4040
iter = 1194, cls_loss (cur) = 0.477406, cls_loss (avg) = 0.378255, lr = 0.010000
iter = 1194, accuracy (cur) = 0.760000 (all), 0.583333 (pos), 0.923077 (neg)
iter = 1194, accuracy (avg) = 0.830057 (all), 0.830113 (pos), 0.831414 (neg)
data reader: epoch = 0, batch = 1195 / 4040
iter = 1195, cls_loss (cur) = 0.258563, cls_loss (avg) = 0.377058, lr = 0.010000
iter = 1195, accuracy (cur) = 0.940000 (all), 0.913043 (pos), 0.962963 (neg)
iter = 1195, accuracy (avg) = 0.831157 (all), 0.830943 (pos), 0.832729 (neg)
data reader: epoch = 0, batch = 1196 / 4040
iter = 1196, cls_loss (cur) = 0.388018, cls_loss (avg) = 0.377168, lr = 0.010000
iter = 1196, accuracy (cur) = 0.840000 (all), 0.791667 (pos), 0.884615 (neg)
iter = 1196, accuracy (avg) = 0.831245 (all), 0.830550 (pos), 0.833248 (neg)
data reader: epoch = 0, batch = 1197 / 4040
iter = 1197, cls_loss (cur) = 0.384701, cls_loss (avg) = 0.377243, lr = 0.010000
iter = 1197, accuracy (cur) = 0.840000 (all), 0.857143 (pos), 0.818182 (neg)
iter = 1197, accuracy (avg) = 0.831333 (all), 0.830816 (pos), 0.833097 (neg)
data reader: epoch = 0, batch = 1198 / 4040
iter = 1198, cls_loss (cur) = 0.340301, cls_loss (avg) = 0.376874, lr = 0.010000
iter = 1198, accuracy (cur) = 0.840000 (all), 0.750000 (pos), 0.900000 (neg)
iter = 1198, accuracy (avg) = 0.831419 (all), 0.830008 (pos), 0.833766 (neg)
data reader: epoch = 0, batch = 1199 / 4040
iter = 1199, cls_loss (cur) = 0.296999, cls_loss (avg) = 0.376075, lr = 0.010000
iter = 1199, accuracy (cur) = 0.940000 (all), 0.944444 (pos), 0.937500 (neg)
iter = 1199, accuracy (avg) = 0.832505 (all), 0.831152 (pos), 0.834804 (neg)
data reader: epoch = 0, batch = 1200 / 4040
iter = 1200, cls_loss (cur) = 0.385640, cls_loss (avg) = 0.376171, lr = 0.010000
iter = 1200, accuracy (cur) = 0.820000 (all), 0.791667 (pos), 0.846154 (neg)
iter = 1200, accuracy (avg) = 0.832380 (all), 0.830757 (pos), 0.834917 (neg)
data reader: epoch = 0, batch = 1201 / 4040
iter = 1201, cls_loss (cur) = 0.386485, cls_loss (avg) = 0.376274, lr = 0.010000
iter = 1201, accuracy (cur) = 0.880000 (all), 0.838710 (pos), 0.947368 (neg)
iter = 1201, accuracy (avg) = 0.832856 (all), 0.830837 (pos), 0.836042 (neg)
data reader: epoch = 0, batch = 1202 / 4040
iter = 1202, cls_loss (cur) = 0.319808, cls_loss (avg) = 0.375709, lr = 0.010000
iter = 1202, accuracy (cur) = 0.840000 (all), 0.769231 (pos), 0.916667 (neg)
iter = 1202, accuracy (avg) = 0.832928 (all), 0.830221 (pos), 0.836848 (neg)
data reader: epoch = 0, batch = 1203 / 4040
iter = 1203, cls_loss (cur) = 0.512409, cls_loss (avg) = 0.377076, lr = 0.010000
iter = 1203, accuracy (cur) = 0.780000 (all), 0.846154 (pos), 0.708333 (neg)
iter = 1203, accuracy (avg) = 0.832398 (all), 0.830380 (pos), 0.835563 (neg)
data reader: epoch = 0, batch = 1204 / 4040
iter = 1204, cls_loss (cur) = 0.340976, cls_loss (avg) = 0.376715, lr = 0.010000
iter = 1204, accuracy (cur) = 0.860000 (all), 0.880000 (pos), 0.840000 (neg)
iter = 1204, accuracy (avg) = 0.832675 (all), 0.830876 (pos), 0.835607 (neg)
data reader: epoch = 0, batch = 1205 / 4040
iter = 1205, cls_loss (cur) = 0.420928, cls_loss (avg) = 0.377157, lr = 0.010000
iter = 1205, accuracy (cur) = 0.840000 (all), 0.884615 (pos), 0.791667 (neg)
iter = 1205, accuracy (avg) = 0.832748 (all), 0.831414 (pos), 0.835168 (neg)
data reader: epoch = 0, batch = 1206 / 4040
iter = 1206, cls_loss (cur) = 0.342767, cls_loss (avg) = 0.376814, lr = 0.010000
iter = 1206, accuracy (cur) = 0.800000 (all), 0.800000 (pos), 0.800000 (neg)
iter = 1206, accuracy (avg) = 0.832420 (all), 0.831099 (pos), 0.834816 (neg)
data reader: epoch = 0, batch = 1207 / 4040
iter = 1207, cls_loss (cur) = 0.418531, cls_loss (avg) = 0.377231, lr = 0.010000
iter = 1207, accuracy (cur) = 0.780000 (all), 0.875000 (pos), 0.692308 (neg)
iter = 1207, accuracy (avg) = 0.831896 (all), 0.831538 (pos), 0.833391 (neg)
data reader: epoch = 0, batch = 1208 / 4040
iter = 1208, cls_loss (cur) = 0.268816, cls_loss (avg) = 0.376147, lr = 0.010000
iter = 1208, accuracy (cur) = 0.900000 (all), 0.954545 (pos), 0.857143 (neg)
iter = 1208, accuracy (avg) = 0.832577 (all), 0.832769 (pos), 0.833629 (neg)
data reader: epoch = 0, batch = 1209 / 4040
iter = 1209, cls_loss (cur) = 0.392509, cls_loss (avg) = 0.376310, lr = 0.010000
iter = 1209, accuracy (cur) = 0.840000 (all), 0.862069 (pos), 0.809524 (neg)
iter = 1209, accuracy (avg) = 0.832651 (all), 0.833062 (pos), 0.833388 (neg)
data reader: epoch = 0, batch = 1210 / 4040
iter = 1210, cls_loss (cur) = 0.430014, cls_loss (avg) = 0.376847, lr = 0.010000
iter = 1210, accuracy (cur) = 0.780000 (all), 0.782609 (pos), 0.777778 (neg)
iter = 1210, accuracy (avg) = 0.832125 (all), 0.832557 (pos), 0.832831 (neg)
data reader: epoch = 0, batch = 1211 / 4040
iter = 1211, cls_loss (cur) = 0.337778, cls_loss (avg) = 0.376457, lr = 0.010000
iter = 1211, accuracy (cur) = 0.860000 (all), 0.821429 (pos), 0.909091 (neg)
iter = 1211, accuracy (avg) = 0.832404 (all), 0.832446 (pos), 0.833594 (neg)
data reader: epoch = 0, batch = 1212 / 4040
iter = 1212, cls_loss (cur) = 0.358577, cls_loss (avg) = 0.376278, lr = 0.010000
iter = 1212, accuracy (cur) = 0.840000 (all), 0.894737 (pos), 0.806452 (neg)
iter = 1212, accuracy (avg) = 0.832480 (all), 0.833069 (pos), 0.833323 (neg)
data reader: epoch = 0, batch = 1213 / 4040
iter = 1213, cls_loss (cur) = 0.438487, cls_loss (avg) = 0.376900, lr = 0.010000
iter = 1213, accuracy (cur) = 0.840000 (all), 0.862069 (pos), 0.809524 (neg)
iter = 1213, accuracy (avg) = 0.832555 (all), 0.833359 (pos), 0.833085 (neg)
data reader: epoch = 0, batch = 1214 / 4040
iter = 1214, cls_loss (cur) = 0.387845, cls_loss (avg) = 0.377009, lr = 0.010000
iter = 1214, accuracy (cur) = 0.860000 (all), 0.821429 (pos), 0.909091 (neg)
iter = 1214, accuracy (avg) = 0.832829 (all), 0.833239 (pos), 0.833845 (neg)
data reader: epoch = 0, batch = 1215 / 4040
iter = 1215, cls_loss (cur) = 0.394380, cls_loss (avg) = 0.377183, lr = 0.010000
iter = 1215, accuracy (cur) = 0.800000 (all), 0.739130 (pos), 0.851852 (neg)
iter = 1215, accuracy (avg) = 0.832501 (all), 0.832298 (pos), 0.834025 (neg)
data reader: epoch = 0, batch = 1216 / 4040
iter = 1216, cls_loss (cur) = 0.404732, cls_loss (avg) = 0.377458, lr = 0.010000
iter = 1216, accuracy (cur) = 0.860000 (all), 0.916667 (pos), 0.714286 (neg)
iter = 1216, accuracy (avg) = 0.832776 (all), 0.833142 (pos), 0.832827 (neg)
data reader: epoch = 0, batch = 1217 / 4040
iter = 1217, cls_loss (cur) = 0.334910, cls_loss (avg) = 0.377033, lr = 0.010000
iter = 1217, accuracy (cur) = 0.900000 (all), 0.896552 (pos), 0.904762 (neg)
iter = 1217, accuracy (avg) = 0.833448 (all), 0.833776 (pos), 0.833547 (neg)
data reader: epoch = 0, batch = 1218 / 4040
iter = 1218, cls_loss (cur) = 0.412589, cls_loss (avg) = 0.377389, lr = 0.010000
iter = 1218, accuracy (cur) = 0.760000 (all), 0.913043 (pos), 0.629630 (neg)
iter = 1218, accuracy (avg) = 0.832714 (all), 0.834569 (pos), 0.831508 (neg)
data reader: epoch = 0, batch = 1219 / 4040
iter = 1219, cls_loss (cur) = 0.529601, cls_loss (avg) = 0.378911, lr = 0.010000
iter = 1219, accuracy (cur) = 0.700000 (all), 0.793103 (pos), 0.571429 (neg)
iter = 1219, accuracy (avg) = 0.831387 (all), 0.834154 (pos), 0.828907 (neg)
data reader: epoch = 0, batch = 1220 / 4040
iter = 1220, cls_loss (cur) = 0.385686, cls_loss (avg) = 0.378978, lr = 0.010000
iter = 1220, accuracy (cur) = 0.780000 (all), 0.892857 (pos), 0.636364 (neg)
iter = 1220, accuracy (avg) = 0.830873 (all), 0.834741 (pos), 0.826981 (neg)
data reader: epoch = 0, batch = 1221 / 4040
iter = 1221, cls_loss (cur) = 0.271734, cls_loss (avg) = 0.377906, lr = 0.010000
iter = 1221, accuracy (cur) = 0.940000 (all), 1.000000 (pos), 0.880000 (neg)
iter = 1221, accuracy (avg) = 0.831964 (all), 0.836394 (pos), 0.827511 (neg)
data reader: epoch = 0, batch = 1222 / 4040
iter = 1222, cls_loss (cur) = 0.314569, cls_loss (avg) = 0.377273, lr = 0.010000
iter = 1222, accuracy (cur) = 0.880000 (all), 0.960000 (pos), 0.800000 (neg)
iter = 1222, accuracy (avg) = 0.832444 (all), 0.837630 (pos), 0.827236 (neg)
data reader: epoch = 0, batch = 1223 / 4040
iter = 1223, cls_loss (cur) = 0.456998, cls_loss (avg) = 0.378070, lr = 0.010000
iter = 1223, accuracy (cur) = 0.760000 (all), 0.814815 (pos), 0.695652 (neg)
iter = 1223, accuracy (avg) = 0.831720 (all), 0.837402 (pos), 0.825921 (neg)
data reader: epoch = 0, batch = 1224 / 4040
iter = 1224, cls_loss (cur) = 0.277987, cls_loss (avg) = 0.377069, lr = 0.010000
iter = 1224, accuracy (cur) = 0.920000 (all), 0.869565 (pos), 0.962963 (neg)
iter = 1224, accuracy (avg) = 0.832603 (all), 0.837723 (pos), 0.827291 (neg)
data reader: epoch = 0, batch = 1225 / 4040
iter = 1225, cls_loss (cur) = 0.438203, cls_loss (avg) = 0.377680, lr = 0.010000
iter = 1225, accuracy (cur) = 0.760000 (all), 0.793103 (pos), 0.714286 (neg)
iter = 1225, accuracy (avg) = 0.831877 (all), 0.837277 (pos), 0.826161 (neg)
data reader: epoch = 0, batch = 1226 / 4040
iter = 1226, cls_loss (cur) = 0.434147, cls_loss (avg) = 0.378245, lr = 0.010000
iter = 1226, accuracy (cur) = 0.800000 (all), 0.851852 (pos), 0.739130 (neg)
iter = 1226, accuracy (avg) = 0.831558 (all), 0.837423 (pos), 0.825291 (neg)
data reader: epoch = 0, batch = 1227 / 4040
iter = 1227, cls_loss (cur) = 0.271536, cls_loss (avg) = 0.377178, lr = 0.010000
iter = 1227, accuracy (cur) = 0.900000 (all), 0.894737 (pos), 0.903226 (neg)
iter = 1227, accuracy (avg) = 0.832242 (all), 0.837996 (pos), 0.826070 (neg)
data reader: epoch = 0, batch = 1228 / 4040
iter = 1228, cls_loss (cur) = 0.302717, cls_loss (avg) = 0.376433, lr = 0.010000
iter = 1228, accuracy (cur) = 0.880000 (all), 0.833333 (pos), 0.906250 (neg)
iter = 1228, accuracy (avg) = 0.832720 (all), 0.837949 (pos), 0.826872 (neg)
data reader: epoch = 0, batch = 1229 / 4040
iter = 1229, cls_loss (cur) = 0.404431, cls_loss (avg) = 0.376713, lr = 0.010000
iter = 1229, accuracy (cur) = 0.860000 (all), 0.875000 (pos), 0.846154 (neg)
iter = 1229, accuracy (avg) = 0.832993 (all), 0.838320 (pos), 0.827065 (neg)
data reader: epoch = 0, batch = 1230 / 4040
iter = 1230, cls_loss (cur) = 0.307448, cls_loss (avg) = 0.376021, lr = 0.010000
iter = 1230, accuracy (cur) = 0.880000 (all), 0.880000 (pos), 0.880000 (neg)
iter = 1230, accuracy (avg) = 0.833463 (all), 0.838737 (pos), 0.827594 (neg)
data reader: epoch = 0, batch = 1231 / 4040
iter = 1231, cls_loss (cur) = 0.370611, cls_loss (avg) = 0.375967, lr = 0.010000
iter = 1231, accuracy (cur) = 0.860000 (all), 0.818182 (pos), 0.941176 (neg)
iter = 1231, accuracy (avg) = 0.833728 (all), 0.838531 (pos), 0.828730 (neg)
data reader: epoch = 0, batch = 1232 / 4040
iter = 1232, cls_loss (cur) = 0.419400, cls_loss (avg) = 0.376401, lr = 0.010000
iter = 1232, accuracy (cur) = 0.800000 (all), 0.833333 (pos), 0.769231 (neg)
iter = 1232, accuracy (avg) = 0.833391 (all), 0.838479 (pos), 0.828135 (neg)
data reader: epoch = 0, batch = 1233 / 4040
iter = 1233, cls_loss (cur) = 0.259170, cls_loss (avg) = 0.375229, lr = 0.010000
iter = 1233, accuracy (cur) = 0.900000 (all), 0.909091 (pos), 0.892857 (neg)
iter = 1233, accuracy (avg) = 0.834057 (all), 0.839185 (pos), 0.828782 (neg)
data reader: epoch = 0, batch = 1234 / 4040
iter = 1234, cls_loss (cur) = 0.243816, cls_loss (avg) = 0.373914, lr = 0.010000
iter = 1234, accuracy (cur) = 0.920000 (all), 0.966667 (pos), 0.850000 (neg)
iter = 1234, accuracy (avg) = 0.834916 (all), 0.840460 (pos), 0.828994 (neg)
data reader: epoch = 0, batch = 1235 / 4040
iter = 1235, cls_loss (cur) = 0.354734, cls_loss (avg) = 0.373723, lr = 0.010000
iter = 1235, accuracy (cur) = 0.860000 (all), 0.888889 (pos), 0.826087 (neg)
iter = 1235, accuracy (avg) = 0.835167 (all), 0.840944 (pos), 0.828965 (neg)
data reader: epoch = 0, batch = 1236 / 4040
iter = 1236, cls_loss (cur) = 0.388317, cls_loss (avg) = 0.373869, lr = 0.010000
iter = 1236, accuracy (cur) = 0.860000 (all), 0.892857 (pos), 0.818182 (neg)
iter = 1236, accuracy (avg) = 0.835416 (all), 0.841463 (pos), 0.828857 (neg)
data reader: epoch = 0, batch = 1237 / 4040
iter = 1237, cls_loss (cur) = 0.340062, cls_loss (avg) = 0.373531, lr = 0.010000
iter = 1237, accuracy (cur) = 0.780000 (all), 0.789474 (pos), 0.774194 (neg)
iter = 1237, accuracy (avg) = 0.834861 (all), 0.840944 (pos), 0.828311 (neg)
data reader: epoch = 0, batch = 1238 / 4040
iter = 1238, cls_loss (cur) = 0.289519, cls_loss (avg) = 0.372690, lr = 0.010000
iter = 1238, accuracy (cur) = 0.900000 (all), 0.931034 (pos), 0.857143 (neg)
iter = 1238, accuracy (avg) = 0.835513 (all), 0.841844 (pos), 0.828599 (neg)
data reader: epoch = 0, batch = 1239 / 4040
iter = 1239, cls_loss (cur) = 0.268231, cls_loss (avg) = 0.371646, lr = 0.010000
iter = 1239, accuracy (cur) = 0.920000 (all), 0.954545 (pos), 0.892857 (neg)
iter = 1239, accuracy (avg) = 0.836358 (all), 0.842971 (pos), 0.829242 (neg)
data reader: epoch = 0, batch = 1240 / 4040
iter = 1240, cls_loss (cur) = 0.429655, cls_loss (avg) = 0.372226, lr = 0.010000
iter = 1240, accuracy (cur) = 0.840000 (all), 0.736842 (pos), 0.903226 (neg)
iter = 1240, accuracy (avg) = 0.836394 (all), 0.841910 (pos), 0.829981 (neg)
data reader: epoch = 0, batch = 1241 / 4040
iter = 1241, cls_loss (cur) = 0.390630, cls_loss (avg) = 0.372410, lr = 0.010000
iter = 1241, accuracy (cur) = 0.840000 (all), 0.793103 (pos), 0.904762 (neg)
iter = 1241, accuracy (avg) = 0.836430 (all), 0.841422 (pos), 0.830729 (neg)
data reader: epoch = 0, batch = 1242 / 4040
iter = 1242, cls_loss (cur) = 0.400300, cls_loss (avg) = 0.372689, lr = 0.010000
iter = 1242, accuracy (cur) = 0.820000 (all), 0.821429 (pos), 0.818182 (neg)
iter = 1242, accuracy (avg) = 0.836266 (all), 0.841222 (pos), 0.830604 (neg)
data reader: epoch = 0, batch = 1243 / 4040
iter = 1243, cls_loss (cur) = 0.421951, cls_loss (avg) = 0.373181, lr = 0.010000
iter = 1243, accuracy (cur) = 0.760000 (all), 0.724138 (pos), 0.809524 (neg)
iter = 1243, accuracy (avg) = 0.835503 (all), 0.840051 (pos), 0.830393 (neg)
data reader: epoch = 0, batch = 1244 / 4040
iter = 1244, cls_loss (cur) = 0.485407, cls_loss (avg) = 0.374304, lr = 0.010000
iter = 1244, accuracy (cur) = 0.780000 (all), 0.625000 (pos), 0.923077 (neg)
iter = 1244, accuracy (avg) = 0.834948 (all), 0.837901 (pos), 0.831320 (neg)
data reader: epoch = 0, batch = 1245 / 4040
iter = 1245, cls_loss (cur) = 0.409897, cls_loss (avg) = 0.374660, lr = 0.010000
iter = 1245, accuracy (cur) = 0.840000 (all), 0.777778 (pos), 0.913043 (neg)
iter = 1245, accuracy (avg) = 0.834999 (all), 0.837300 (pos), 0.832137 (neg)
data reader: epoch = 0, batch = 1246 / 4040
iter = 1246, cls_loss (cur) = 0.494454, cls_loss (avg) = 0.375858, lr = 0.010000
iter = 1246, accuracy (cur) = 0.760000 (all), 0.888889 (pos), 0.608696 (neg)
iter = 1246, accuracy (avg) = 0.834249 (all), 0.837815 (pos), 0.829903 (neg)
data reader: epoch = 0, batch = 1247 / 4040
iter = 1247, cls_loss (cur) = 0.426324, cls_loss (avg) = 0.376362, lr = 0.010000
iter = 1247, accuracy (cur) = 0.740000 (all), 0.739130 (pos), 0.740741 (neg)
iter = 1247, accuracy (avg) = 0.833306 (all), 0.836829 (pos), 0.829011 (neg)
data reader: epoch = 0, batch = 1248 / 4040
iter = 1248, cls_loss (cur) = 0.406856, cls_loss (avg) = 0.376667, lr = 0.010000
iter = 1248, accuracy (cur) = 0.820000 (all), 0.851852 (pos), 0.782609 (neg)
iter = 1248, accuracy (avg) = 0.833173 (all), 0.836979 (pos), 0.828547 (neg)
data reader: epoch = 0, batch = 1249 / 4040
iter = 1249, cls_loss (cur) = 0.372157, cls_loss (avg) = 0.376622, lr = 0.010000
iter = 1249, accuracy (cur) = 0.780000 (all), 0.821429 (pos), 0.727273 (neg)
iter = 1249, accuracy (avg) = 0.832641 (all), 0.836823 (pos), 0.827534 (neg)
data reader: epoch = 0, batch = 1250 / 4040
iter = 1250, cls_loss (cur) = 0.614647, cls_loss (avg) = 0.379002, lr = 0.010000
iter = 1250, accuracy (cur) = 0.660000 (all), 0.619048 (pos), 0.689655 (neg)
iter = 1250, accuracy (avg) = 0.830915 (all), 0.834646 (pos), 0.826155 (neg)
data reader: epoch = 0, batch = 1251 / 4040
iter = 1251, cls_loss (cur) = 0.425837, cls_loss (avg) = 0.379471, lr = 0.010000
iter = 1251, accuracy (cur) = 0.780000 (all), 0.818182 (pos), 0.750000 (neg)
iter = 1251, accuracy (avg) = 0.830406 (all), 0.834481 (pos), 0.825394 (neg)
data reader: epoch = 0, batch = 1252 / 4040
iter = 1252, cls_loss (cur) = 0.360779, cls_loss (avg) = 0.379284, lr = 0.010000
iter = 1252, accuracy (cur) = 0.860000 (all), 0.714286 (pos), 0.916667 (neg)
iter = 1252, accuracy (avg) = 0.830702 (all), 0.833279 (pos), 0.826307 (neg)
data reader: epoch = 0, batch = 1253 / 4040
iter = 1253, cls_loss (cur) = 0.290206, cls_loss (avg) = 0.378393, lr = 0.010000
iter = 1253, accuracy (cur) = 0.900000 (all), 0.851852 (pos), 0.956522 (neg)
iter = 1253, accuracy (avg) = 0.831395 (all), 0.833465 (pos), 0.827609 (neg)
data reader: epoch = 0, batch = 1254 / 4040
iter = 1254, cls_loss (cur) = 0.295190, cls_loss (avg) = 0.377561, lr = 0.010000
iter = 1254, accuracy (cur) = 0.900000 (all), 0.818182 (pos), 0.964286 (neg)
iter = 1254, accuracy (avg) = 0.832081 (all), 0.833312 (pos), 0.828975 (neg)
data reader: epoch = 0, batch = 1255 / 4040
iter = 1255, cls_loss (cur) = 0.355885, cls_loss (avg) = 0.377344, lr = 0.010000
iter = 1255, accuracy (cur) = 0.860000 (all), 0.769231 (pos), 0.958333 (neg)
iter = 1255, accuracy (avg) = 0.832360 (all), 0.832671 (pos), 0.830269 (neg)
data reader: epoch = 0, batch = 1256 / 4040
iter = 1256, cls_loss (cur) = 0.376393, cls_loss (avg) = 0.377335, lr = 0.010000
iter = 1256, accuracy (cur) = 0.860000 (all), 0.862069 (pos), 0.857143 (neg)
iter = 1256, accuracy (avg) = 0.832636 (all), 0.832965 (pos), 0.830538 (neg)
data reader: epoch = 0, batch = 1257 / 4040
iter = 1257, cls_loss (cur) = 0.427014, cls_loss (avg) = 0.377831, lr = 0.010000
iter = 1257, accuracy (cur) = 0.760000 (all), 0.741935 (pos), 0.789474 (neg)
iter = 1257, accuracy (avg) = 0.831910 (all), 0.832055 (pos), 0.830127 (neg)
data reader: epoch = 0, batch = 1258 / 4040
iter = 1258, cls_loss (cur) = 0.522087, cls_loss (avg) = 0.379274, lr = 0.010000
iter = 1258, accuracy (cur) = 0.780000 (all), 0.826087 (pos), 0.740741 (neg)
iter = 1258, accuracy (avg) = 0.831391 (all), 0.831995 (pos), 0.829233 (neg)
data reader: epoch = 0, batch = 1259 / 4040
iter = 1259, cls_loss (cur) = 0.358862, cls_loss (avg) = 0.379070, lr = 0.010000
iter = 1259, accuracy (cur) = 0.800000 (all), 0.821429 (pos), 0.772727 (neg)
iter = 1259, accuracy (avg) = 0.831077 (all), 0.831889 (pos), 0.828668 (neg)
data reader: epoch = 0, batch = 1260 / 4040
iter = 1260, cls_loss (cur) = 0.369953, cls_loss (avg) = 0.378979, lr = 0.010000
iter = 1260, accuracy (cur) = 0.900000 (all), 0.967742 (pos), 0.789474 (neg)
iter = 1260, accuracy (avg) = 0.831766 (all), 0.833248 (pos), 0.828276 (neg)
data reader: epoch = 0, batch = 1261 / 4040
iter = 1261, cls_loss (cur) = 0.382605, cls_loss (avg) = 0.379015, lr = 0.010000
iter = 1261, accuracy (cur) = 0.800000 (all), 0.888889 (pos), 0.695652 (neg)
iter = 1261, accuracy (avg) = 0.831449 (all), 0.833804 (pos), 0.826950 (neg)
data reader: epoch = 0, batch = 1262 / 4040
iter = 1262, cls_loss (cur) = 0.406530, cls_loss (avg) = 0.379290, lr = 0.010000
iter = 1262, accuracy (cur) = 0.760000 (all), 0.916667 (pos), 0.615385 (neg)
iter = 1262, accuracy (avg) = 0.830734 (all), 0.834633 (pos), 0.824834 (neg)
data reader: epoch = 0, batch = 1263 / 4040
iter = 1263, cls_loss (cur) = 0.324600, cls_loss (avg) = 0.378743, lr = 0.010000
iter = 1263, accuracy (cur) = 0.860000 (all), 0.916667 (pos), 0.807692 (neg)
iter = 1263, accuracy (avg) = 0.831027 (all), 0.835453 (pos), 0.824663 (neg)
data reader: epoch = 0, batch = 1264 / 4040
iter = 1264, cls_loss (cur) = 0.452373, cls_loss (avg) = 0.379480, lr = 0.010000
iter = 1264, accuracy (cur) = 0.780000 (all), 0.741935 (pos), 0.842105 (neg)
iter = 1264, accuracy (avg) = 0.830516 (all), 0.834518 (pos), 0.824837 (neg)
data reader: epoch = 0, batch = 1265 / 4040
iter = 1265, cls_loss (cur) = 0.347510, cls_loss (avg) = 0.379160, lr = 0.010000
iter = 1265, accuracy (cur) = 0.860000 (all), 0.956522 (pos), 0.777778 (neg)
iter = 1265, accuracy (avg) = 0.830811 (all), 0.835738 (pos), 0.824367 (neg)
data reader: epoch = 0, batch = 1266 / 4040
iter = 1266, cls_loss (cur) = 0.400263, cls_loss (avg) = 0.379371, lr = 0.010000
iter = 1266, accuracy (cur) = 0.860000 (all), 0.884615 (pos), 0.833333 (neg)
iter = 1266, accuracy (avg) = 0.831103 (all), 0.836227 (pos), 0.824456 (neg)
data reader: epoch = 0, batch = 1267 / 4040
iter = 1267, cls_loss (cur) = 0.359129, cls_loss (avg) = 0.379168, lr = 0.010000
iter = 1267, accuracy (cur) = 0.820000 (all), 0.840000 (pos), 0.800000 (neg)
iter = 1267, accuracy (avg) = 0.830992 (all), 0.836265 (pos), 0.824212 (neg)
data reader: epoch = 0, batch = 1268 / 4040
iter = 1268, cls_loss (cur) = 0.417547, cls_loss (avg) = 0.379552, lr = 0.010000
iter = 1268, accuracy (cur) = 0.760000 (all), 0.843750 (pos), 0.611111 (neg)
iter = 1268, accuracy (avg) = 0.830282 (all), 0.836340 (pos), 0.822081 (neg)
data reader: epoch = 0, batch = 1269 / 4040
iter = 1269, cls_loss (cur) = 0.248158, cls_loss (avg) = 0.378238, lr = 0.010000
iter = 1269, accuracy (cur) = 0.940000 (all), 0.933333 (pos), 0.950000 (neg)
iter = 1269, accuracy (avg) = 0.831379 (all), 0.837309 (pos), 0.823360 (neg)
data reader: epoch = 0, batch = 1270 / 4040
iter = 1270, cls_loss (cur) = 0.357747, cls_loss (avg) = 0.378033, lr = 0.010000
iter = 1270, accuracy (cur) = 0.880000 (all), 0.840000 (pos), 0.920000 (neg)
iter = 1270, accuracy (avg) = 0.831866 (all), 0.837336 (pos), 0.824326 (neg)
data reader: epoch = 0, batch = 1271 / 4040
iter = 1271, cls_loss (cur) = 0.416851, cls_loss (avg) = 0.378422, lr = 0.010000
iter = 1271, accuracy (cur) = 0.820000 (all), 0.761905 (pos), 0.862069 (neg)
iter = 1271, accuracy (avg) = 0.831747 (all), 0.836582 (pos), 0.824704 (neg)
data reader: epoch = 0, batch = 1272 / 4040
iter = 1272, cls_loss (cur) = 0.311699, cls_loss (avg) = 0.377754, lr = 0.010000
iter = 1272, accuracy (cur) = 0.860000 (all), 0.962963 (pos), 0.739130 (neg)
iter = 1272, accuracy (avg) = 0.832029 (all), 0.837846 (pos), 0.823848 (neg)
data reader: epoch = 0, batch = 1273 / 4040
iter = 1273, cls_loss (cur) = 0.385982, cls_loss (avg) = 0.377837, lr = 0.010000
iter = 1273, accuracy (cur) = 0.760000 (all), 0.730769 (pos), 0.791667 (neg)
iter = 1273, accuracy (avg) = 0.831309 (all), 0.836775 (pos), 0.823526 (neg)
data reader: epoch = 0, batch = 1274 / 4040
iter = 1274, cls_loss (cur) = 0.448124, cls_loss (avg) = 0.378540, lr = 0.010000
iter = 1274, accuracy (cur) = 0.800000 (all), 0.904762 (pos), 0.724138 (neg)
iter = 1274, accuracy (avg) = 0.830996 (all), 0.837455 (pos), 0.822532 (neg)
data reader: epoch = 0, batch = 1275 / 4040
iter = 1275, cls_loss (cur) = 0.367179, cls_loss (avg) = 0.378426, lr = 0.010000
iter = 1275, accuracy (cur) = 0.820000 (all), 0.806452 (pos), 0.842105 (neg)
iter = 1275, accuracy (avg) = 0.830886 (all), 0.837145 (pos), 0.822728 (neg)
data reader: epoch = 0, batch = 1276 / 4040
iter = 1276, cls_loss (cur) = 0.348025, cls_loss (avg) = 0.378122, lr = 0.010000
iter = 1276, accuracy (cur) = 0.860000 (all), 0.875000 (pos), 0.846154 (neg)
iter = 1276, accuracy (avg) = 0.831177 (all), 0.837523 (pos), 0.822962 (neg)
data reader: epoch = 0, batch = 1277 / 4040
iter = 1277, cls_loss (cur) = 0.395831, cls_loss (avg) = 0.378299, lr = 0.010000
iter = 1277, accuracy (cur) = 0.740000 (all), 0.708333 (pos), 0.769231 (neg)
iter = 1277, accuracy (avg) = 0.830266 (all), 0.836232 (pos), 0.822425 (neg)
data reader: epoch = 0, batch = 1278 / 4040
iter = 1278, cls_loss (cur) = 0.348611, cls_loss (avg) = 0.378002, lr = 0.010000
iter = 1278, accuracy (cur) = 0.900000 (all), 0.906250 (pos), 0.888889 (neg)
iter = 1278, accuracy (avg) = 0.830963 (all), 0.836932 (pos), 0.823090 (neg)
data reader: epoch = 0, batch = 1279 / 4040
iter = 1279, cls_loss (cur) = 0.393888, cls_loss (avg) = 0.378161, lr = 0.010000
iter = 1279, accuracy (cur) = 0.800000 (all), 0.827586 (pos), 0.761905 (neg)
iter = 1279, accuracy (avg) = 0.830653 (all), 0.836838 (pos), 0.822478 (neg)
data reader: epoch = 0, batch = 1280 / 4040
iter = 1280, cls_loss (cur) = 0.468845, cls_loss (avg) = 0.379068, lr = 0.010000
iter = 1280, accuracy (cur) = 0.760000 (all), 0.652174 (pos), 0.851852 (neg)
iter = 1280, accuracy (avg) = 0.829947 (all), 0.834992 (pos), 0.822772 (neg)
data reader: epoch = 0, batch = 1281 / 4040
iter = 1281, cls_loss (cur) = 0.386367, cls_loss (avg) = 0.379141, lr = 0.010000
iter = 1281, accuracy (cur) = 0.800000 (all), 0.850000 (pos), 0.766667 (neg)
iter = 1281, accuracy (avg) = 0.829647 (all), 0.835142 (pos), 0.822211 (neg)
data reader: epoch = 0, batch = 1282 / 4040
iter = 1282, cls_loss (cur) = 0.261709, cls_loss (avg) = 0.377966, lr = 0.010000
iter = 1282, accuracy (cur) = 0.940000 (all), 0.904762 (pos), 0.965517 (neg)
iter = 1282, accuracy (avg) = 0.830751 (all), 0.835838 (pos), 0.823644 (neg)
data reader: epoch = 0, batch = 1283 / 4040
iter = 1283, cls_loss (cur) = 0.303748, cls_loss (avg) = 0.377224, lr = 0.010000
iter = 1283, accuracy (cur) = 0.880000 (all), 0.960000 (pos), 0.800000 (neg)
iter = 1283, accuracy (avg) = 0.831243 (all), 0.837080 (pos), 0.823407 (neg)
data reader: epoch = 0, batch = 1284 / 4040
iter = 1284, cls_loss (cur) = 0.248522, cls_loss (avg) = 0.375937, lr = 0.010000
iter = 1284, accuracy (cur) = 0.920000 (all), 0.850000 (pos), 0.966667 (neg)
iter = 1284, accuracy (avg) = 0.832131 (all), 0.837209 (pos), 0.824840 (neg)
data reader: epoch = 0, batch = 1285 / 4040
iter = 1285, cls_loss (cur) = 0.241012, cls_loss (avg) = 0.374588, lr = 0.010000
iter = 1285, accuracy (cur) = 0.940000 (all), 1.000000 (pos), 0.892857 (neg)
iter = 1285, accuracy (avg) = 0.833210 (all), 0.838837 (pos), 0.825520 (neg)
data reader: epoch = 0, batch = 1286 / 4040
iter = 1286, cls_loss (cur) = 0.360506, cls_loss (avg) = 0.374447, lr = 0.010000
iter = 1286, accuracy (cur) = 0.820000 (all), 0.772727 (pos), 0.857143 (neg)
iter = 1286, accuracy (avg) = 0.833077 (all), 0.838176 (pos), 0.825836 (neg)
data reader: epoch = 0, batch = 1287 / 4040
iter = 1287, cls_loss (cur) = 0.316659, cls_loss (avg) = 0.373869, lr = 0.010000
iter = 1287, accuracy (cur) = 0.880000 (all), 0.863636 (pos), 0.892857 (neg)
iter = 1287, accuracy (avg) = 0.833547 (all), 0.838430 (pos), 0.826506 (neg)
data reader: epoch = 0, batch = 1288 / 4040
iter = 1288, cls_loss (cur) = 0.534749, cls_loss (avg) = 0.375478, lr = 0.010000
iter = 1288, accuracy (cur) = 0.740000 (all), 0.772727 (pos), 0.714286 (neg)
iter = 1288, accuracy (avg) = 0.832611 (all), 0.837773 (pos), 0.825384 (neg)
data reader: epoch = 0, batch = 1289 / 4040
iter = 1289, cls_loss (cur) = 0.376091, cls_loss (avg) = 0.375484, lr = 0.010000
iter = 1289, accuracy (cur) = 0.800000 (all), 0.826087 (pos), 0.777778 (neg)
iter = 1289, accuracy (avg) = 0.832285 (all), 0.837656 (pos), 0.824908 (neg)
data reader: epoch = 0, batch = 1290 / 4040
iter = 1290, cls_loss (cur) = 0.466927, cls_loss (avg) = 0.376399, lr = 0.010000
iter = 1290, accuracy (cur) = 0.820000 (all), 0.680000 (pos), 0.960000 (neg)
iter = 1290, accuracy (avg) = 0.832162 (all), 0.836080 (pos), 0.826259 (neg)
data reader: epoch = 0, batch = 1291 / 4040
iter = 1291, cls_loss (cur) = 0.403337, cls_loss (avg) = 0.376668, lr = 0.010000
iter = 1291, accuracy (cur) = 0.820000 (all), 0.730769 (pos), 0.916667 (neg)
iter = 1291, accuracy (avg) = 0.832041 (all), 0.835027 (pos), 0.827163 (neg)
data reader: epoch = 0, batch = 1292 / 4040
iter = 1292, cls_loss (cur) = 0.361128, cls_loss (avg) = 0.376513, lr = 0.010000
iter = 1292, accuracy (cur) = 0.820000 (all), 0.774194 (pos), 0.894737 (neg)
iter = 1292, accuracy (avg) = 0.831920 (all), 0.834418 (pos), 0.827839 (neg)
data reader: epoch = 0, batch = 1293 / 4040
iter = 1293, cls_loss (cur) = 0.263027, cls_loss (avg) = 0.375378, lr = 0.010000
iter = 1293, accuracy (cur) = 0.900000 (all), 0.863636 (pos), 0.928571 (neg)
iter = 1293, accuracy (avg) = 0.832601 (all), 0.834710 (pos), 0.828846 (neg)
data reader: epoch = 0, batch = 1294 / 4040
iter = 1294, cls_loss (cur) = 0.420418, cls_loss (avg) = 0.375828, lr = 0.010000
iter = 1294, accuracy (cur) = 0.740000 (all), 0.800000 (pos), 0.680000 (neg)
iter = 1294, accuracy (avg) = 0.831675 (all), 0.834363 (pos), 0.827358 (neg)
data reader: epoch = 0, batch = 1295 / 4040
iter = 1295, cls_loss (cur) = 0.323374, cls_loss (avg) = 0.375304, lr = 0.010000
iter = 1295, accuracy (cur) = 0.860000 (all), 0.888889 (pos), 0.843750 (neg)
iter = 1295, accuracy (avg) = 0.831958 (all), 0.834909 (pos), 0.827522 (neg)
data reader: epoch = 0, batch = 1296 / 4040
iter = 1296, cls_loss (cur) = 0.292397, cls_loss (avg) = 0.374475, lr = 0.010000
iter = 1296, accuracy (cur) = 0.860000 (all), 0.851852 (pos), 0.869565 (neg)
iter = 1296, accuracy (avg) = 0.832239 (all), 0.835078 (pos), 0.827942 (neg)
data reader: epoch = 0, batch = 1297 / 4040
iter = 1297, cls_loss (cur) = 0.301987, cls_loss (avg) = 0.373750, lr = 0.010000
iter = 1297, accuracy (cur) = 0.880000 (all), 0.960000 (pos), 0.800000 (neg)
iter = 1297, accuracy (avg) = 0.832716 (all), 0.836327 (pos), 0.827663 (neg)
data reader: epoch = 0, batch = 1298 / 4040
iter = 1298, cls_loss (cur) = 0.410072, cls_loss (avg) = 0.374113, lr = 0.010000
iter = 1298, accuracy (cur) = 0.820000 (all), 0.800000 (pos), 0.850000 (neg)
iter = 1298, accuracy (avg) = 0.832589 (all), 0.835964 (pos), 0.827886 (neg)
data reader: epoch = 0, batch = 1299 / 4040
iter = 1299, cls_loss (cur) = 0.393311, cls_loss (avg) = 0.374305, lr = 0.010000
iter = 1299, accuracy (cur) = 0.840000 (all), 0.791667 (pos), 0.884615 (neg)
iter = 1299, accuracy (avg) = 0.832663 (all), 0.835521 (pos), 0.828453 (neg)
data reader: epoch = 0, batch = 1300 / 4040
iter = 1300, cls_loss (cur) = 0.392286, cls_loss (avg) = 0.374485, lr = 0.010000
iter = 1300, accuracy (cur) = 0.800000 (all), 0.774194 (pos), 0.842105 (neg)
iter = 1300, accuracy (avg) = 0.832337 (all), 0.834908 (pos), 0.828590 (neg)
data reader: epoch = 0, batch = 1301 / 4040
iter = 1301, cls_loss (cur) = 0.246345, cls_loss (avg) = 0.373203, lr = 0.010000
iter = 1301, accuracy (cur) = 0.940000 (all), 0.958333 (pos), 0.923077 (neg)
iter = 1301, accuracy (avg) = 0.833413 (all), 0.836142 (pos), 0.829535 (neg)
data reader: epoch = 0, batch = 1302 / 4040
iter = 1302, cls_loss (cur) = 0.288898, cls_loss (avg) = 0.372360, lr = 0.010000
iter = 1302, accuracy (cur) = 0.860000 (all), 0.875000 (pos), 0.846154 (neg)
iter = 1302, accuracy (avg) = 0.833679 (all), 0.836531 (pos), 0.829701 (neg)
data reader: epoch = 0, batch = 1303 / 4040
iter = 1303, cls_loss (cur) = 0.380036, cls_loss (avg) = 0.372437, lr = 0.010000
iter = 1303, accuracy (cur) = 0.820000 (all), 0.818182 (pos), 0.821429 (neg)
iter = 1303, accuracy (avg) = 0.833542 (all), 0.836347 (pos), 0.829618 (neg)
data reader: epoch = 0, batch = 1304 / 4040
iter = 1304, cls_loss (cur) = 0.321492, cls_loss (avg) = 0.371928, lr = 0.010000
iter = 1304, accuracy (cur) = 0.840000 (all), 0.800000 (pos), 0.880000 (neg)
iter = 1304, accuracy (avg) = 0.833607 (all), 0.835984 (pos), 0.830122 (neg)
data reader: epoch = 0, batch = 1305 / 4040
iter = 1305, cls_loss (cur) = 0.410512, cls_loss (avg) = 0.372313, lr = 0.010000
iter = 1305, accuracy (cur) = 0.780000 (all), 0.761905 (pos), 0.793103 (neg)
iter = 1305, accuracy (avg) = 0.833071 (all), 0.835243 (pos), 0.829752 (neg)
data reader: epoch = 0, batch = 1306 / 4040
iter = 1306, cls_loss (cur) = 0.349482, cls_loss (avg) = 0.372085, lr = 0.010000
iter = 1306, accuracy (cur) = 0.760000 (all), 0.684211 (pos), 0.806452 (neg)
iter = 1306, accuracy (avg) = 0.832340 (all), 0.833733 (pos), 0.829519 (neg)
data reader: epoch = 0, batch = 1307 / 4040
iter = 1307, cls_loss (cur) = 0.372289, cls_loss (avg) = 0.372087, lr = 0.010000
iter = 1307, accuracy (cur) = 0.820000 (all), 0.722222 (pos), 0.875000 (neg)
iter = 1307, accuracy (avg) = 0.832217 (all), 0.832617 (pos), 0.829974 (neg)
data reader: epoch = 0, batch = 1308 / 4040
iter = 1308, cls_loss (cur) = 0.421366, cls_loss (avg) = 0.372580, lr = 0.010000
iter = 1308, accuracy (cur) = 0.760000 (all), 0.833333 (pos), 0.718750 (neg)
iter = 1308, accuracy (avg) = 0.831495 (all), 0.832625 (pos), 0.828861 (neg)
data reader: epoch = 0, batch = 1309 / 4040
iter = 1309, cls_loss (cur) = 0.395507, cls_loss (avg) = 0.372809, lr = 0.010000
iter = 1309, accuracy (cur) = 0.820000 (all), 0.760000 (pos), 0.880000 (neg)
iter = 1309, accuracy (avg) = 0.831380 (all), 0.831898 (pos), 0.829373 (neg)
data reader: epoch = 0, batch = 1310 / 4040
iter = 1310, cls_loss (cur) = 0.301699, cls_loss (avg) = 0.372098, lr = 0.010000
iter = 1310, accuracy (cur) = 0.880000 (all), 0.807692 (pos), 0.958333 (neg)
iter = 1310, accuracy (avg) = 0.831866 (all), 0.831656 (pos), 0.830662 (neg)
data reader: epoch = 0, batch = 1311 / 4040
iter = 1311, cls_loss (cur) = 0.235367, cls_loss (avg) = 0.370731, lr = 0.010000
iter = 1311, accuracy (cur) = 0.940000 (all), 0.920000 (pos), 0.960000 (neg)
iter = 1311, accuracy (avg) = 0.832947 (all), 0.832540 (pos), 0.831956 (neg)
data reader: epoch = 0, batch = 1312 / 4040
iter = 1312, cls_loss (cur) = 0.354840, cls_loss (avg) = 0.370572, lr = 0.010000
iter = 1312, accuracy (cur) = 0.760000 (all), 0.653846 (pos), 0.875000 (neg)
iter = 1312, accuracy (avg) = 0.832218 (all), 0.830753 (pos), 0.832386 (neg)
data reader: epoch = 0, batch = 1313 / 4040
iter = 1313, cls_loss (cur) = 0.266698, cls_loss (avg) = 0.369533, lr = 0.010000
iter = 1313, accuracy (cur) = 0.940000 (all), 0.933333 (pos), 0.950000 (neg)
iter = 1313, accuracy (avg) = 0.833295 (all), 0.831779 (pos), 0.833562 (neg)
data reader: epoch = 0, batch = 1314 / 4040
iter = 1314, cls_loss (cur) = 0.484680, cls_loss (avg) = 0.370685, lr = 0.010000
iter = 1314, accuracy (cur) = 0.720000 (all), 0.681818 (pos), 0.750000 (neg)
iter = 1314, accuracy (avg) = 0.832163 (all), 0.830279 (pos), 0.832727 (neg)
data reader: epoch = 0, batch = 1315 / 4040
iter = 1315, cls_loss (cur) = 0.429761, cls_loss (avg) = 0.371275, lr = 0.010000
iter = 1315, accuracy (cur) = 0.780000 (all), 0.666667 (pos), 0.884615 (neg)
iter = 1315, accuracy (avg) = 0.831641 (all), 0.828643 (pos), 0.833246 (neg)
data reader: epoch = 0, batch = 1316 / 4040
iter = 1316, cls_loss (cur) = 0.276948, cls_loss (avg) = 0.370332, lr = 0.010000
iter = 1316, accuracy (cur) = 0.900000 (all), 0.923077 (pos), 0.875000 (neg)
iter = 1316, accuracy (avg) = 0.832324 (all), 0.829587 (pos), 0.833663 (neg)
data reader: epoch = 0, batch = 1317 / 4040
iter = 1317, cls_loss (cur) = 0.327737, cls_loss (avg) = 0.369906, lr = 0.010000
iter = 1317, accuracy (cur) = 0.800000 (all), 0.920000 (pos), 0.680000 (neg)
iter = 1317, accuracy (avg) = 0.832001 (all), 0.830491 (pos), 0.832127 (neg)
data reader: epoch = 0, batch = 1318 / 4040
iter = 1318, cls_loss (cur) = 0.507807, cls_loss (avg) = 0.371285, lr = 0.010000
iter = 1318, accuracy (cur) = 0.720000 (all), 0.785714 (pos), 0.694444 (neg)
iter = 1318, accuracy (avg) = 0.830881 (all), 0.830044 (pos), 0.830750 (neg)
data reader: epoch = 0, batch = 1319 / 4040
iter = 1319, cls_loss (cur) = 0.303077, cls_loss (avg) = 0.370603, lr = 0.010000
iter = 1319, accuracy (cur) = 0.900000 (all), 0.933333 (pos), 0.850000 (neg)
iter = 1319, accuracy (avg) = 0.831572 (all), 0.831076 (pos), 0.830942 (neg)
data reader: epoch = 0, batch = 1320 / 4040
iter = 1320, cls_loss (cur) = 0.298960, cls_loss (avg) = 0.369887, lr = 0.010000
iter = 1320, accuracy (cur) = 0.840000 (all), 0.892857 (pos), 0.772727 (neg)
iter = 1320, accuracy (avg) = 0.831657 (all), 0.831694 (pos), 0.830360 (neg)
data reader: epoch = 0, batch = 1321 / 4040
iter = 1321, cls_loss (cur) = 0.392822, cls_loss (avg) = 0.370116, lr = 0.010000
iter = 1321, accuracy (cur) = 0.740000 (all), 0.750000 (pos), 0.727273 (neg)
iter = 1321, accuracy (avg) = 0.830740 (all), 0.830877 (pos), 0.829329 (neg)
data reader: epoch = 0, batch = 1322 / 4040
iter = 1322, cls_loss (cur) = 0.330667, cls_loss (avg) = 0.369722, lr = 0.010000
iter = 1322, accuracy (cur) = 0.860000 (all), 0.772727 (pos), 0.928571 (neg)
iter = 1322, accuracy (avg) = 0.831033 (all), 0.830296 (pos), 0.830322 (neg)
data reader: epoch = 0, batch = 1323 / 4040
iter = 1323, cls_loss (cur) = 0.353269, cls_loss (avg) = 0.369557, lr = 0.010000
iter = 1323, accuracy (cur) = 0.840000 (all), 0.863636 (pos), 0.821429 (neg)
iter = 1323, accuracy (avg) = 0.831122 (all), 0.830629 (pos), 0.830233 (neg)
data reader: epoch = 0, batch = 1324 / 4040
iter = 1324, cls_loss (cur) = 0.331303, cls_loss (avg) = 0.369174, lr = 0.010000
iter = 1324, accuracy (cur) = 0.860000 (all), 0.800000 (pos), 0.920000 (neg)
iter = 1324, accuracy (avg) = 0.831411 (all), 0.830323 (pos), 0.831130 (neg)
data reader: epoch = 0, batch = 1325 / 4040
iter = 1325, cls_loss (cur) = 0.349387, cls_loss (avg) = 0.368977, lr = 0.010000
iter = 1325, accuracy (cur) = 0.780000 (all), 0.678571 (pos), 0.909091 (neg)
iter = 1325, accuracy (avg) = 0.830897 (all), 0.828805 (pos), 0.831910 (neg)
data reader: epoch = 0, batch = 1326 / 4040
iter = 1326, cls_loss (cur) = 0.208995, cls_loss (avg) = 0.367377, lr = 0.010000
iter = 1326, accuracy (cur) = 0.960000 (all), 1.000000 (pos), 0.920000 (neg)
iter = 1326, accuracy (avg) = 0.832188 (all), 0.830517 (pos), 0.832791 (neg)
data reader: epoch = 0, batch = 1327 / 4040
iter = 1327, cls_loss (cur) = 0.304958, cls_loss (avg) = 0.366753, lr = 0.010000
iter = 1327, accuracy (cur) = 0.820000 (all), 0.766667 (pos), 0.900000 (neg)
iter = 1327, accuracy (avg) = 0.832066 (all), 0.829879 (pos), 0.833463 (neg)
data reader: epoch = 0, batch = 1328 / 4040
iter = 1328, cls_loss (cur) = 0.489859, cls_loss (avg) = 0.367984, lr = 0.010000
iter = 1328, accuracy (cur) = 0.800000 (all), 0.678571 (pos), 0.954545 (neg)
iter = 1328, accuracy (avg) = 0.831746 (all), 0.828366 (pos), 0.834674 (neg)
data reader: epoch = 0, batch = 1329 / 4040
iter = 1329, cls_loss (cur) = 0.514126, cls_loss (avg) = 0.369445, lr = 0.010000
iter = 1329, accuracy (cur) = 0.680000 (all), 0.687500 (pos), 0.676471 (neg)
iter = 1329, accuracy (avg) = 0.830228 (all), 0.826957 (pos), 0.833092 (neg)
data reader: epoch = 0, batch = 1330 / 4040
iter = 1330, cls_loss (cur) = 0.195424, cls_loss (avg) = 0.367705, lr = 0.010000
iter = 1330, accuracy (cur) = 0.960000 (all), 0.933333 (pos), 1.000000 (neg)
iter = 1330, accuracy (avg) = 0.831526 (all), 0.828021 (pos), 0.834761 (neg)
data reader: epoch = 0, batch = 1331 / 4040
iter = 1331, cls_loss (cur) = 0.497609, cls_loss (avg) = 0.369004, lr = 0.010000
iter = 1331, accuracy (cur) = 0.740000 (all), 0.807692 (pos), 0.666667 (neg)
iter = 1331, accuracy (avg) = 0.830611 (all), 0.827818 (pos), 0.833080 (neg)
data reader: epoch = 0, batch = 1332 / 4040
iter = 1332, cls_loss (cur) = 0.319331, cls_loss (avg) = 0.368507, lr = 0.010000
iter = 1332, accuracy (cur) = 0.840000 (all), 0.916667 (pos), 0.769231 (neg)
iter = 1332, accuracy (avg) = 0.830704 (all), 0.828706 (pos), 0.832441 (neg)
data reader: epoch = 0, batch = 1333 / 4040
iter = 1333, cls_loss (cur) = 0.450728, cls_loss (avg) = 0.369329, lr = 0.010000
iter = 1333, accuracy (cur) = 0.760000 (all), 0.850000 (pos), 0.700000 (neg)
iter = 1333, accuracy (avg) = 0.829997 (all), 0.828919 (pos), 0.831117 (neg)
data reader: epoch = 0, batch = 1334 / 4040
iter = 1334, cls_loss (cur) = 0.312553, cls_loss (avg) = 0.368762, lr = 0.010000
iter = 1334, accuracy (cur) = 0.860000 (all), 0.958333 (pos), 0.769231 (neg)
iter = 1334, accuracy (avg) = 0.830297 (all), 0.830213 (pos), 0.830498 (neg)
data reader: epoch = 0, batch = 1335 / 4040
iter = 1335, cls_loss (cur) = 0.543785, cls_loss (avg) = 0.370512, lr = 0.010000
iter = 1335, accuracy (cur) = 0.700000 (all), 0.652174 (pos), 0.740741 (neg)
iter = 1335, accuracy (avg) = 0.828994 (all), 0.828433 (pos), 0.829601 (neg)
data reader: epoch = 0, batch = 1336 / 4040
iter = 1336, cls_loss (cur) = 0.385861, cls_loss (avg) = 0.370665, lr = 0.010000
iter = 1336, accuracy (cur) = 0.760000 (all), 0.681818 (pos), 0.821429 (neg)
iter = 1336, accuracy (avg) = 0.828305 (all), 0.826967 (pos), 0.829519 (neg)
data reader: epoch = 0, batch = 1337 / 4040
iter = 1337, cls_loss (cur) = 0.433138, cls_loss (avg) = 0.371290, lr = 0.010000
iter = 1337, accuracy (cur) = 0.840000 (all), 0.791667 (pos), 0.884615 (neg)
iter = 1337, accuracy (avg) = 0.828421 (all), 0.826614 (pos), 0.830070 (neg)
data reader: epoch = 0, batch = 1338 / 4040
iter = 1338, cls_loss (cur) = 0.339679, cls_loss (avg) = 0.370974, lr = 0.010000
iter = 1338, accuracy (cur) = 0.880000 (all), 0.863636 (pos), 0.892857 (neg)
iter = 1338, accuracy (avg) = 0.828937 (all), 0.826984 (pos), 0.830698 (neg)
data reader: epoch = 0, batch = 1339 / 4040
iter = 1339, cls_loss (cur) = 0.417656, cls_loss (avg) = 0.371441, lr = 0.010000
iter = 1339, accuracy (cur) = 0.740000 (all), 0.500000 (pos), 0.928571 (neg)
iter = 1339, accuracy (avg) = 0.828048 (all), 0.823714 (pos), 0.831676 (neg)
data reader: epoch = 0, batch = 1340 / 4040
iter = 1340, cls_loss (cur) = 0.343194, cls_loss (avg) = 0.371158, lr = 0.010000
iter = 1340, accuracy (cur) = 0.800000 (all), 0.761905 (pos), 0.827586 (neg)
iter = 1340, accuracy (avg) = 0.827767 (all), 0.823096 (pos), 0.831636 (neg)
data reader: epoch = 0, batch = 1341 / 4040
iter = 1341, cls_loss (cur) = 0.261525, cls_loss (avg) = 0.370062, lr = 0.010000
iter = 1341, accuracy (cur) = 0.920000 (all), 0.880000 (pos), 0.960000 (neg)
iter = 1341, accuracy (avg) = 0.828690 (all), 0.823665 (pos), 0.832919 (neg)
data reader: epoch = 0, batch = 1342 / 4040
iter = 1342, cls_loss (cur) = 0.445034, cls_loss (avg) = 0.370812, lr = 0.010000
iter = 1342, accuracy (cur) = 0.780000 (all), 0.730769 (pos), 0.833333 (neg)
iter = 1342, accuracy (avg) = 0.828203 (all), 0.822736 (pos), 0.832923 (neg)
data reader: epoch = 0, batch = 1343 / 4040
iter = 1343, cls_loss (cur) = 0.365913, cls_loss (avg) = 0.370763, lr = 0.010000
iter = 1343, accuracy (cur) = 0.800000 (all), 0.652174 (pos), 0.925926 (neg)
iter = 1343, accuracy (avg) = 0.827921 (all), 0.821030 (pos), 0.833853 (neg)
data reader: epoch = 0, batch = 1344 / 4040
iter = 1344, cls_loss (cur) = 0.367848, cls_loss (avg) = 0.370734, lr = 0.010000
iter = 1344, accuracy (cur) = 0.840000 (all), 0.840000 (pos), 0.840000 (neg)
iter = 1344, accuracy (avg) = 0.828042 (all), 0.821220 (pos), 0.833915 (neg)
data reader: epoch = 0, batch = 1345 / 4040
iter = 1345, cls_loss (cur) = 0.339639, cls_loss (avg) = 0.370423, lr = 0.010000
iter = 1345, accuracy (cur) = 0.840000 (all), 0.875000 (pos), 0.807692 (neg)
iter = 1345, accuracy (avg) = 0.828161 (all), 0.821758 (pos), 0.833653 (neg)
data reader: epoch = 0, batch = 1346 / 4040
iter = 1346, cls_loss (cur) = 0.333379, cls_loss (avg) = 0.370052, lr = 0.010000
iter = 1346, accuracy (cur) = 0.900000 (all), 0.862069 (pos), 0.952381 (neg)
iter = 1346, accuracy (avg) = 0.828880 (all), 0.822161 (pos), 0.834840 (neg)
data reader: epoch = 0, batch = 1347 / 4040
iter = 1347, cls_loss (cur) = 0.378759, cls_loss (avg) = 0.370139, lr = 0.010000
iter = 1347, accuracy (cur) = 0.800000 (all), 0.730769 (pos), 0.875000 (neg)
iter = 1347, accuracy (avg) = 0.828591 (all), 0.821247 (pos), 0.835241 (neg)
data reader: epoch = 0, batch = 1348 / 4040
iter = 1348, cls_loss (cur) = 0.392461, cls_loss (avg) = 0.370362, lr = 0.010000
iter = 1348, accuracy (cur) = 0.780000 (all), 0.909091 (pos), 0.678571 (neg)
iter = 1348, accuracy (avg) = 0.828105 (all), 0.822126 (pos), 0.833675 (neg)
data reader: epoch = 0, batch = 1349 / 4040
iter = 1349, cls_loss (cur) = 0.401707, cls_loss (avg) = 0.370676, lr = 0.010000
iter = 1349, accuracy (cur) = 0.740000 (all), 0.730769 (pos), 0.750000 (neg)
iter = 1349, accuracy (avg) = 0.827224 (all), 0.821212 (pos), 0.832838 (neg)
data reader: epoch = 0, batch = 1350 / 4040
iter = 1350, cls_loss (cur) = 0.296144, cls_loss (avg) = 0.369931, lr = 0.010000
iter = 1350, accuracy (cur) = 0.800000 (all), 0.777778 (pos), 0.826087 (neg)
iter = 1350, accuracy (avg) = 0.826952 (all), 0.820778 (pos), 0.832771 (neg)
data reader: epoch = 0, batch = 1351 / 4040
iter = 1351, cls_loss (cur) = 0.253978, cls_loss (avg) = 0.368771, lr = 0.010000
iter = 1351, accuracy (cur) = 0.940000 (all), 0.925926 (pos), 0.956522 (neg)
iter = 1351, accuracy (avg) = 0.828082 (all), 0.821829 (pos), 0.834008 (neg)
data reader: epoch = 0, batch = 1352 / 4040
iter = 1352, cls_loss (cur) = 0.395032, cls_loss (avg) = 0.369034, lr = 0.010000
iter = 1352, accuracy (cur) = 0.820000 (all), 0.923077 (pos), 0.708333 (neg)
iter = 1352, accuracy (avg) = 0.828001 (all), 0.822842 (pos), 0.832751 (neg)
data reader: epoch = 0, batch = 1353 / 4040
iter = 1353, cls_loss (cur) = 0.192554, cls_loss (avg) = 0.367269, lr = 0.010000
iter = 1353, accuracy (cur) = 0.960000 (all), 1.000000 (pos), 0.923077 (neg)
iter = 1353, accuracy (avg) = 0.829321 (all), 0.824613 (pos), 0.833655 (neg)
data reader: epoch = 0, batch = 1354 / 4040
iter = 1354, cls_loss (cur) = 0.366761, cls_loss (avg) = 0.367264, lr = 0.010000
iter = 1354, accuracy (cur) = 0.840000 (all), 0.857143 (pos), 0.827586 (neg)
iter = 1354, accuracy (avg) = 0.829428 (all), 0.824938 (pos), 0.833594 (neg)
data reader: epoch = 0, batch = 1355 / 4040
iter = 1355, cls_loss (cur) = 0.339684, cls_loss (avg) = 0.366988, lr = 0.010000
iter = 1355, accuracy (cur) = 0.780000 (all), 0.777778 (pos), 0.782609 (neg)
iter = 1355, accuracy (avg) = 0.828934 (all), 0.824467 (pos), 0.833084 (neg)
data reader: epoch = 0, batch = 1356 / 4040
iter = 1356, cls_loss (cur) = 0.293490, cls_loss (avg) = 0.366253, lr = 0.010000
iter = 1356, accuracy (cur) = 0.900000 (all), 0.962963 (pos), 0.826087 (neg)
iter = 1356, accuracy (avg) = 0.829644 (all), 0.825852 (pos), 0.833014 (neg)
data reader: epoch = 0, batch = 1357 / 4040
iter = 1357, cls_loss (cur) = 0.358717, cls_loss (avg) = 0.366178, lr = 0.010000
iter = 1357, accuracy (cur) = 0.840000 (all), 0.869565 (pos), 0.814815 (neg)
iter = 1357, accuracy (avg) = 0.829748 (all), 0.826289 (pos), 0.832832 (neg)
data reader: epoch = 0, batch = 1358 / 4040
iter = 1358, cls_loss (cur) = 0.322747, cls_loss (avg) = 0.365743, lr = 0.010000
iter = 1358, accuracy (cur) = 0.860000 (all), 0.857143 (pos), 0.862069 (neg)
iter = 1358, accuracy (avg) = 0.830050 (all), 0.826597 (pos), 0.833124 (neg)
data reader: epoch = 0, batch = 1359 / 4040
iter = 1359, cls_loss (cur) = 0.508322, cls_loss (avg) = 0.367169, lr = 0.010000
iter = 1359, accuracy (cur) = 0.740000 (all), 0.708333 (pos), 0.769231 (neg)
iter = 1359, accuracy (avg) = 0.829150 (all), 0.825415 (pos), 0.832485 (neg)
data reader: epoch = 0, batch = 1360 / 4040
iter = 1360, cls_loss (cur) = 0.243986, cls_loss (avg) = 0.365937, lr = 0.010000
iter = 1360, accuracy (cur) = 0.960000 (all), 0.967742 (pos), 0.947368 (neg)
iter = 1360, accuracy (avg) = 0.830458 (all), 0.826838 (pos), 0.833634 (neg)
data reader: epoch = 0, batch = 1361 / 4040
iter = 1361, cls_loss (cur) = 0.506033, cls_loss (avg) = 0.367338, lr = 0.010000
iter = 1361, accuracy (cur) = 0.680000 (all), 0.586207 (pos), 0.809524 (neg)
iter = 1361, accuracy (avg) = 0.828954 (all), 0.824432 (pos), 0.833393 (neg)
data reader: epoch = 0, batch = 1362 / 4040
iter = 1362, cls_loss (cur) = 0.293746, cls_loss (avg) = 0.366602, lr = 0.010000
iter = 1362, accuracy (cur) = 0.880000 (all), 0.869565 (pos), 0.888889 (neg)
iter = 1362, accuracy (avg) = 0.829464 (all), 0.824883 (pos), 0.833948 (neg)
data reader: epoch = 0, batch = 1363 / 4040
iter = 1363, cls_loss (cur) = 0.291412, cls_loss (avg) = 0.365850, lr = 0.010000
iter = 1363, accuracy (cur) = 0.860000 (all), 0.875000 (pos), 0.846154 (neg)
iter = 1363, accuracy (avg) = 0.829770 (all), 0.825384 (pos), 0.834070 (neg)
data reader: epoch = 0, batch = 1364 / 4040
iter = 1364, cls_loss (cur) = 0.336917, cls_loss (avg) = 0.365561, lr = 0.010000
iter = 1364, accuracy (cur) = 0.820000 (all), 0.777778 (pos), 0.843750 (neg)
iter = 1364, accuracy (avg) = 0.829672 (all), 0.824908 (pos), 0.834167 (neg)
data reader: epoch = 0, batch = 1365 / 4040
iter = 1365, cls_loss (cur) = 0.378915, cls_loss (avg) = 0.365695, lr = 0.010000
iter = 1365, accuracy (cur) = 0.880000 (all), 0.923077 (pos), 0.833333 (neg)
iter = 1365, accuracy (avg) = 0.830175 (all), 0.825890 (pos), 0.834159 (neg)
data reader: epoch = 0, batch = 1366 / 4040
iter = 1366, cls_loss (cur) = 0.320436, cls_loss (avg) = 0.365242, lr = 0.010000
iter = 1366, accuracy (cur) = 0.820000 (all), 0.833333 (pos), 0.807692 (neg)
iter = 1366, accuracy (avg) = 0.830074 (all), 0.825964 (pos), 0.833894 (neg)
data reader: epoch = 0, batch = 1367 / 4040
iter = 1367, cls_loss (cur) = 0.338021, cls_loss (avg) = 0.364970, lr = 0.010000
iter = 1367, accuracy (cur) = 0.840000 (all), 0.818182 (pos), 0.857143 (neg)
iter = 1367, accuracy (avg) = 0.830173 (all), 0.825887 (pos), 0.834126 (neg)
data reader: epoch = 0, batch = 1368 / 4040
iter = 1368, cls_loss (cur) = 0.430946, cls_loss (avg) = 0.365630, lr = 0.010000
iter = 1368, accuracy (cur) = 0.780000 (all), 0.739130 (pos), 0.814815 (neg)
iter = 1368, accuracy (avg) = 0.829671 (all), 0.825019 (pos), 0.833933 (neg)
data reader: epoch = 0, batch = 1369 / 4040
iter = 1369, cls_loss (cur) = 0.313259, cls_loss (avg) = 0.365106, lr = 0.010000
iter = 1369, accuracy (cur) = 0.880000 (all), 0.947368 (pos), 0.838710 (neg)
iter = 1369, accuracy (avg) = 0.830174 (all), 0.826242 (pos), 0.833981 (neg)
data reader: epoch = 0, batch = 1370 / 4040
iter = 1370, cls_loss (cur) = 0.226881, cls_loss (avg) = 0.363724, lr = 0.010000
iter = 1370, accuracy (cur) = 0.960000 (all), 0.909091 (pos), 1.000000 (neg)
iter = 1370, accuracy (avg) = 0.831473 (all), 0.827071 (pos), 0.835641 (neg)
data reader: epoch = 0, batch = 1371 / 4040
iter = 1371, cls_loss (cur) = 0.373208, cls_loss (avg) = 0.363818, lr = 0.010000
iter = 1371, accuracy (cur) = 0.840000 (all), 0.793103 (pos), 0.904762 (neg)
iter = 1371, accuracy (avg) = 0.831558 (all), 0.826731 (pos), 0.836333 (neg)
data reader: epoch = 0, batch = 1372 / 4040
iter = 1372, cls_loss (cur) = 0.438751, cls_loss (avg) = 0.364568, lr = 0.010000
iter = 1372, accuracy (cur) = 0.740000 (all), 0.720000 (pos), 0.760000 (neg)
iter = 1372, accuracy (avg) = 0.830642 (all), 0.825664 (pos), 0.835569 (neg)
data reader: epoch = 0, batch = 1373 / 4040
iter = 1373, cls_loss (cur) = 0.355926, cls_loss (avg) = 0.364481, lr = 0.010000
iter = 1373, accuracy (cur) = 0.840000 (all), 0.851852 (pos), 0.826087 (neg)
iter = 1373, accuracy (avg) = 0.830736 (all), 0.825926 (pos), 0.835474 (neg)
data reader: epoch = 0, batch = 1374 / 4040
iter = 1374, cls_loss (cur) = 0.386931, cls_loss (avg) = 0.364706, lr = 0.010000
iter = 1374, accuracy (cur) = 0.820000 (all), 0.800000 (pos), 0.833333 (neg)
iter = 1374, accuracy (avg) = 0.830629 (all), 0.825667 (pos), 0.835453 (neg)
data reader: epoch = 0, batch = 1375 / 4040
iter = 1375, cls_loss (cur) = 0.372016, cls_loss (avg) = 0.364779, lr = 0.010000
iter = 1375, accuracy (cur) = 0.840000 (all), 0.782609 (pos), 0.888889 (neg)
iter = 1375, accuracy (avg) = 0.830722 (all), 0.825236 (pos), 0.835987 (neg)
data reader: epoch = 0, batch = 1376 / 4040
iter = 1376, cls_loss (cur) = 0.427397, cls_loss (avg) = 0.365405, lr = 0.010000
iter = 1376, accuracy (cur) = 0.760000 (all), 0.727273 (pos), 0.785714 (neg)
iter = 1376, accuracy (avg) = 0.830015 (all), 0.824256 (pos), 0.835485 (neg)
data reader: epoch = 0, batch = 1377 / 4040
iter = 1377, cls_loss (cur) = 0.462209, cls_loss (avg) = 0.366373, lr = 0.010000
iter = 1377, accuracy (cur) = 0.800000 (all), 0.806452 (pos), 0.789474 (neg)
iter = 1377, accuracy (avg) = 0.829715 (all), 0.824078 (pos), 0.835024 (neg)
data reader: epoch = 0, batch = 1378 / 4040
iter = 1378, cls_loss (cur) = 0.329466, cls_loss (avg) = 0.366004, lr = 0.010000
iter = 1378, accuracy (cur) = 0.880000 (all), 0.852941 (pos), 0.937500 (neg)
iter = 1378, accuracy (avg) = 0.830218 (all), 0.824367 (pos), 0.836049 (neg)
data reader: epoch = 0, batch = 1379 / 4040
iter = 1379, cls_loss (cur) = 0.439309, cls_loss (avg) = 0.366737, lr = 0.010000
iter = 1379, accuracy (cur) = 0.820000 (all), 0.851852 (pos), 0.782609 (neg)
iter = 1379, accuracy (avg) = 0.830116 (all), 0.824642 (pos), 0.835515 (neg)
data reader: epoch = 0, batch = 1380 / 4040
iter = 1380, cls_loss (cur) = 0.373192, cls_loss (avg) = 0.366802, lr = 0.010000
iter = 1380, accuracy (cur) = 0.880000 (all), 0.913043 (pos), 0.851852 (neg)
iter = 1380, accuracy (avg) = 0.830614 (all), 0.825526 (pos), 0.835678 (neg)
data reader: epoch = 0, batch = 1381 / 4040
iter = 1381, cls_loss (cur) = 0.430143, cls_loss (avg) = 0.367435, lr = 0.010000
iter = 1381, accuracy (cur) = 0.760000 (all), 0.629630 (pos), 0.913043 (neg)
iter = 1381, accuracy (avg) = 0.829908 (all), 0.823567 (pos), 0.836452 (neg)
data reader: epoch = 0, batch = 1382 / 4040
iter = 1382, cls_loss (cur) = 0.363682, cls_loss (avg) = 0.367398, lr = 0.010000
iter = 1382, accuracy (cur) = 0.840000 (all), 0.913043 (pos), 0.777778 (neg)
iter = 1382, accuracy (avg) = 0.830009 (all), 0.824462 (pos), 0.835865 (neg)
data reader: epoch = 0, batch = 1383 / 4040
iter = 1383, cls_loss (cur) = 0.393988, cls_loss (avg) = 0.367663, lr = 0.010000
iter = 1383, accuracy (cur) = 0.800000 (all), 0.950000 (pos), 0.700000 (neg)
iter = 1383, accuracy (avg) = 0.829709 (all), 0.825717 (pos), 0.834506 (neg)
data reader: epoch = 0, batch = 1384 / 4040
iter = 1384, cls_loss (cur) = 0.303675, cls_loss (avg) = 0.367024, lr = 0.010000
iter = 1384, accuracy (cur) = 0.900000 (all), 0.913043 (pos), 0.888889 (neg)
iter = 1384, accuracy (avg) = 0.830412 (all), 0.826590 (pos), 0.835050 (neg)
data reader: epoch = 0, batch = 1385 / 4040
iter = 1385, cls_loss (cur) = 0.350215, cls_loss (avg) = 0.366856, lr = 0.010000
iter = 1385, accuracy (cur) = 0.880000 (all), 0.800000 (pos), 0.960000 (neg)
iter = 1385, accuracy (avg) = 0.830908 (all), 0.826324 (pos), 0.836300 (neg)
data reader: epoch = 0, batch = 1386 / 4040
iter = 1386, cls_loss (cur) = 0.322363, cls_loss (avg) = 0.366411, lr = 0.010000
iter = 1386, accuracy (cur) = 0.840000 (all), 0.969697 (pos), 0.588235 (neg)
iter = 1386, accuracy (avg) = 0.830999 (all), 0.827758 (pos), 0.833819 (neg)
data reader: epoch = 0, batch = 1387 / 4040
iter = 1387, cls_loss (cur) = 0.377568, cls_loss (avg) = 0.366522, lr = 0.010000
iter = 1387, accuracy (cur) = 0.800000 (all), 0.916667 (pos), 0.692308 (neg)
iter = 1387, accuracy (avg) = 0.830689 (all), 0.828647 (pos), 0.832404 (neg)
data reader: epoch = 0, batch = 1388 / 4040
iter = 1388, cls_loss (cur) = 0.362407, cls_loss (avg) = 0.366481, lr = 0.010000
iter = 1388, accuracy (cur) = 0.800000 (all), 0.821429 (pos), 0.772727 (neg)
iter = 1388, accuracy (avg) = 0.830382 (all), 0.828575 (pos), 0.831807 (neg)
data reader: epoch = 0, batch = 1389 / 4040
iter = 1389, cls_loss (cur) = 0.300214, cls_loss (avg) = 0.365818, lr = 0.010000
iter = 1389, accuracy (cur) = 0.880000 (all), 0.925926 (pos), 0.826087 (neg)
iter = 1389, accuracy (avg) = 0.830878 (all), 0.829549 (pos), 0.831750 (neg)
data reader: epoch = 0, batch = 1390 / 4040
iter = 1390, cls_loss (cur) = 0.430986, cls_loss (avg) = 0.366470, lr = 0.010000
iter = 1390, accuracy (cur) = 0.720000 (all), 0.741935 (pos), 0.684211 (neg)
iter = 1390, accuracy (avg) = 0.829769 (all), 0.828672 (pos), 0.830275 (neg)
data reader: epoch = 0, batch = 1391 / 4040
iter = 1391, cls_loss (cur) = 0.468090, cls_loss (avg) = 0.367486, lr = 0.010000
iter = 1391, accuracy (cur) = 0.800000 (all), 0.904762 (pos), 0.724138 (neg)
iter = 1391, accuracy (avg) = 0.829472 (all), 0.829433 (pos), 0.829213 (neg)
data reader: epoch = 0, batch = 1392 / 4040
iter = 1392, cls_loss (cur) = 0.349767, cls_loss (avg) = 0.367309, lr = 0.010000
iter = 1392, accuracy (cur) = 0.880000 (all), 0.894737 (pos), 0.870968 (neg)
iter = 1392, accuracy (avg) = 0.829977 (all), 0.830086 (pos), 0.829631 (neg)
data reader: epoch = 0, batch = 1393 / 4040
iter = 1393, cls_loss (cur) = 0.297494, cls_loss (avg) = 0.366611, lr = 0.010000
iter = 1393, accuracy (cur) = 0.940000 (all), 1.000000 (pos), 0.888889 (neg)
iter = 1393, accuracy (avg) = 0.831077 (all), 0.831785 (pos), 0.830223 (neg)
data reader: epoch = 0, batch = 1394 / 4040
iter = 1394, cls_loss (cur) = 0.388944, cls_loss (avg) = 0.366834, lr = 0.010000
iter = 1394, accuracy (cur) = 0.800000 (all), 0.772727 (pos), 0.821429 (neg)
iter = 1394, accuracy (avg) = 0.830766 (all), 0.831195 (pos), 0.830135 (neg)
data reader: epoch = 0, batch = 1395 / 4040
iter = 1395, cls_loss (cur) = 0.331518, cls_loss (avg) = 0.366481, lr = 0.010000
iter = 1395, accuracy (cur) = 0.820000 (all), 0.769231 (pos), 0.875000 (neg)
iter = 1395, accuracy (avg) = 0.830659 (all), 0.830575 (pos), 0.830584 (neg)
data reader: epoch = 0, batch = 1396 / 4040
iter = 1396, cls_loss (cur) = 0.306307, cls_loss (avg) = 0.365879, lr = 0.010000
iter = 1396, accuracy (cur) = 0.860000 (all), 0.882353 (pos), 0.812500 (neg)
iter = 1396, accuracy (avg) = 0.830952 (all), 0.831093 (pos), 0.830403 (neg)
data reader: epoch = 0, batch = 1397 / 4040
iter = 1397, cls_loss (cur) = 0.259712, cls_loss (avg) = 0.364818, lr = 0.010000
iter = 1397, accuracy (cur) = 0.900000 (all), 0.875000 (pos), 0.944444 (neg)
iter = 1397, accuracy (avg) = 0.831643 (all), 0.831532 (pos), 0.831544 (neg)
data reader: epoch = 0, batch = 1398 / 4040
iter = 1398, cls_loss (cur) = 0.326277, cls_loss (avg) = 0.364432, lr = 0.010000
iter = 1398, accuracy (cur) = 0.840000 (all), 0.833333 (pos), 0.846154 (neg)
iter = 1398, accuracy (avg) = 0.831726 (all), 0.831550 (pos), 0.831690 (neg)
data reader: epoch = 0, batch = 1399 / 4040
iter = 1399, cls_loss (cur) = 0.411790, cls_loss (avg) = 0.364906, lr = 0.010000
iter = 1399, accuracy (cur) = 0.780000 (all), 0.687500 (pos), 0.944444 (neg)
iter = 1399, accuracy (avg) = 0.831209 (all), 0.830110 (pos), 0.832817 (neg)
data reader: epoch = 0, batch = 1400 / 4040
iter = 1400, cls_loss (cur) = 0.458060, cls_loss (avg) = 0.365837, lr = 0.010000
iter = 1400, accuracy (cur) = 0.740000 (all), 0.700000 (pos), 0.766667 (neg)
iter = 1400, accuracy (avg) = 0.830297 (all), 0.828808 (pos), 0.832156 (neg)
data reader: epoch = 0, batch = 1401 / 4040
iter = 1401, cls_loss (cur) = 0.553359, cls_loss (avg) = 0.367713, lr = 0.010000
iter = 1401, accuracy (cur) = 0.720000 (all), 0.750000 (pos), 0.705882 (neg)
iter = 1401, accuracy (avg) = 0.829194 (all), 0.828020 (pos), 0.830893 (neg)
data reader: epoch = 0, batch = 1402 / 4040
iter = 1402, cls_loss (cur) = 0.356421, cls_loss (avg) = 0.367600, lr = 0.010000
iter = 1402, accuracy (cur) = 0.860000 (all), 0.904762 (pos), 0.827586 (neg)
iter = 1402, accuracy (avg) = 0.829502 (all), 0.828788 (pos), 0.830860 (neg)
data reader: epoch = 0, batch = 1403 / 4040
iter = 1403, cls_loss (cur) = 0.291379, cls_loss (avg) = 0.366837, lr = 0.010000
iter = 1403, accuracy (cur) = 0.920000 (all), 0.894737 (pos), 0.935484 (neg)
iter = 1403, accuracy (avg) = 0.830407 (all), 0.829447 (pos), 0.831906 (neg)
data reader: epoch = 0, batch = 1404 / 4040
iter = 1404, cls_loss (cur) = 0.250339, cls_loss (avg) = 0.365672, lr = 0.010000
iter = 1404, accuracy (cur) = 0.920000 (all), 0.925926 (pos), 0.913043 (neg)
iter = 1404, accuracy (avg) = 0.831303 (all), 0.830412 (pos), 0.832718 (neg)
data reader: epoch = 0, batch = 1405 / 4040
iter = 1405, cls_loss (cur) = 0.389085, cls_loss (avg) = 0.365907, lr = 0.010000
iter = 1405, accuracy (cur) = 0.780000 (all), 0.652174 (pos), 0.888889 (neg)
iter = 1405, accuracy (avg) = 0.830790 (all), 0.828630 (pos), 0.833279 (neg)
data reader: epoch = 0, batch = 1406 / 4040
iter = 1406, cls_loss (cur) = 0.328023, cls_loss (avg) = 0.365528, lr = 0.010000
iter = 1406, accuracy (cur) = 0.860000 (all), 0.888889 (pos), 0.826087 (neg)
iter = 1406, accuracy (avg) = 0.831082 (all), 0.829232 (pos), 0.833207 (neg)
data reader: epoch = 0, batch = 1407 / 4040
iter = 1407, cls_loss (cur) = 0.402994, cls_loss (avg) = 0.365902, lr = 0.010000
iter = 1407, accuracy (cur) = 0.800000 (all), 0.760000 (pos), 0.840000 (neg)
iter = 1407, accuracy (avg) = 0.830771 (all), 0.828540 (pos), 0.833275 (neg)
data reader: epoch = 0, batch = 1408 / 4040
iter = 1408, cls_loss (cur) = 0.369891, cls_loss (avg) = 0.365942, lr = 0.010000
iter = 1408, accuracy (cur) = 0.900000 (all), 0.846154 (pos), 0.958333 (neg)
iter = 1408, accuracy (avg) = 0.831463 (all), 0.828716 (pos), 0.834526 (neg)
data reader: epoch = 0, batch = 1409 / 4040
iter = 1409, cls_loss (cur) = 0.312942, cls_loss (avg) = 0.365412, lr = 0.010000
iter = 1409, accuracy (cur) = 0.840000 (all), 0.818182 (pos), 0.857143 (neg)
iter = 1409, accuracy (avg) = 0.831549 (all), 0.828611 (pos), 0.834752 (neg)
data reader: epoch = 0, batch = 1410 / 4040
iter = 1410, cls_loss (cur) = 0.266699, cls_loss (avg) = 0.364425, lr = 0.010000
iter = 1410, accuracy (cur) = 0.880000 (all), 0.962963 (pos), 0.782609 (neg)
iter = 1410, accuracy (avg) = 0.832033 (all), 0.829954 (pos), 0.834231 (neg)
data reader: epoch = 0, batch = 1411 / 4040
iter = 1411, cls_loss (cur) = 0.438028, cls_loss (avg) = 0.365161, lr = 0.010000
iter = 1411, accuracy (cur) = 0.780000 (all), 0.727273 (pos), 0.821429 (neg)
iter = 1411, accuracy (avg) = 0.831513 (all), 0.828927 (pos), 0.834103 (neg)
data reader: epoch = 0, batch = 1412 / 4040
iter = 1412, cls_loss (cur) = 0.263084, cls_loss (avg) = 0.364140, lr = 0.010000
iter = 1412, accuracy (cur) = 0.880000 (all), 0.846154 (pos), 0.916667 (neg)
iter = 1412, accuracy (avg) = 0.831998 (all), 0.829100 (pos), 0.834928 (neg)
data reader: epoch = 0, batch = 1413 / 4040
iter = 1413, cls_loss (cur) = 0.431813, cls_loss (avg) = 0.364817, lr = 0.010000
iter = 1413, accuracy (cur) = 0.840000 (all), 0.821429 (pos), 0.863636 (neg)
iter = 1413, accuracy (avg) = 0.832078 (all), 0.829023 (pos), 0.835215 (neg)
data reader: epoch = 0, batch = 1414 / 4040
iter = 1414, cls_loss (cur) = 0.402396, cls_loss (avg) = 0.365193, lr = 0.010000
iter = 1414, accuracy (cur) = 0.760000 (all), 0.818182 (pos), 0.714286 (neg)
iter = 1414, accuracy (avg) = 0.831357 (all), 0.828915 (pos), 0.834006 (neg)
data reader: epoch = 0, batch = 1415 / 4040
iter = 1415, cls_loss (cur) = 0.383055, cls_loss (avg) = 0.365372, lr = 0.010000
iter = 1415, accuracy (cur) = 0.820000 (all), 0.852941 (pos), 0.750000 (neg)
iter = 1415, accuracy (avg) = 0.831243 (all), 0.829155 (pos), 0.833166 (neg)
data reader: epoch = 0, batch = 1416 / 4040
iter = 1416, cls_loss (cur) = 0.272300, cls_loss (avg) = 0.364441, lr = 0.010000
iter = 1416, accuracy (cur) = 0.900000 (all), 0.863636 (pos), 0.928571 (neg)
iter = 1416, accuracy (avg) = 0.831931 (all), 0.829500 (pos), 0.834120 (neg)
data reader: epoch = 0, batch = 1417 / 4040
iter = 1417, cls_loss (cur) = 0.344470, cls_loss (avg) = 0.364241, lr = 0.010000
iter = 1417, accuracy (cur) = 0.800000 (all), 0.720000 (pos), 0.880000 (neg)
iter = 1417, accuracy (avg) = 0.831612 (all), 0.828405 (pos), 0.834579 (neg)
data reader: epoch = 0, batch = 1418 / 4040
iter = 1418, cls_loss (cur) = 0.359753, cls_loss (avg) = 0.364196, lr = 0.010000
iter = 1418, accuracy (cur) = 0.860000 (all), 0.875000 (pos), 0.846154 (neg)
iter = 1418, accuracy (avg) = 0.831896 (all), 0.828871 (pos), 0.834695 (neg)
data reader: epoch = 0, batch = 1419 / 4040
iter = 1419, cls_loss (cur) = 0.427496, cls_loss (avg) = 0.364829, lr = 0.010000
iter = 1419, accuracy (cur) = 0.820000 (all), 0.916667 (pos), 0.730769 (neg)
iter = 1419, accuracy (avg) = 0.831777 (all), 0.829749 (pos), 0.833655 (neg)
data reader: epoch = 0, batch = 1420 / 4040
iter = 1420, cls_loss (cur) = 0.239110, cls_loss (avg) = 0.363572, lr = 0.010000
iter = 1420, accuracy (cur) = 0.940000 (all), 0.964286 (pos), 0.909091 (neg)
iter = 1420, accuracy (avg) = 0.832859 (all), 0.831094 (pos), 0.834410 (neg)
data reader: epoch = 0, batch = 1421 / 4040
iter = 1421, cls_loss (cur) = 0.363498, cls_loss (avg) = 0.363571, lr = 0.010000
iter = 1421, accuracy (cur) = 0.860000 (all), 0.931034 (pos), 0.761905 (neg)
iter = 1421, accuracy (avg) = 0.833130 (all), 0.832093 (pos), 0.833685 (neg)
data reader: epoch = 0, batch = 1422 / 4040
iter = 1422, cls_loss (cur) = 0.394538, cls_loss (avg) = 0.363881, lr = 0.010000
iter = 1422, accuracy (cur) = 0.800000 (all), 0.958333 (pos), 0.653846 (neg)
iter = 1422, accuracy (avg) = 0.832799 (all), 0.833356 (pos), 0.831886 (neg)
data reader: epoch = 0, batch = 1423 / 4040
iter = 1423, cls_loss (cur) = 0.537003, cls_loss (avg) = 0.365612, lr = 0.010000
iter = 1423, accuracy (cur) = 0.760000 (all), 0.758621 (pos), 0.761905 (neg)
iter = 1423, accuracy (avg) = 0.832071 (all), 0.832608 (pos), 0.831186 (neg)
data reader: epoch = 0, batch = 1424 / 4040
iter = 1424, cls_loss (cur) = 0.419400, cls_loss (avg) = 0.366150, lr = 0.010000
iter = 1424, accuracy (cur) = 0.840000 (all), 0.875000 (pos), 0.807692 (neg)
iter = 1424, accuracy (avg) = 0.832150 (all), 0.833032 (pos), 0.830952 (neg)
data reader: epoch = 0, batch = 1425 / 4040
iter = 1425, cls_loss (cur) = 0.313428, cls_loss (avg) = 0.365623, lr = 0.010000
iter = 1425, accuracy (cur) = 0.880000 (all), 0.851852 (pos), 0.913043 (neg)
iter = 1425, accuracy (avg) = 0.832629 (all), 0.833221 (pos), 0.831772 (neg)
data reader: epoch = 0, batch = 1426 / 4040
iter = 1426, cls_loss (cur) = 0.279936, cls_loss (avg) = 0.364766, lr = 0.010000
iter = 1426, accuracy (cur) = 0.880000 (all), 0.900000 (pos), 0.866667 (neg)
iter = 1426, accuracy (avg) = 0.833102 (all), 0.833888 (pos), 0.832121 (neg)
data reader: epoch = 0, batch = 1427 / 4040
iter = 1427, cls_loss (cur) = 0.389211, cls_loss (avg) = 0.365010, lr = 0.010000
iter = 1427, accuracy (cur) = 0.780000 (all), 0.714286 (pos), 0.827586 (neg)
iter = 1427, accuracy (avg) = 0.832571 (all), 0.832692 (pos), 0.832076 (neg)
data reader: epoch = 0, batch = 1428 / 4040
iter = 1428, cls_loss (cur) = 0.372719, cls_loss (avg) = 0.365088, lr = 0.010000
iter = 1428, accuracy (cur) = 0.780000 (all), 0.814815 (pos), 0.739130 (neg)
iter = 1428, accuracy (avg) = 0.832046 (all), 0.832514 (pos), 0.831147 (neg)
data reader: epoch = 0, batch = 1429 / 4040
iter = 1429, cls_loss (cur) = 0.260103, cls_loss (avg) = 0.364038, lr = 0.010000
iter = 1429, accuracy (cur) = 0.940000 (all), 0.950000 (pos), 0.933333 (neg)
iter = 1429, accuracy (avg) = 0.833125 (all), 0.833688 (pos), 0.832168 (neg)
data reader: epoch = 0, batch = 1430 / 4040
iter = 1430, cls_loss (cur) = 0.415844, cls_loss (avg) = 0.364556, lr = 0.010000
iter = 1430, accuracy (cur) = 0.780000 (all), 0.777778 (pos), 0.782609 (neg)
iter = 1430, accuracy (avg) = 0.832594 (all), 0.833129 (pos), 0.831673 (neg)
data reader: epoch = 0, batch = 1431 / 4040
iter = 1431, cls_loss (cur) = 0.429150, cls_loss (avg) = 0.365202, lr = 0.010000
iter = 1431, accuracy (cur) = 0.740000 (all), 0.730769 (pos), 0.750000 (neg)
iter = 1431, accuracy (avg) = 0.831668 (all), 0.832106 (pos), 0.830856 (neg)
data reader: epoch = 0, batch = 1432 / 4040
iter = 1432, cls_loss (cur) = 0.343182, cls_loss (avg) = 0.364981, lr = 0.010000
iter = 1432, accuracy (cur) = 0.840000 (all), 0.681818 (pos), 0.964286 (neg)
iter = 1432, accuracy (avg) = 0.831751 (all), 0.830603 (pos), 0.832190 (neg)
data reader: epoch = 0, batch = 1433 / 4040
iter = 1433, cls_loss (cur) = 0.242039, cls_loss (avg) = 0.363752, lr = 0.010000
iter = 1433, accuracy (cur) = 0.880000 (all), 0.750000 (pos), 0.966667 (neg)
iter = 1433, accuracy (avg) = 0.832234 (all), 0.829797 (pos), 0.833535 (neg)
data reader: epoch = 0, batch = 1434 / 4040
iter = 1434, cls_loss (cur) = 0.418330, cls_loss (avg) = 0.364298, lr = 0.010000
iter = 1434, accuracy (cur) = 0.760000 (all), 0.652174 (pos), 0.851852 (neg)
iter = 1434, accuracy (avg) = 0.831512 (all), 0.828021 (pos), 0.833718 (neg)
data reader: epoch = 0, batch = 1435 / 4040
iter = 1435, cls_loss (cur) = 0.320830, cls_loss (avg) = 0.363863, lr = 0.010000
iter = 1435, accuracy (cur) = 0.860000 (all), 0.814815 (pos), 0.913043 (neg)
iter = 1435, accuracy (avg) = 0.831796 (all), 0.827889 (pos), 0.834512 (neg)
data reader: epoch = 0, batch = 1436 / 4040
iter = 1436, cls_loss (cur) = 0.288772, cls_loss (avg) = 0.363112, lr = 0.010000
iter = 1436, accuracy (cur) = 0.860000 (all), 0.750000 (pos), 0.961538 (neg)
iter = 1436, accuracy (avg) = 0.832078 (all), 0.827110 (pos), 0.835782 (neg)
data reader: epoch = 0, batch = 1437 / 4040
iter = 1437, cls_loss (cur) = 0.337842, cls_loss (avg) = 0.362860, lr = 0.010000
iter = 1437, accuracy (cur) = 0.820000 (all), 0.818182 (pos), 0.823529 (neg)
iter = 1437, accuracy (avg) = 0.831958 (all), 0.827020 (pos), 0.835659 (neg)
data reader: epoch = 0, batch = 1438 / 4040
iter = 1438, cls_loss (cur) = 0.315807, cls_loss (avg) = 0.362389, lr = 0.010000
iter = 1438, accuracy (cur) = 0.860000 (all), 0.880000 (pos), 0.840000 (neg)
iter = 1438, accuracy (avg) = 0.832238 (all), 0.827550 (pos), 0.835703 (neg)
data reader: epoch = 0, batch = 1439 / 4040
iter = 1439, cls_loss (cur) = 0.305915, cls_loss (avg) = 0.361824, lr = 0.010000
iter = 1439, accuracy (cur) = 0.900000 (all), 0.952381 (pos), 0.862069 (neg)
iter = 1439, accuracy (avg) = 0.832916 (all), 0.828798 (pos), 0.835966 (neg)
data reader: epoch = 0, batch = 1440 / 4040
iter = 1440, cls_loss (cur) = 0.311877, cls_loss (avg) = 0.361325, lr = 0.010000
iter = 1440, accuracy (cur) = 0.820000 (all), 0.833333 (pos), 0.807692 (neg)
iter = 1440, accuracy (avg) = 0.832787 (all), 0.828844 (pos), 0.835684 (neg)
data reader: epoch = 0, batch = 1441 / 4040
iter = 1441, cls_loss (cur) = 0.336355, cls_loss (avg) = 0.361075, lr = 0.010000
iter = 1441, accuracy (cur) = 0.860000 (all), 0.913043 (pos), 0.814815 (neg)
iter = 1441, accuracy (avg) = 0.833059 (all), 0.829686 (pos), 0.835475 (neg)
data reader: epoch = 0, batch = 1442 / 4040
iter = 1442, cls_loss (cur) = 0.298378, cls_loss (avg) = 0.360448, lr = 0.010000
iter = 1442, accuracy (cur) = 0.900000 (all), 0.900000 (pos), 0.900000 (neg)
iter = 1442, accuracy (avg) = 0.833728 (all), 0.830389 (pos), 0.836120 (neg)
data reader: epoch = 0, batch = 1443 / 4040
iter = 1443, cls_loss (cur) = 0.408324, cls_loss (avg) = 0.360927, lr = 0.010000
iter = 1443, accuracy (cur) = 0.780000 (all), 0.920000 (pos), 0.640000 (neg)
iter = 1443, accuracy (avg) = 0.833191 (all), 0.831285 (pos), 0.834159 (neg)
data reader: epoch = 0, batch = 1444 / 4040
iter = 1444, cls_loss (cur) = 0.365296, cls_loss (avg) = 0.360971, lr = 0.010000
iter = 1444, accuracy (cur) = 0.780000 (all), 0.800000 (pos), 0.766667 (neg)
iter = 1444, accuracy (avg) = 0.832659 (all), 0.830972 (pos), 0.833484 (neg)
data reader: epoch = 0, batch = 1445 / 4040
iter = 1445, cls_loss (cur) = 0.300932, cls_loss (avg) = 0.360370, lr = 0.010000
iter = 1445, accuracy (cur) = 0.860000 (all), 0.920000 (pos), 0.800000 (neg)
iter = 1445, accuracy (avg) = 0.832932 (all), 0.831862 (pos), 0.833149 (neg)
data reader: epoch = 0, batch = 1446 / 4040
iter = 1446, cls_loss (cur) = 0.295486, cls_loss (avg) = 0.359721, lr = 0.010000
iter = 1446, accuracy (cur) = 0.920000 (all), 0.909091 (pos), 0.941176 (neg)
iter = 1446, accuracy (avg) = 0.833803 (all), 0.832635 (pos), 0.834230 (neg)
data reader: epoch = 0, batch = 1447 / 4040
iter = 1447, cls_loss (cur) = 0.257934, cls_loss (avg) = 0.358703, lr = 0.010000
iter = 1447, accuracy (cur) = 0.900000 (all), 0.863636 (pos), 0.928571 (neg)
iter = 1447, accuracy (avg) = 0.834465 (all), 0.832945 (pos), 0.835173 (neg)
data reader: epoch = 0, batch = 1448 / 4040
iter = 1448, cls_loss (cur) = 0.370237, cls_loss (avg) = 0.358819, lr = 0.010000
iter = 1448, accuracy (cur) = 0.820000 (all), 0.740741 (pos), 0.913043 (neg)
iter = 1448, accuracy (avg) = 0.834320 (all), 0.832023 (pos), 0.835952 (neg)
data reader: epoch = 0, batch = 1449 / 4040
iter = 1449, cls_loss (cur) = 0.207247, cls_loss (avg) = 0.357303, lr = 0.010000
iter = 1449, accuracy (cur) = 0.980000 (all), 1.000000 (pos), 0.967742 (neg)
iter = 1449, accuracy (avg) = 0.835777 (all), 0.833703 (pos), 0.837270 (neg)
data reader: epoch = 0, batch = 1450 / 4040
iter = 1450, cls_loss (cur) = 0.418195, cls_loss (avg) = 0.357912, lr = 0.010000
iter = 1450, accuracy (cur) = 0.780000 (all), 0.740741 (pos), 0.826087 (neg)
iter = 1450, accuracy (avg) = 0.835219 (all), 0.832773 (pos), 0.837158 (neg)
data reader: epoch = 0, batch = 1451 / 4040
iter = 1451, cls_loss (cur) = 0.346548, cls_loss (avg) = 0.357798, lr = 0.010000
iter = 1451, accuracy (cur) = 0.860000 (all), 0.814815 (pos), 0.913043 (neg)
iter = 1451, accuracy (avg) = 0.835467 (all), 0.832593 (pos), 0.837917 (neg)
data reader: epoch = 0, batch = 1452 / 4040
iter = 1452, cls_loss (cur) = 0.242169, cls_loss (avg) = 0.356642, lr = 0.010000
iter = 1452, accuracy (cur) = 0.840000 (all), 0.875000 (pos), 0.823529 (neg)
iter = 1452, accuracy (avg) = 0.835513 (all), 0.833017 (pos), 0.837773 (neg)
data reader: epoch = 0, batch = 1453 / 4040
iter = 1453, cls_loss (cur) = 0.424845, cls_loss (avg) = 0.357324, lr = 0.010000
iter = 1453, accuracy (cur) = 0.780000 (all), 0.777778 (pos), 0.782609 (neg)
iter = 1453, accuracy (avg) = 0.834957 (all), 0.832465 (pos), 0.837221 (neg)
data reader: epoch = 0, batch = 1454 / 4040
iter = 1454, cls_loss (cur) = 0.282805, cls_loss (avg) = 0.356579, lr = 0.010000
iter = 1454, accuracy (cur) = 0.900000 (all), 0.869565 (pos), 0.925926 (neg)
iter = 1454, accuracy (avg) = 0.835608 (all), 0.832836 (pos), 0.838108 (neg)
data reader: epoch = 0, batch = 1455 / 4040
iter = 1455, cls_loss (cur) = 0.334626, cls_loss (avg) = 0.356359, lr = 0.010000
iter = 1455, accuracy (cur) = 0.820000 (all), 0.739130 (pos), 0.888889 (neg)
iter = 1455, accuracy (avg) = 0.835452 (all), 0.831899 (pos), 0.838616 (neg)
data reader: epoch = 0, batch = 1456 / 4040
iter = 1456, cls_loss (cur) = 0.372180, cls_loss (avg) = 0.356518, lr = 0.010000
iter = 1456, accuracy (cur) = 0.800000 (all), 0.818182 (pos), 0.785714 (neg)
iter = 1456, accuracy (avg) = 0.835097 (all), 0.831762 (pos), 0.838087 (neg)
data reader: epoch = 0, batch = 1457 / 4040
iter = 1457, cls_loss (cur) = 0.398808, cls_loss (avg) = 0.356940, lr = 0.010000
iter = 1457, accuracy (cur) = 0.800000 (all), 0.833333 (pos), 0.769231 (neg)
iter = 1457, accuracy (avg) = 0.834746 (all), 0.831777 (pos), 0.837398 (neg)
data reader: epoch = 0, batch = 1458 / 4040
iter = 1458, cls_loss (cur) = 0.412093, cls_loss (avg) = 0.357492, lr = 0.010000
iter = 1458, accuracy (cur) = 0.740000 (all), 0.730769 (pos), 0.750000 (neg)
iter = 1458, accuracy (avg) = 0.833799 (all), 0.830767 (pos), 0.836524 (neg)
data reader: epoch = 0, batch = 1459 / 4040
iter = 1459, cls_loss (cur) = 0.414318, cls_loss (avg) = 0.358060, lr = 0.010000
iter = 1459, accuracy (cur) = 0.780000 (all), 0.758621 (pos), 0.809524 (neg)
iter = 1459, accuracy (avg) = 0.833261 (all), 0.830046 (pos), 0.836254 (neg)
data reader: epoch = 0, batch = 1460 / 4040
iter = 1460, cls_loss (cur) = 0.256364, cls_loss (avg) = 0.357043, lr = 0.010000
iter = 1460, accuracy (cur) = 0.860000 (all), 0.928571 (pos), 0.772727 (neg)
iter = 1460, accuracy (avg) = 0.833528 (all), 0.831031 (pos), 0.835619 (neg)
data reader: epoch = 0, batch = 1461 / 4040
iter = 1461, cls_loss (cur) = 0.429960, cls_loss (avg) = 0.357772, lr = 0.010000
iter = 1461, accuracy (cur) = 0.760000 (all), 0.769231 (pos), 0.750000 (neg)
iter = 1461, accuracy (avg) = 0.832793 (all), 0.830413 (pos), 0.834763 (neg)
data reader: epoch = 0, batch = 1462 / 4040
iter = 1462, cls_loss (cur) = 0.352190, cls_loss (avg) = 0.357717, lr = 0.010000
iter = 1462, accuracy (cur) = 0.760000 (all), 0.750000 (pos), 0.764706 (neg)
iter = 1462, accuracy (avg) = 0.832065 (all), 0.829609 (pos), 0.834062 (neg)
data reader: epoch = 0, batch = 1463 / 4040
iter = 1463, cls_loss (cur) = 0.368225, cls_loss (avg) = 0.357822, lr = 0.010000
iter = 1463, accuracy (cur) = 0.840000 (all), 0.931034 (pos), 0.714286 (neg)
iter = 1463, accuracy (avg) = 0.832144 (all), 0.830623 (pos), 0.832865 (neg)
data reader: epoch = 0, batch = 1464 / 4040
iter = 1464, cls_loss (cur) = 0.476133, cls_loss (avg) = 0.359005, lr = 0.010000
iter = 1464, accuracy (cur) = 0.780000 (all), 0.884615 (pos), 0.666667 (neg)
iter = 1464, accuracy (avg) = 0.831623 (all), 0.831163 (pos), 0.831203 (neg)
data reader: epoch = 0, batch = 1465 / 4040
iter = 1465, cls_loss (cur) = 0.291895, cls_loss (avg) = 0.358334, lr = 0.010000
iter = 1465, accuracy (cur) = 0.860000 (all), 0.826087 (pos), 0.888889 (neg)
iter = 1465, accuracy (avg) = 0.831907 (all), 0.831112 (pos), 0.831779 (neg)
data reader: epoch = 0, batch = 1466 / 4040
iter = 1466, cls_loss (cur) = 0.506367, cls_loss (avg) = 0.359814, lr = 0.010000
iter = 1466, accuracy (cur) = 0.720000 (all), 0.814815 (pos), 0.608696 (neg)
iter = 1466, accuracy (avg) = 0.830788 (all), 0.830949 (pos), 0.829549 (neg)
data reader: epoch = 0, batch = 1467 / 4040
iter = 1467, cls_loss (cur) = 0.408709, cls_loss (avg) = 0.360303, lr = 0.010000
iter = 1467, accuracy (cur) = 0.800000 (all), 0.782609 (pos), 0.814815 (neg)
iter = 1467, accuracy (avg) = 0.830480 (all), 0.830466 (pos), 0.829401 (neg)
data reader: epoch = 0, batch = 1468 / 4040
iter = 1468, cls_loss (cur) = 0.323431, cls_loss (avg) = 0.359934, lr = 0.010000
iter = 1468, accuracy (cur) = 0.840000 (all), 0.800000 (pos), 0.880000 (neg)
iter = 1468, accuracy (avg) = 0.830575 (all), 0.830161 (pos), 0.829907 (neg)
data reader: epoch = 0, batch = 1469 / 4040
iter = 1469, cls_loss (cur) = 0.313570, cls_loss (avg) = 0.359471, lr = 0.010000
iter = 1469, accuracy (cur) = 0.840000 (all), 0.869565 (pos), 0.814815 (neg)
iter = 1469, accuracy (avg) = 0.830669 (all), 0.830555 (pos), 0.829756 (neg)
data reader: epoch = 0, batch = 1470 / 4040
iter = 1470, cls_loss (cur) = 0.243685, cls_loss (avg) = 0.358313, lr = 0.010000
iter = 1470, accuracy (cur) = 0.920000 (all), 0.894737 (pos), 0.935484 (neg)
iter = 1470, accuracy (avg) = 0.831562 (all), 0.831197 (pos), 0.830814 (neg)
data reader: epoch = 0, batch = 1471 / 4040
iter = 1471, cls_loss (cur) = 0.166819, cls_loss (avg) = 0.356398, lr = 0.010000
iter = 1471, accuracy (cur) = 0.980000 (all), 1.000000 (pos), 0.960000 (neg)
iter = 1471, accuracy (avg) = 0.833047 (all), 0.832885 (pos), 0.832105 (neg)
data reader: epoch = 0, batch = 1472 / 4040
iter = 1472, cls_loss (cur) = 0.282951, cls_loss (avg) = 0.355663, lr = 0.010000
iter = 1472, accuracy (cur) = 0.880000 (all), 0.782609 (pos), 0.962963 (neg)
iter = 1472, accuracy (avg) = 0.833516 (all), 0.832383 (pos), 0.833414 (neg)
data reader: epoch = 0, batch = 1473 / 4040
iter = 1473, cls_loss (cur) = 0.338843, cls_loss (avg) = 0.355495, lr = 0.010000
iter = 1473, accuracy (cur) = 0.880000 (all), 0.869565 (pos), 0.888889 (neg)
iter = 1473, accuracy (avg) = 0.833981 (all), 0.832754 (pos), 0.833969 (neg)
data reader: epoch = 0, batch = 1474 / 4040
iter = 1474, cls_loss (cur) = 0.343324, cls_loss (avg) = 0.355374, lr = 0.010000
iter = 1474, accuracy (cur) = 0.860000 (all), 0.794118 (pos), 1.000000 (neg)
iter = 1474, accuracy (avg) = 0.834241 (all), 0.832368 (pos), 0.835629 (neg)
data reader: epoch = 0, batch = 1475 / 4040
iter = 1475, cls_loss (cur) = 0.317572, cls_loss (avg) = 0.354995, lr = 0.010000
iter = 1475, accuracy (cur) = 0.880000 (all), 0.869565 (pos), 0.888889 (neg)
iter = 1475, accuracy (avg) = 0.834699 (all), 0.832740 (pos), 0.836162 (neg)
data reader: epoch = 0, batch = 1476 / 4040
iter = 1476, cls_loss (cur) = 0.449813, cls_loss (avg) = 0.355944, lr = 0.010000
iter = 1476, accuracy (cur) = 0.780000 (all), 0.720000 (pos), 0.840000 (neg)
iter = 1476, accuracy (avg) = 0.834152 (all), 0.831613 (pos), 0.836200 (neg)
data reader: epoch = 0, batch = 1477 / 4040
iter = 1477, cls_loss (cur) = 0.371004, cls_loss (avg) = 0.356094, lr = 0.010000
iter = 1477, accuracy (cur) = 0.800000 (all), 0.846154 (pos), 0.750000 (neg)
iter = 1477, accuracy (avg) = 0.833810 (all), 0.831758 (pos), 0.835338 (neg)
data reader: epoch = 0, batch = 1478 / 4040
iter = 1478, cls_loss (cur) = 0.368469, cls_loss (avg) = 0.356218, lr = 0.010000
iter = 1478, accuracy (cur) = 0.820000 (all), 0.956522 (pos), 0.703704 (neg)
iter = 1478, accuracy (avg) = 0.833672 (all), 0.833006 (pos), 0.834022 (neg)
data reader: epoch = 0, batch = 1479 / 4040
iter = 1479, cls_loss (cur) = 0.358075, cls_loss (avg) = 0.356237, lr = 0.010000
iter = 1479, accuracy (cur) = 0.780000 (all), 0.769231 (pos), 0.791667 (neg)
iter = 1479, accuracy (avg) = 0.833136 (all), 0.832368 (pos), 0.833598 (neg)
data reader: epoch = 0, batch = 1480 / 4040
iter = 1480, cls_loss (cur) = 0.353145, cls_loss (avg) = 0.356206, lr = 0.010000
iter = 1480, accuracy (cur) = 0.860000 (all), 0.869565 (pos), 0.851852 (neg)
iter = 1480, accuracy (avg) = 0.833404 (all), 0.832740 (pos), 0.833781 (neg)
data reader: epoch = 0, batch = 1481 / 4040
iter = 1481, cls_loss (cur) = 0.330374, cls_loss (avg) = 0.355947, lr = 0.010000
iter = 1481, accuracy (cur) = 0.920000 (all), 0.950000 (pos), 0.900000 (neg)
iter = 1481, accuracy (avg) = 0.834270 (all), 0.833912 (pos), 0.834443 (neg)
data reader: epoch = 0, batch = 1482 / 4040
iter = 1482, cls_loss (cur) = 0.401537, cls_loss (avg) = 0.356403, lr = 0.010000
iter = 1482, accuracy (cur) = 0.800000 (all), 0.806452 (pos), 0.789474 (neg)
iter = 1482, accuracy (avg) = 0.833928 (all), 0.833638 (pos), 0.833993 (neg)
data reader: epoch = 0, batch = 1483 / 4040
iter = 1483, cls_loss (cur) = 0.511397, cls_loss (avg) = 0.357953, lr = 0.010000
iter = 1483, accuracy (cur) = 0.700000 (all), 0.750000 (pos), 0.636364 (neg)
iter = 1483, accuracy (avg) = 0.832588 (all), 0.832801 (pos), 0.832017 (neg)
data reader: epoch = 0, batch = 1484 / 4040
iter = 1484, cls_loss (cur) = 0.380703, cls_loss (avg) = 0.358181, lr = 0.010000
iter = 1484, accuracy (cur) = 0.780000 (all), 0.826087 (pos), 0.740741 (neg)
iter = 1484, accuracy (avg) = 0.832062 (all), 0.832734 (pos), 0.831104 (neg)
data reader: epoch = 0, batch = 1485 / 4040
iter = 1485, cls_loss (cur) = 0.274930, cls_loss (avg) = 0.357348, lr = 0.010000
iter = 1485, accuracy (cur) = 0.900000 (all), 0.875000 (pos), 0.923077 (neg)
iter = 1485, accuracy (avg) = 0.832742 (all), 0.833157 (pos), 0.832024 (neg)
data reader: epoch = 0, batch = 1486 / 4040
iter = 1486, cls_loss (cur) = 0.390283, cls_loss (avg) = 0.357678, lr = 0.010000
iter = 1486, accuracy (cur) = 0.820000 (all), 0.846154 (pos), 0.791667 (neg)
iter = 1486, accuracy (avg) = 0.832614 (all), 0.833287 (pos), 0.831620 (neg)
data reader: epoch = 0, batch = 1487 / 4040
iter = 1487, cls_loss (cur) = 0.333900, cls_loss (avg) = 0.357440, lr = 0.010000
iter = 1487, accuracy (cur) = 0.900000 (all), 0.952381 (pos), 0.862069 (neg)
iter = 1487, accuracy (avg) = 0.833288 (all), 0.834478 (pos), 0.831925 (neg)
data reader: epoch = 0, batch = 1488 / 4040
iter = 1488, cls_loss (cur) = 0.334076, cls_loss (avg) = 0.357206, lr = 0.010000
iter = 1488, accuracy (cur) = 0.840000 (all), 0.736842 (pos), 0.903226 (neg)
iter = 1488, accuracy (avg) = 0.833355 (all), 0.833502 (pos), 0.832638 (neg)
data reader: epoch = 0, batch = 1489 / 4040
iter = 1489, cls_loss (cur) = 0.230879, cls_loss (avg) = 0.355943, lr = 0.010000
iter = 1489, accuracy (cur) = 0.960000 (all), 0.944444 (pos), 0.968750 (neg)
iter = 1489, accuracy (avg) = 0.834622 (all), 0.834611 (pos), 0.833999 (neg)
data reader: epoch = 0, batch = 1490 / 4040
iter = 1490, cls_loss (cur) = 0.321827, cls_loss (avg) = 0.355602, lr = 0.010000
iter = 1490, accuracy (cur) = 0.840000 (all), 0.681818 (pos), 0.964286 (neg)
iter = 1490, accuracy (avg) = 0.834676 (all), 0.833083 (pos), 0.835302 (neg)
data reader: epoch = 0, batch = 1491 / 4040
iter = 1491, cls_loss (cur) = 0.279797, cls_loss (avg) = 0.354844, lr = 0.010000
iter = 1491, accuracy (cur) = 0.920000 (all), 1.000000 (pos), 0.875000 (neg)
iter = 1491, accuracy (avg) = 0.835529 (all), 0.834752 (pos), 0.835699 (neg)
data reader: epoch = 0, batch = 1492 / 4040
iter = 1492, cls_loss (cur) = 0.394836, cls_loss (avg) = 0.355244, lr = 0.010000
iter = 1492, accuracy (cur) = 0.840000 (all), 0.821429 (pos), 0.863636 (neg)
iter = 1492, accuracy (avg) = 0.835574 (all), 0.834619 (pos), 0.835978 (neg)
data reader: epoch = 0, batch = 1493 / 4040
iter = 1493, cls_loss (cur) = 0.314358, cls_loss (avg) = 0.354835, lr = 0.010000
iter = 1493, accuracy (cur) = 0.900000 (all), 0.892857 (pos), 0.909091 (neg)
iter = 1493, accuracy (avg) = 0.836218 (all), 0.835201 (pos), 0.836709 (neg)
data reader: epoch = 0, batch = 1494 / 4040
iter = 1494, cls_loss (cur) = 0.304601, cls_loss (avg) = 0.354332, lr = 0.010000
iter = 1494, accuracy (cur) = 0.860000 (all), 0.848485 (pos), 0.882353 (neg)
iter = 1494, accuracy (avg) = 0.836456 (all), 0.835334 (pos), 0.837166 (neg)
data reader: epoch = 0, batch = 1495 / 4040
iter = 1495, cls_loss (cur) = 0.387800, cls_loss (avg) = 0.354667, lr = 0.010000
iter = 1495, accuracy (cur) = 0.800000 (all), 0.785714 (pos), 0.818182 (neg)
iter = 1495, accuracy (avg) = 0.836091 (all), 0.834838 (pos), 0.836976 (neg)
data reader: epoch = 0, batch = 1496 / 4040
iter = 1496, cls_loss (cur) = 0.254426, cls_loss (avg) = 0.353665, lr = 0.010000
iter = 1496, accuracy (cur) = 0.900000 (all), 0.880000 (pos), 0.920000 (neg)
iter = 1496, accuracy (avg) = 0.836730 (all), 0.835290 (pos), 0.837806 (neg)
data reader: epoch = 0, batch = 1497 / 4040
iter = 1497, cls_loss (cur) = 0.440262, cls_loss (avg) = 0.354531, lr = 0.010000
iter = 1497, accuracy (cur) = 0.780000 (all), 0.814815 (pos), 0.739130 (neg)
iter = 1497, accuracy (avg) = 0.836163 (all), 0.835085 (pos), 0.836819 (neg)
data reader: epoch = 0, batch = 1498 / 4040
iter = 1498, cls_loss (cur) = 0.417406, cls_loss (avg) = 0.355159, lr = 0.010000
iter = 1498, accuracy (cur) = 0.800000 (all), 0.826087 (pos), 0.777778 (neg)
iter = 1498, accuracy (avg) = 0.835801 (all), 0.834995 (pos), 0.836229 (neg)
data reader: epoch = 0, batch = 1499 / 4040
iter = 1499, cls_loss (cur) = 0.263086, cls_loss (avg) = 0.354239, lr = 0.010000
iter = 1499, accuracy (cur) = 0.860000 (all), 0.923077 (pos), 0.791667 (neg)
iter = 1499, accuracy (avg) = 0.836043 (all), 0.835876 (pos), 0.835783 (neg)
data reader: epoch = 0, batch = 1500 / 4040
iter = 1500, cls_loss (cur) = 0.256537, cls_loss (avg) = 0.353262, lr = 0.010000
iter = 1500, accuracy (cur) = 0.900000 (all), 0.913043 (pos), 0.888889 (neg)
iter = 1500, accuracy (avg) = 0.836683 (all), 0.836647 (pos), 0.836314 (neg)
data reader: epoch = 0, batch = 1501 / 4040
iter = 1501, cls_loss (cur) = 0.252603, cls_loss (avg) = 0.352255, lr = 0.010000
iter = 1501, accuracy (cur) = 0.940000 (all), 0.950000 (pos), 0.933333 (neg)
iter = 1501, accuracy (avg) = 0.837716 (all), 0.837781 (pos), 0.837285 (neg)
data reader: epoch = 0, batch = 1502 / 4040
iter = 1502, cls_loss (cur) = 0.308453, cls_loss (avg) = 0.351817, lr = 0.010000
iter = 1502, accuracy (cur) = 0.860000 (all), 0.814815 (pos), 0.913043 (neg)
iter = 1502, accuracy (avg) = 0.837939 (all), 0.837551 (pos), 0.838042 (neg)
data reader: epoch = 0, batch = 1503 / 4040
iter = 1503, cls_loss (cur) = 0.303387, cls_loss (avg) = 0.351333, lr = 0.010000
iter = 1503, accuracy (cur) = 0.860000 (all), 0.892857 (pos), 0.818182 (neg)
iter = 1503, accuracy (avg) = 0.838159 (all), 0.838104 (pos), 0.837844 (neg)
data reader: epoch = 0, batch = 1504 / 4040
iter = 1504, cls_loss (cur) = 0.343074, cls_loss (avg) = 0.351250, lr = 0.010000
iter = 1504, accuracy (cur) = 0.860000 (all), 0.863636 (pos), 0.857143 (neg)
iter = 1504, accuracy (avg) = 0.838378 (all), 0.838360 (pos), 0.838037 (neg)
data reader: epoch = 0, batch = 1505 / 4040
iter = 1505, cls_loss (cur) = 0.356325, cls_loss (avg) = 0.351301, lr = 0.010000
iter = 1505, accuracy (cur) = 0.860000 (all), 0.848485 (pos), 0.882353 (neg)
iter = 1505, accuracy (avg) = 0.838594 (all), 0.838461 (pos), 0.838480 (neg)
data reader: epoch = 0, batch = 1506 / 4040
iter = 1506, cls_loss (cur) = 0.457155, cls_loss (avg) = 0.352359, lr = 0.010000
iter = 1506, accuracy (cur) = 0.780000 (all), 1.000000 (pos), 0.620690 (neg)
iter = 1506, accuracy (avg) = 0.838008 (all), 0.840076 (pos), 0.836302 (neg)
data reader: epoch = 0, batch = 1507 / 4040
iter = 1507, cls_loss (cur) = 0.269812, cls_loss (avg) = 0.351534, lr = 0.010000
iter = 1507, accuracy (cur) = 0.920000 (all), 0.904762 (pos), 0.931034 (neg)
iter = 1507, accuracy (avg) = 0.838828 (all), 0.840723 (pos), 0.837249 (neg)
data reader: epoch = 0, batch = 1508 / 4040
iter = 1508, cls_loss (cur) = 0.409144, cls_loss (avg) = 0.352110, lr = 0.010000
iter = 1508, accuracy (cur) = 0.780000 (all), 0.730769 (pos), 0.833333 (neg)
iter = 1508, accuracy (avg) = 0.838240 (all), 0.839624 (pos), 0.837210 (neg)
data reader: epoch = 0, batch = 1509 / 4040
iter = 1509, cls_loss (cur) = 0.375997, cls_loss (avg) = 0.352349, lr = 0.010000
iter = 1509, accuracy (cur) = 0.800000 (all), 0.740741 (pos), 0.869565 (neg)
iter = 1509, accuracy (avg) = 0.837857 (all), 0.838635 (pos), 0.837534 (neg)
data reader: epoch = 0, batch = 1510 / 4040
iter = 1510, cls_loss (cur) = 0.366259, cls_loss (avg) = 0.352488, lr = 0.010000
iter = 1510, accuracy (cur) = 0.880000 (all), 0.958333 (pos), 0.807692 (neg)
iter = 1510, accuracy (avg) = 0.838279 (all), 0.839832 (pos), 0.837235 (neg)
data reader: epoch = 0, batch = 1511 / 4040
iter = 1511, cls_loss (cur) = 0.285330, cls_loss (avg) = 0.351816, lr = 0.010000
iter = 1511, accuracy (cur) = 0.900000 (all), 0.833333 (pos), 1.000000 (neg)
iter = 1511, accuracy (avg) = 0.838896 (all), 0.839767 (pos), 0.838863 (neg)
data reader: epoch = 0, batch = 1512 / 4040
iter = 1512, cls_loss (cur) = 0.419067, cls_loss (avg) = 0.352489, lr = 0.010000
iter = 1512, accuracy (cur) = 0.800000 (all), 0.714286 (pos), 0.862069 (neg)
iter = 1512, accuracy (avg) = 0.838507 (all), 0.838512 (pos), 0.839095 (neg)
data reader: epoch = 0, batch = 1513 / 4040
iter = 1513, cls_loss (cur) = 0.263976, cls_loss (avg) = 0.351604, lr = 0.010000
iter = 1513, accuracy (cur) = 0.940000 (all), 0.925926 (pos), 0.956522 (neg)
iter = 1513, accuracy (avg) = 0.839522 (all), 0.839386 (pos), 0.840269 (neg)
data reader: epoch = 0, batch = 1514 / 4040
iter = 1514, cls_loss (cur) = 0.300148, cls_loss (avg) = 0.351089, lr = 0.010000
iter = 1514, accuracy (cur) = 0.880000 (all), 0.892857 (pos), 0.863636 (neg)
iter = 1514, accuracy (avg) = 0.839927 (all), 0.839921 (pos), 0.840503 (neg)
data reader: epoch = 0, batch = 1515 / 4040
iter = 1515, cls_loss (cur) = 0.388243, cls_loss (avg) = 0.351461, lr = 0.010000
iter = 1515, accuracy (cur) = 0.820000 (all), 0.821429 (pos), 0.818182 (neg)
iter = 1515, accuracy (avg) = 0.839727 (all), 0.839736 (pos), 0.840280 (neg)
data reader: epoch = 0, batch = 1516 / 4040
iter = 1516, cls_loss (cur) = 0.381145, cls_loss (avg) = 0.351758, lr = 0.010000
iter = 1516, accuracy (cur) = 0.840000 (all), 0.800000 (pos), 0.900000 (neg)
iter = 1516, accuracy (avg) = 0.839730 (all), 0.839338 (pos), 0.840877 (neg)
data reader: epoch = 0, batch = 1517 / 4040
iter = 1517, cls_loss (cur) = 0.306510, cls_loss (avg) = 0.351305, lr = 0.010000
iter = 1517, accuracy (cur) = 0.900000 (all), 0.896552 (pos), 0.904762 (neg)
iter = 1517, accuracy (avg) = 0.840333 (all), 0.839911 (pos), 0.841516 (neg)
data reader: epoch = 0, batch = 1518 / 4040
iter = 1518, cls_loss (cur) = 0.325831, cls_loss (avg) = 0.351050, lr = 0.010000
iter = 1518, accuracy (cur) = 0.880000 (all), 0.909091 (pos), 0.857143 (neg)
iter = 1518, accuracy (avg) = 0.840730 (all), 0.840602 (pos), 0.841672 (neg)
data reader: epoch = 0, batch = 1519 / 4040
iter = 1519, cls_loss (cur) = 0.271966, cls_loss (avg) = 0.350260, lr = 0.010000
iter = 1519, accuracy (cur) = 0.900000 (all), 0.947368 (pos), 0.870968 (neg)
iter = 1519, accuracy (avg) = 0.841322 (all), 0.841670 (pos), 0.841965 (neg)
data reader: epoch = 0, batch = 1520 / 4040
iter = 1520, cls_loss (cur) = 0.282220, cls_loss (avg) = 0.349579, lr = 0.010000
iter = 1520, accuracy (cur) = 0.860000 (all), 0.923077 (pos), 0.791667 (neg)
iter = 1520, accuracy (avg) = 0.841509 (all), 0.842484 (pos), 0.841462 (neg)
data reader: epoch = 0, batch = 1521 / 4040
iter = 1521, cls_loss (cur) = 0.387399, cls_loss (avg) = 0.349957, lr = 0.010000
iter = 1521, accuracy (cur) = 0.840000 (all), 0.807692 (pos), 0.875000 (neg)
iter = 1521, accuracy (avg) = 0.841494 (all), 0.842136 (pos), 0.841797 (neg)
data reader: epoch = 0, batch = 1522 / 4040
iter = 1522, cls_loss (cur) = 0.289907, cls_loss (avg) = 0.349357, lr = 0.010000
iter = 1522, accuracy (cur) = 0.820000 (all), 0.846154 (pos), 0.791667 (neg)
iter = 1522, accuracy (avg) = 0.841279 (all), 0.842176 (pos), 0.841296 (neg)
data reader: epoch = 0, batch = 1523 / 4040
iter = 1523, cls_loss (cur) = 0.285424, cls_loss (avg) = 0.348718, lr = 0.010000
iter = 1523, accuracy (cur) = 0.900000 (all), 0.875000 (pos), 0.923077 (neg)
iter = 1523, accuracy (avg) = 0.841866 (all), 0.842505 (pos), 0.842114 (neg)
data reader: epoch = 0, batch = 1524 / 4040
iter = 1524, cls_loss (cur) = 0.266197, cls_loss (avg) = 0.347892, lr = 0.010000
iter = 1524, accuracy (cur) = 0.900000 (all), 0.965517 (pos), 0.809524 (neg)
iter = 1524, accuracy (avg) = 0.842448 (all), 0.843735 (pos), 0.841788 (neg)
data reader: epoch = 0, batch = 1525 / 4040
iter = 1525, cls_loss (cur) = 0.326779, cls_loss (avg) = 0.347681, lr = 0.010000
iter = 1525, accuracy (cur) = 0.880000 (all), 0.920000 (pos), 0.840000 (neg)
iter = 1525, accuracy (avg) = 0.842823 (all), 0.844497 (pos), 0.841770 (neg)
data reader: epoch = 0, batch = 1526 / 4040
iter = 1526, cls_loss (cur) = 0.306898, cls_loss (avg) = 0.347273, lr = 0.010000
iter = 1526, accuracy (cur) = 0.880000 (all), 0.941176 (pos), 0.848485 (neg)
iter = 1526, accuracy (avg) = 0.843195 (all), 0.845464 (pos), 0.841837 (neg)
data reader: epoch = 0, batch = 1527 / 4040
iter = 1527, cls_loss (cur) = 0.404339, cls_loss (avg) = 0.347844, lr = 0.010000
iter = 1527, accuracy (cur) = 0.840000 (all), 0.807692 (pos), 0.875000 (neg)
iter = 1527, accuracy (avg) = 0.843163 (all), 0.845087 (pos), 0.842169 (neg)
data reader: epoch = 0, batch = 1528 / 4040
iter = 1528, cls_loss (cur) = 0.277915, cls_loss (avg) = 0.347145, lr = 0.010000
iter = 1528, accuracy (cur) = 0.880000 (all), 0.772727 (pos), 0.964286 (neg)
iter = 1528, accuracy (avg) = 0.843531 (all), 0.844363 (pos), 0.843390 (neg)
data reader: epoch = 0, batch = 1529 / 4040
iter = 1529, cls_loss (cur) = 0.318989, cls_loss (avg) = 0.346863, lr = 0.010000
iter = 1529, accuracy (cur) = 0.860000 (all), 0.882353 (pos), 0.848485 (neg)
iter = 1529, accuracy (avg) = 0.843696 (all), 0.844743 (pos), 0.843441 (neg)
data reader: epoch = 0, batch = 1530 / 4040
iter = 1530, cls_loss (cur) = 0.312297, cls_loss (avg) = 0.346518, lr = 0.010000
iter = 1530, accuracy (cur) = 0.860000 (all), 0.785714 (pos), 0.954545 (neg)
iter = 1530, accuracy (avg) = 0.843859 (all), 0.844153 (pos), 0.844552 (neg)
data reader: epoch = 0, batch = 1531 / 4040
iter = 1531, cls_loss (cur) = 0.309522, cls_loss (avg) = 0.346148, lr = 0.010000
iter = 1531, accuracy (cur) = 0.860000 (all), 0.818182 (pos), 0.892857 (neg)
iter = 1531, accuracy (avg) = 0.844020 (all), 0.843893 (pos), 0.845035 (neg)
data reader: epoch = 0, batch = 1532 / 4040
iter = 1532, cls_loss (cur) = 0.293576, cls_loss (avg) = 0.345622, lr = 0.010000
iter = 1532, accuracy (cur) = 0.900000 (all), 0.869565 (pos), 0.925926 (neg)
iter = 1532, accuracy (avg) = 0.844580 (all), 0.844150 (pos), 0.845844 (neg)
data reader: epoch = 0, batch = 1533 / 4040
iter = 1533, cls_loss (cur) = 0.381473, cls_loss (avg) = 0.345980, lr = 0.010000
iter = 1533, accuracy (cur) = 0.860000 (all), 0.807692 (pos), 0.916667 (neg)
iter = 1533, accuracy (avg) = 0.844734 (all), 0.843785 (pos), 0.846552 (neg)
data reader: epoch = 0, batch = 1534 / 4040
iter = 1534, cls_loss (cur) = 0.373113, cls_loss (avg) = 0.346252, lr = 0.010000
iter = 1534, accuracy (cur) = 0.760000 (all), 0.857143 (pos), 0.636364 (neg)
iter = 1534, accuracy (avg) = 0.843887 (all), 0.843919 (pos), 0.844450 (neg)
data reader: epoch = 0, batch = 1535 / 4040
iter = 1535, cls_loss (cur) = 0.461320, cls_loss (avg) = 0.347402, lr = 0.010000
iter = 1535, accuracy (cur) = 0.720000 (all), 0.650000 (pos), 0.766667 (neg)
iter = 1535, accuracy (avg) = 0.842648 (all), 0.841979 (pos), 0.843672 (neg)
data reader: epoch = 0, batch = 1536 / 4040
iter = 1536, cls_loss (cur) = 0.209836, cls_loss (avg) = 0.346027, lr = 0.010000
iter = 1536, accuracy (cur) = 0.940000 (all), 0.960000 (pos), 0.920000 (neg)
iter = 1536, accuracy (avg) = 0.843622 (all), 0.843160 (pos), 0.844436 (neg)
data reader: epoch = 0, batch = 1537 / 4040
iter = 1537, cls_loss (cur) = 0.275594, cls_loss (avg) = 0.345322, lr = 0.010000
iter = 1537, accuracy (cur) = 0.960000 (all), 0.904762 (pos), 1.000000 (neg)
iter = 1537, accuracy (avg) = 0.844785 (all), 0.843776 (pos), 0.845991 (neg)
data reader: epoch = 0, batch = 1538 / 4040
iter = 1538, cls_loss (cur) = 0.369054, cls_loss (avg) = 0.345560, lr = 0.010000
iter = 1538, accuracy (cur) = 0.880000 (all), 0.888889 (pos), 0.869565 (neg)
iter = 1538, accuracy (avg) = 0.845138 (all), 0.844227 (pos), 0.846227 (neg)
data reader: epoch = 0, batch = 1539 / 4040
iter = 1539, cls_loss (cur) = 0.234005, cls_loss (avg) = 0.344444, lr = 0.010000
iter = 1539, accuracy (cur) = 0.940000 (all), 0.947368 (pos), 0.935484 (neg)
iter = 1539, accuracy (avg) = 0.846086 (all), 0.845258 (pos), 0.847120 (neg)
data reader: epoch = 0, batch = 1540 / 4040
iter = 1540, cls_loss (cur) = 0.339106, cls_loss (avg) = 0.344391, lr = 0.010000
iter = 1540, accuracy (cur) = 0.860000 (all), 0.857143 (pos), 0.863636 (neg)
iter = 1540, accuracy (avg) = 0.846225 (all), 0.845377 (pos), 0.847285 (neg)
data reader: epoch = 0, batch = 1541 / 4040
iter = 1541, cls_loss (cur) = 0.382391, cls_loss (avg) = 0.344771, lr = 0.010000
iter = 1541, accuracy (cur) = 0.780000 (all), 0.703704 (pos), 0.869565 (neg)
iter = 1541, accuracy (avg) = 0.845563 (all), 0.843960 (pos), 0.847508 (neg)
data reader: epoch = 0, batch = 1542 / 4040
iter = 1542, cls_loss (cur) = 0.264722, cls_loss (avg) = 0.343970, lr = 0.010000
iter = 1542, accuracy (cur) = 0.920000 (all), 1.000000 (pos), 0.870968 (neg)
iter = 1542, accuracy (avg) = 0.846307 (all), 0.845521 (pos), 0.847742 (neg)
data reader: epoch = 0, batch = 1543 / 4040
iter = 1543, cls_loss (cur) = 0.314333, cls_loss (avg) = 0.343674, lr = 0.010000
iter = 1543, accuracy (cur) = 0.840000 (all), 0.884615 (pos), 0.791667 (neg)
iter = 1543, accuracy (avg) = 0.846244 (all), 0.845912 (pos), 0.847181 (neg)
data reader: epoch = 0, batch = 1544 / 4040
iter = 1544, cls_loss (cur) = 0.450269, cls_loss (avg) = 0.344740, lr = 0.010000
iter = 1544, accuracy (cur) = 0.760000 (all), 0.782609 (pos), 0.740741 (neg)
iter = 1544, accuracy (avg) = 0.845382 (all), 0.845279 (pos), 0.846117 (neg)
data reader: epoch = 0, batch = 1545 / 4040
iter = 1545, cls_loss (cur) = 0.350406, cls_loss (avg) = 0.344797, lr = 0.010000
iter = 1545, accuracy (cur) = 0.820000 (all), 0.791667 (pos), 0.846154 (neg)
iter = 1545, accuracy (avg) = 0.845128 (all), 0.844742 (pos), 0.846117 (neg)
data reader: epoch = 0, batch = 1546 / 4040
iter = 1546, cls_loss (cur) = 0.329170, cls_loss (avg) = 0.344640, lr = 0.010000
iter = 1546, accuracy (cur) = 0.820000 (all), 0.785714 (pos), 0.863636 (neg)
iter = 1546, accuracy (avg) = 0.844877 (all), 0.844152 (pos), 0.846293 (neg)
data reader: epoch = 0, batch = 1547 / 4040
iter = 1547, cls_loss (cur) = 0.224802, cls_loss (avg) = 0.343442, lr = 0.010000
iter = 1547, accuracy (cur) = 0.940000 (all), 0.931034 (pos), 0.952381 (neg)
iter = 1547, accuracy (avg) = 0.845828 (all), 0.845021 (pos), 0.847353 (neg)
data reader: epoch = 0, batch = 1548 / 4040
iter = 1548, cls_loss (cur) = 0.367643, cls_loss (avg) = 0.343684, lr = 0.010000
iter = 1548, accuracy (cur) = 0.840000 (all), 0.840000 (pos), 0.840000 (neg)
iter = 1548, accuracy (avg) = 0.845770 (all), 0.844971 (pos), 0.847280 (neg)
data reader: epoch = 0, batch = 1549 / 4040
iter = 1549, cls_loss (cur) = 0.369764, cls_loss (avg) = 0.343945, lr = 0.010000
iter = 1549, accuracy (cur) = 0.860000 (all), 0.857143 (pos), 0.863636 (neg)
iter = 1549, accuracy (avg) = 0.845912 (all), 0.845093 (pos), 0.847444 (neg)
data reader: epoch = 0, batch = 1550 / 4040
iter = 1550, cls_loss (cur) = 0.416156, cls_loss (avg) = 0.344667, lr = 0.010000
iter = 1550, accuracy (cur) = 0.760000 (all), 0.793103 (pos), 0.714286 (neg)
iter = 1550, accuracy (avg) = 0.845053 (all), 0.844573 (pos), 0.846112 (neg)
data reader: epoch = 0, batch = 1551 / 4040
iter = 1551, cls_loss (cur) = 0.254894, cls_loss (avg) = 0.343769, lr = 0.010000
iter = 1551, accuracy (cur) = 0.920000 (all), 0.857143 (pos), 0.965517 (neg)
iter = 1551, accuracy (avg) = 0.845802 (all), 0.844698 (pos), 0.847306 (neg)
data reader: epoch = 0, batch = 1552 / 4040
iter = 1552, cls_loss (cur) = 0.334154, cls_loss (avg) = 0.343673, lr = 0.010000
iter = 1552, accuracy (cur) = 0.860000 (all), 0.896552 (pos), 0.809524 (neg)
iter = 1552, accuracy (avg) = 0.845944 (all), 0.845217 (pos), 0.846928 (neg)
data reader: epoch = 0, batch = 1553 / 4040
iter = 1553, cls_loss (cur) = 0.291988, cls_loss (avg) = 0.343156, lr = 0.010000
iter = 1553, accuracy (cur) = 0.920000 (all), 0.850000 (pos), 0.966667 (neg)
iter = 1553, accuracy (avg) = 0.846685 (all), 0.845265 (pos), 0.848126 (neg)
data reader: epoch = 0, batch = 1554 / 4040
iter = 1554, cls_loss (cur) = 0.344979, cls_loss (avg) = 0.343174, lr = 0.010000
iter = 1554, accuracy (cur) = 0.820000 (all), 0.730769 (pos), 0.916667 (neg)
iter = 1554, accuracy (avg) = 0.846418 (all), 0.844120 (pos), 0.848811 (neg)
data reader: epoch = 0, batch = 1555 / 4040
iter = 1555, cls_loss (cur) = 0.305861, cls_loss (avg) = 0.342801, lr = 0.010000
iter = 1555, accuracy (cur) = 0.820000 (all), 0.800000 (pos), 0.850000 (neg)
iter = 1555, accuracy (avg) = 0.846154 (all), 0.843679 (pos), 0.848823 (neg)
data reader: epoch = 0, batch = 1556 / 4040
iter = 1556, cls_loss (cur) = 0.287558, cls_loss (avg) = 0.342249, lr = 0.010000
iter = 1556, accuracy (cur) = 0.880000 (all), 0.878788 (pos), 0.882353 (neg)
iter = 1556, accuracy (avg) = 0.846492 (all), 0.844030 (pos), 0.849158 (neg)
data reader: epoch = 0, batch = 1557 / 4040
iter = 1557, cls_loss (cur) = 0.401105, cls_loss (avg) = 0.342837, lr = 0.010000
iter = 1557, accuracy (cur) = 0.720000 (all), 0.720000 (pos), 0.720000 (neg)
iter = 1557, accuracy (avg) = 0.845228 (all), 0.842789 (pos), 0.847867 (neg)
data reader: epoch = 0, batch = 1558 / 4040
iter = 1558, cls_loss (cur) = 0.210413, cls_loss (avg) = 0.341513, lr = 0.010000
iter = 1558, accuracy (cur) = 0.920000 (all), 0.961538 (pos), 0.875000 (neg)
iter = 1558, accuracy (avg) = 0.845975 (all), 0.843977 (pos), 0.848138 (neg)
data reader: epoch = 0, batch = 1559 / 4040
iter = 1559, cls_loss (cur) = 0.275431, cls_loss (avg) = 0.340852, lr = 0.010000
iter = 1559, accuracy (cur) = 0.860000 (all), 0.875000 (pos), 0.846154 (neg)
iter = 1559, accuracy (avg) = 0.846115 (all), 0.844287 (pos), 0.848118 (neg)
data reader: epoch = 0, batch = 1560 / 4040
iter = 1560, cls_loss (cur) = 0.576731, cls_loss (avg) = 0.343211, lr = 0.010000
iter = 1560, accuracy (cur) = 0.680000 (all), 0.882353 (pos), 0.575758 (neg)
iter = 1560, accuracy (avg) = 0.844454 (all), 0.844668 (pos), 0.845394 (neg)
data reader: epoch = 0, batch = 1561 / 4040
iter = 1561, cls_loss (cur) = 0.346633, cls_loss (avg) = 0.343245, lr = 0.010000
iter = 1561, accuracy (cur) = 0.820000 (all), 0.851852 (pos), 0.782609 (neg)
iter = 1561, accuracy (avg) = 0.844210 (all), 0.844740 (pos), 0.844767 (neg)
data reader: epoch = 0, batch = 1562 / 4040
iter = 1562, cls_loss (cur) = 0.448930, cls_loss (avg) = 0.344302, lr = 0.010000
iter = 1562, accuracy (cur) = 0.820000 (all), 1.000000 (pos), 0.625000 (neg)
iter = 1562, accuracy (avg) = 0.843968 (all), 0.846292 (pos), 0.842569 (neg)
data reader: epoch = 0, batch = 1563 / 4040
iter = 1563, cls_loss (cur) = 0.356736, cls_loss (avg) = 0.344426, lr = 0.010000
iter = 1563, accuracy (cur) = 0.840000 (all), 0.875000 (pos), 0.807692 (neg)
iter = 1563, accuracy (avg) = 0.843928 (all), 0.846579 (pos), 0.842220 (neg)
data reader: epoch = 0, batch = 1564 / 4040
iter = 1564, cls_loss (cur) = 0.316820, cls_loss (avg) = 0.344150, lr = 0.010000
iter = 1564, accuracy (cur) = 0.880000 (all), 0.878788 (pos), 0.882353 (neg)
iter = 1564, accuracy (avg) = 0.844289 (all), 0.846901 (pos), 0.842621 (neg)
data reader: epoch = 0, batch = 1565 / 4040
iter = 1565, cls_loss (cur) = 0.334272, cls_loss (avg) = 0.344052, lr = 0.010000
iter = 1565, accuracy (cur) = 0.820000 (all), 0.807692 (pos), 0.833333 (neg)
iter = 1565, accuracy (avg) = 0.844046 (all), 0.846509 (pos), 0.842529 (neg)
data reader: epoch = 0, batch = 1566 / 4040
iter = 1566, cls_loss (cur) = 0.368931, cls_loss (avg) = 0.344300, lr = 0.010000
iter = 1566, accuracy (cur) = 0.800000 (all), 0.923077 (pos), 0.666667 (neg)
iter = 1566, accuracy (avg) = 0.843605 (all), 0.847275 (pos), 0.840770 (neg)
data reader: epoch = 0, batch = 1567 / 4040
iter = 1567, cls_loss (cur) = 0.345059, cls_loss (avg) = 0.344308, lr = 0.010000
iter = 1567, accuracy (cur) = 0.840000 (all), 0.807692 (pos), 0.875000 (neg)
iter = 1567, accuracy (avg) = 0.843569 (all), 0.846879 (pos), 0.841112 (neg)
data reader: epoch = 0, batch = 1568 / 4040
iter = 1568, cls_loss (cur) = 0.345369, cls_loss (avg) = 0.344319, lr = 0.010000
iter = 1568, accuracy (cur) = 0.840000 (all), 0.800000 (pos), 0.866667 (neg)
iter = 1568, accuracy (avg) = 0.843534 (all), 0.846410 (pos), 0.841368 (neg)
data reader: epoch = 0, batch = 1569 / 4040
iter = 1569, cls_loss (cur) = 0.238106, cls_loss (avg) = 0.343256, lr = 0.010000
iter = 1569, accuracy (cur) = 0.940000 (all), 0.962963 (pos), 0.913043 (neg)
iter = 1569, accuracy (avg) = 0.844498 (all), 0.847576 (pos), 0.842085 (neg)
data reader: epoch = 0, batch = 1570 / 4040
iter = 1570, cls_loss (cur) = 0.291850, cls_loss (avg) = 0.342742, lr = 0.010000
iter = 1570, accuracy (cur) = 0.860000 (all), 0.800000 (pos), 0.920000 (neg)
iter = 1570, accuracy (avg) = 0.844653 (all), 0.847100 (pos), 0.842864 (neg)
data reader: epoch = 0, batch = 1571 / 4040
iter = 1571, cls_loss (cur) = 0.276577, cls_loss (avg) = 0.342081, lr = 0.010000
iter = 1571, accuracy (cur) = 0.880000 (all), 0.863636 (pos), 0.892857 (neg)
iter = 1571, accuracy (avg) = 0.845007 (all), 0.847265 (pos), 0.843364 (neg)
data reader: epoch = 0, batch = 1572 / 4040
iter = 1572, cls_loss (cur) = 0.427258, cls_loss (avg) = 0.342932, lr = 0.010000
iter = 1572, accuracy (cur) = 0.800000 (all), 0.818182 (pos), 0.785714 (neg)
iter = 1572, accuracy (avg) = 0.844557 (all), 0.846975 (pos), 0.842787 (neg)
data reader: epoch = 0, batch = 1573 / 4040
iter = 1573, cls_loss (cur) = 0.420547, cls_loss (avg) = 0.343709, lr = 0.010000
iter = 1573, accuracy (cur) = 0.840000 (all), 0.851852 (pos), 0.826087 (neg)
iter = 1573, accuracy (avg) = 0.844511 (all), 0.847023 (pos), 0.842620 (neg)
data reader: epoch = 0, batch = 1574 / 4040
iter = 1574, cls_loss (cur) = 0.293608, cls_loss (avg) = 0.343208, lr = 0.010000
iter = 1574, accuracy (cur) = 0.920000 (all), 0.892857 (pos), 0.954545 (neg)
iter = 1574, accuracy (avg) = 0.845266 (all), 0.847482 (pos), 0.843739 (neg)
data reader: epoch = 0, batch = 1575 / 4040
iter = 1575, cls_loss (cur) = 0.223027, cls_loss (avg) = 0.342006, lr = 0.010000
iter = 1575, accuracy (cur) = 0.920000 (all), 0.952381 (pos), 0.896552 (neg)
iter = 1575, accuracy (avg) = 0.846013 (all), 0.848531 (pos), 0.844268 (neg)
data reader: epoch = 0, batch = 1576 / 4040
iter = 1576, cls_loss (cur) = 0.368238, cls_loss (avg) = 0.342268, lr = 0.010000
iter = 1576, accuracy (cur) = 0.820000 (all), 0.785714 (pos), 0.863636 (neg)
iter = 1576, accuracy (avg) = 0.845753 (all), 0.847903 (pos), 0.844461 (neg)
data reader: epoch = 0, batch = 1577 / 4040
iter = 1577, cls_loss (cur) = 0.199749, cls_loss (avg) = 0.340843, lr = 0.010000
iter = 1577, accuracy (cur) = 0.960000 (all), 0.956522 (pos), 0.962963 (neg)
iter = 1577, accuracy (avg) = 0.846896 (all), 0.848989 (pos), 0.845646 (neg)
data reader: epoch = 0, batch = 1578 / 4040
iter = 1578, cls_loss (cur) = 0.256079, cls_loss (avg) = 0.339995, lr = 0.010000
iter = 1578, accuracy (cur) = 0.880000 (all), 0.913043 (pos), 0.851852 (neg)
iter = 1578, accuracy (avg) = 0.847227 (all), 0.849629 (pos), 0.845708 (neg)
data reader: epoch = 0, batch = 1579 / 4040
iter = 1579, cls_loss (cur) = 0.454650, cls_loss (avg) = 0.341142, lr = 0.010000
iter = 1579, accuracy (cur) = 0.740000 (all), 0.793103 (pos), 0.666667 (neg)
iter = 1579, accuracy (avg) = 0.846154 (all), 0.849064 (pos), 0.843918 (neg)
data reader: epoch = 0, batch = 1580 / 4040
iter = 1580, cls_loss (cur) = 0.351817, cls_loss (avg) = 0.341249, lr = 0.010000
iter = 1580, accuracy (cur) = 0.840000 (all), 0.840000 (pos), 0.840000 (neg)
iter = 1580, accuracy (avg) = 0.846093 (all), 0.848973 (pos), 0.843879 (neg)
data reader: epoch = 0, batch = 1581 / 4040
iter = 1581, cls_loss (cur) = 0.392871, cls_loss (avg) = 0.341765, lr = 0.010000
iter = 1581, accuracy (cur) = 0.740000 (all), 0.666667 (pos), 0.826087 (neg)
iter = 1581, accuracy (avg) = 0.845032 (all), 0.847150 (pos), 0.843701 (neg)
data reader: epoch = 0, batch = 1582 / 4040
iter = 1582, cls_loss (cur) = 0.355243, cls_loss (avg) = 0.341900, lr = 0.010000
iter = 1582, accuracy (cur) = 0.860000 (all), 0.814815 (pos), 0.913043 (neg)
iter = 1582, accuracy (avg) = 0.845182 (all), 0.846827 (pos), 0.844394 (neg)
data reader: epoch = 0, batch = 1583 / 4040
iter = 1583, cls_loss (cur) = 0.291830, cls_loss (avg) = 0.341399, lr = 0.010000
iter = 1583, accuracy (cur) = 0.880000 (all), 0.846154 (pos), 0.916667 (neg)
iter = 1583, accuracy (avg) = 0.845530 (all), 0.846820 (pos), 0.845117 (neg)
data reader: epoch = 0, batch = 1584 / 4040
iter = 1584, cls_loss (cur) = 0.308788, cls_loss (avg) = 0.341073, lr = 0.010000
iter = 1584, accuracy (cur) = 0.900000 (all), 0.818182 (pos), 0.964286 (neg)
iter = 1584, accuracy (avg) = 0.846075 (all), 0.846534 (pos), 0.846309 (neg)
data reader: epoch = 0, batch = 1585 / 4040
iter = 1585, cls_loss (cur) = 0.274676, cls_loss (avg) = 0.340409, lr = 0.010000
iter = 1585, accuracy (cur) = 0.880000 (all), 0.833333 (pos), 0.923077 (neg)
iter = 1585, accuracy (avg) = 0.846414 (all), 0.846402 (pos), 0.847076 (neg)
data reader: epoch = 0, batch = 1586 / 4040
iter = 1586, cls_loss (cur) = 0.407767, cls_loss (avg) = 0.341082, lr = 0.010000
iter = 1586, accuracy (cur) = 0.800000 (all), 0.840000 (pos), 0.760000 (neg)
iter = 1586, accuracy (avg) = 0.845950 (all), 0.846338 (pos), 0.846206 (neg)
data reader: epoch = 0, batch = 1587 / 4040
iter = 1587, cls_loss (cur) = 0.247394, cls_loss (avg) = 0.340146, lr = 0.010000
iter = 1587, accuracy (cur) = 0.920000 (all), 0.952381 (pos), 0.896552 (neg)
iter = 1587, accuracy (avg) = 0.846690 (all), 0.847398 (pos), 0.846709 (neg)
data reader: epoch = 0, batch = 1588 / 4040
iter = 1588, cls_loss (cur) = 0.401027, cls_loss (avg) = 0.340754, lr = 0.010000
iter = 1588, accuracy (cur) = 0.760000 (all), 0.777778 (pos), 0.739130 (neg)
iter = 1588, accuracy (avg) = 0.845823 (all), 0.846702 (pos), 0.845633 (neg)
data reader: epoch = 0, batch = 1589 / 4040
iter = 1589, cls_loss (cur) = 0.298702, cls_loss (avg) = 0.340334, lr = 0.010000
iter = 1589, accuracy (cur) = 0.860000 (all), 0.812500 (pos), 0.944444 (neg)
iter = 1589, accuracy (avg) = 0.845965 (all), 0.846360 (pos), 0.846621 (neg)
data reader: epoch = 0, batch = 1590 / 4040
iter = 1590, cls_loss (cur) = 0.421404, cls_loss (avg) = 0.341145, lr = 0.010000
iter = 1590, accuracy (cur) = 0.740000 (all), 0.642857 (pos), 0.863636 (neg)
iter = 1590, accuracy (avg) = 0.844905 (all), 0.844325 (pos), 0.846792 (neg)
data reader: epoch = 0, batch = 1591 / 4040
iter = 1591, cls_loss (cur) = 0.394775, cls_loss (avg) = 0.341681, lr = 0.010000
iter = 1591, accuracy (cur) = 0.800000 (all), 0.904762 (pos), 0.724138 (neg)
iter = 1591, accuracy (avg) = 0.844456 (all), 0.844929 (pos), 0.845565 (neg)
data reader: epoch = 0, batch = 1592 / 4040
iter = 1592, cls_loss (cur) = 0.448269, cls_loss (avg) = 0.342747, lr = 0.010000
iter = 1592, accuracy (cur) = 0.720000 (all), 0.791667 (pos), 0.653846 (neg)
iter = 1592, accuracy (avg) = 0.843212 (all), 0.844397 (pos), 0.843648 (neg)
data reader: epoch = 0, batch = 1593 / 4040
iter = 1593, cls_loss (cur) = 0.346751, cls_loss (avg) = 0.342787, lr = 0.010000
iter = 1593, accuracy (cur) = 0.800000 (all), 0.700000 (pos), 0.950000 (neg)
iter = 1593, accuracy (avg) = 0.842780 (all), 0.842953 (pos), 0.844711 (neg)
data reader: epoch = 0, batch = 1594 / 4040
iter = 1594, cls_loss (cur) = 0.387340, cls_loss (avg) = 0.343232, lr = 0.010000
iter = 1594, accuracy (cur) = 0.840000 (all), 0.913043 (pos), 0.777778 (neg)
iter = 1594, accuracy (avg) = 0.842752 (all), 0.843654 (pos), 0.844042 (neg)
data reader: epoch = 0, batch = 1595 / 4040
iter = 1595, cls_loss (cur) = 0.394979, cls_loss (avg) = 0.343750, lr = 0.010000
iter = 1595, accuracy (cur) = 0.800000 (all), 0.840000 (pos), 0.760000 (neg)
iter = 1595, accuracy (avg) = 0.842324 (all), 0.843617 (pos), 0.843202 (neg)
data reader: epoch = 0, batch = 1596 / 4040
iter = 1596, cls_loss (cur) = 0.501467, cls_loss (avg) = 0.345327, lr = 0.010000
iter = 1596, accuracy (cur) = 0.720000 (all), 0.838710 (pos), 0.526316 (neg)
iter = 1596, accuracy (avg) = 0.841101 (all), 0.843568 (pos), 0.840033 (neg)
data reader: epoch = 0, batch = 1597 / 4040
iter = 1597, cls_loss (cur) = 0.346693, cls_loss (avg) = 0.345341, lr = 0.010000
iter = 1597, accuracy (cur) = 0.880000 (all), 1.000000 (pos), 0.793103 (neg)
iter = 1597, accuracy (avg) = 0.841490 (all), 0.845132 (pos), 0.839563 (neg)
data reader: epoch = 0, batch = 1598 / 4040
iter = 1598, cls_loss (cur) = 0.336254, cls_loss (avg) = 0.345250, lr = 0.010000
iter = 1598, accuracy (cur) = 0.880000 (all), 0.913043 (pos), 0.851852 (neg)
iter = 1598, accuracy (avg) = 0.841875 (all), 0.845811 (pos), 0.839686 (neg)
data reader: epoch = 0, batch = 1599 / 4040
iter = 1599, cls_loss (cur) = 0.293188, cls_loss (avg) = 0.344729, lr = 0.010000
iter = 1599, accuracy (cur) = 0.820000 (all), 0.793103 (pos), 0.857143 (neg)
iter = 1599, accuracy (avg) = 0.841656 (all), 0.845284 (pos), 0.839861 (neg)
data reader: epoch = 0, batch = 1600 / 4040
iter = 1600, cls_loss (cur) = 0.449913, cls_loss (avg) = 0.345781, lr = 0.010000
iter = 1600, accuracy (cur) = 0.760000 (all), 0.760000 (pos), 0.760000 (neg)
iter = 1600, accuracy (avg) = 0.840840 (all), 0.844432 (pos), 0.839062 (neg)
data reader: epoch = 0, batch = 1601 / 4040
iter = 1601, cls_loss (cur) = 0.282849, cls_loss (avg) = 0.345152, lr = 0.010000
iter = 1601, accuracy (cur) = 0.900000 (all), 0.846154 (pos), 0.958333 (neg)
iter = 1601, accuracy (avg) = 0.841431 (all), 0.844449 (pos), 0.840255 (neg)
data reader: epoch = 0, batch = 1602 / 4040
iter = 1602, cls_loss (cur) = 0.279034, cls_loss (avg) = 0.344490, lr = 0.010000
iter = 1602, accuracy (cur) = 0.880000 (all), 0.956522 (pos), 0.814815 (neg)
iter = 1602, accuracy (avg) = 0.841817 (all), 0.845570 (pos), 0.840001 (neg)
data reader: epoch = 0, batch = 1603 / 4040
iter = 1603, cls_loss (cur) = 0.355756, cls_loss (avg) = 0.344603, lr = 0.010000
iter = 1603, accuracy (cur) = 0.840000 (all), 0.818182 (pos), 0.857143 (neg)
iter = 1603, accuracy (avg) = 0.841799 (all), 0.845296 (pos), 0.840172 (neg)
data reader: epoch = 0, batch = 1604 / 4040
iter = 1604, cls_loss (cur) = 0.395397, cls_loss (avg) = 0.345111, lr = 0.010000
iter = 1604, accuracy (cur) = 0.760000 (all), 0.727273 (pos), 0.823529 (neg)
iter = 1604, accuracy (avg) = 0.840981 (all), 0.844115 (pos), 0.840006 (neg)
data reader: epoch = 0, batch = 1605 / 4040
iter = 1605, cls_loss (cur) = 0.422430, cls_loss (avg) = 0.345884, lr = 0.010000
iter = 1605, accuracy (cur) = 0.840000 (all), 0.827586 (pos), 0.857143 (neg)
iter = 1605, accuracy (avg) = 0.840971 (all), 0.843950 (pos), 0.840177 (neg)
data reader: epoch = 0, batch = 1606 / 4040
iter = 1606, cls_loss (cur) = 0.434463, cls_loss (avg) = 0.346770, lr = 0.010000
iter = 1606, accuracy (cur) = 0.840000 (all), 0.846154 (pos), 0.833333 (neg)
iter = 1606, accuracy (avg) = 0.840961 (all), 0.843972 (pos), 0.840108 (neg)
data reader: epoch = 0, batch = 1607 / 4040
iter = 1607, cls_loss (cur) = 0.307304, cls_loss (avg) = 0.346375, lr = 0.010000
iter = 1607, accuracy (cur) = 0.860000 (all), 0.807692 (pos), 0.916667 (neg)
iter = 1607, accuracy (avg) = 0.841152 (all), 0.843609 (pos), 0.840874 (neg)
data reader: epoch = 0, batch = 1608 / 4040
iter = 1608, cls_loss (cur) = 0.349395, cls_loss (avg) = 0.346406, lr = 0.010000
iter = 1608, accuracy (cur) = 0.880000 (all), 0.950000 (pos), 0.833333 (neg)
iter = 1608, accuracy (avg) = 0.841540 (all), 0.844673 (pos), 0.840799 (neg)
data reader: epoch = 0, batch = 1609 / 4040
iter = 1609, cls_loss (cur) = 0.383038, cls_loss (avg) = 0.346772, lr = 0.010000
iter = 1609, accuracy (cur) = 0.820000 (all), 0.827586 (pos), 0.809524 (neg)
iter = 1609, accuracy (avg) = 0.841325 (all), 0.844502 (pos), 0.840486 (neg)
data reader: epoch = 0, batch = 1610 / 4040
iter = 1610, cls_loss (cur) = 0.357541, cls_loss (avg) = 0.346880, lr = 0.010000
iter = 1610, accuracy (cur) = 0.840000 (all), 0.838710 (pos), 0.842105 (neg)
iter = 1610, accuracy (avg) = 0.841312 (all), 0.844444 (pos), 0.840502 (neg)
data reader: epoch = 0, batch = 1611 / 4040
iter = 1611, cls_loss (cur) = 0.385692, cls_loss (avg) = 0.347268, lr = 0.010000
iter = 1611, accuracy (cur) = 0.840000 (all), 0.807692 (pos), 0.875000 (neg)
iter = 1611, accuracy (avg) = 0.841299 (all), 0.844077 (pos), 0.840847 (neg)
data reader: epoch = 0, batch = 1612 / 4040
iter = 1612, cls_loss (cur) = 0.214243, cls_loss (avg) = 0.345937, lr = 0.010000
iter = 1612, accuracy (cur) = 0.920000 (all), 0.892857 (pos), 0.954545 (neg)
iter = 1612, accuracy (avg) = 0.842086 (all), 0.844565 (pos), 0.841984 (neg)
data reader: epoch = 0, batch = 1613 / 4040
iter = 1613, cls_loss (cur) = 0.313477, cls_loss (avg) = 0.345613, lr = 0.010000
iter = 1613, accuracy (cur) = 0.880000 (all), 0.826087 (pos), 0.925926 (neg)
iter = 1613, accuracy (avg) = 0.842465 (all), 0.844380 (pos), 0.842823 (neg)
data reader: epoch = 0, batch = 1614 / 4040
iter = 1614, cls_loss (cur) = 0.265937, cls_loss (avg) = 0.344816, lr = 0.010000
iter = 1614, accuracy (cur) = 0.900000 (all), 0.884615 (pos), 0.916667 (neg)
iter = 1614, accuracy (avg) = 0.843040 (all), 0.844782 (pos), 0.843562 (neg)
data reader: epoch = 0, batch = 1615 / 4040
iter = 1615, cls_loss (cur) = 0.329973, cls_loss (avg) = 0.344668, lr = 0.010000
iter = 1615, accuracy (cur) = 0.840000 (all), 0.935484 (pos), 0.684211 (neg)
iter = 1615, accuracy (avg) = 0.843010 (all), 0.845689 (pos), 0.841968 (neg)
data reader: epoch = 0, batch = 1616 / 4040
iter = 1616, cls_loss (cur) = 0.394504, cls_loss (avg) = 0.345166, lr = 0.010000
iter = 1616, accuracy (cur) = 0.800000 (all), 0.950000 (pos), 0.700000 (neg)
iter = 1616, accuracy (avg) = 0.842580 (all), 0.846732 (pos), 0.840549 (neg)
data reader: epoch = 0, batch = 1617 / 4040
iter = 1617, cls_loss (cur) = 0.250763, cls_loss (avg) = 0.344222, lr = 0.010000
iter = 1617, accuracy (cur) = 0.840000 (all), 0.857143 (pos), 0.818182 (neg)
iter = 1617, accuracy (avg) = 0.842554 (all), 0.846837 (pos), 0.840325 (neg)
data reader: epoch = 0, batch = 1618 / 4040
iter = 1618, cls_loss (cur) = 0.293980, cls_loss (avg) = 0.343720, lr = 0.010000
iter = 1618, accuracy (cur) = 0.900000 (all), 0.964286 (pos), 0.818182 (neg)
iter = 1618, accuracy (avg) = 0.843128 (all), 0.848011 (pos), 0.840104 (neg)
data reader: epoch = 0, batch = 1619 / 4040
iter = 1619, cls_loss (cur) = 0.343002, cls_loss (avg) = 0.343712, lr = 0.010000
iter = 1619, accuracy (cur) = 0.840000 (all), 0.806452 (pos), 0.894737 (neg)
iter = 1619, accuracy (avg) = 0.843097 (all), 0.847595 (pos), 0.840650 (neg)
data reader: epoch = 0, batch = 1620 / 4040
iter = 1620, cls_loss (cur) = 0.370779, cls_loss (avg) = 0.343983, lr = 0.010000
iter = 1620, accuracy (cur) = 0.840000 (all), 0.875000 (pos), 0.807692 (neg)
iter = 1620, accuracy (avg) = 0.843066 (all), 0.847869 (pos), 0.840320 (neg)
data reader: epoch = 0, batch = 1621 / 4040
iter = 1621, cls_loss (cur) = 0.240508, cls_loss (avg) = 0.342948, lr = 0.010000
iter = 1621, accuracy (cur) = 0.880000 (all), 0.896552 (pos), 0.857143 (neg)
iter = 1621, accuracy (avg) = 0.843435 (all), 0.848356 (pos), 0.840489 (neg)
data reader: epoch = 0, batch = 1622 / 4040
iter = 1622, cls_loss (cur) = 0.300506, cls_loss (avg) = 0.342524, lr = 0.010000
iter = 1622, accuracy (cur) = 0.820000 (all), 0.821429 (pos), 0.818182 (neg)
iter = 1622, accuracy (avg) = 0.843201 (all), 0.848087 (pos), 0.840266 (neg)
data reader: epoch = 0, batch = 1623 / 4040
iter = 1623, cls_loss (cur) = 0.345929, cls_loss (avg) = 0.342558, lr = 0.010000
iter = 1623, accuracy (cur) = 0.820000 (all), 0.925926 (pos), 0.695652 (neg)
iter = 1623, accuracy (avg) = 0.842969 (all), 0.848865 (pos), 0.838819 (neg)
data reader: epoch = 0, batch = 1624 / 4040
iter = 1624, cls_loss (cur) = 0.199078, cls_loss (avg) = 0.341123, lr = 0.010000
iter = 1624, accuracy (cur) = 0.940000 (all), 0.920000 (pos), 0.960000 (neg)
iter = 1624, accuracy (avg) = 0.843939 (all), 0.849577 (pos), 0.840031 (neg)
data reader: epoch = 0, batch = 1625 / 4040
iter = 1625, cls_loss (cur) = 0.345366, cls_loss (avg) = 0.341166, lr = 0.010000
iter = 1625, accuracy (cur) = 0.800000 (all), 1.000000 (pos), 0.666667 (neg)
iter = 1625, accuracy (avg) = 0.843500 (all), 0.851081 (pos), 0.838298 (neg)
data reader: epoch = 0, batch = 1626 / 4040
iter = 1626, cls_loss (cur) = 0.408533, cls_loss (avg) = 0.341839, lr = 0.010000
iter = 1626, accuracy (cur) = 0.780000 (all), 0.840000 (pos), 0.720000 (neg)
iter = 1626, accuracy (avg) = 0.842865 (all), 0.850970 (pos), 0.837115 (neg)
data reader: epoch = 0, batch = 1627 / 4040
iter = 1627, cls_loss (cur) = 0.308991, cls_loss (avg) = 0.341511, lr = 0.010000
iter = 1627, accuracy (cur) = 0.840000 (all), 0.851852 (pos), 0.826087 (neg)
iter = 1627, accuracy (avg) = 0.842836 (all), 0.850979 (pos), 0.837004 (neg)
data reader: epoch = 0, batch = 1628 / 4040
iter = 1628, cls_loss (cur) = 0.247695, cls_loss (avg) = 0.340573, lr = 0.010000
iter = 1628, accuracy (cur) = 0.900000 (all), 0.900000 (pos), 0.900000 (neg)
iter = 1628, accuracy (avg) = 0.843408 (all), 0.851469 (pos), 0.837634 (neg)
data reader: epoch = 0, batch = 1629 / 4040
iter = 1629, cls_loss (cur) = 0.372883, cls_loss (avg) = 0.340896, lr = 0.010000
iter = 1629, accuracy (cur) = 0.800000 (all), 0.838710 (pos), 0.736842 (neg)
iter = 1629, accuracy (avg) = 0.842974 (all), 0.851342 (pos), 0.836626 (neg)
data reader: epoch = 0, batch = 1630 / 4040
iter = 1630, cls_loss (cur) = 0.329099, cls_loss (avg) = 0.340778, lr = 0.010000
iter = 1630, accuracy (cur) = 0.840000 (all), 0.840000 (pos), 0.840000 (neg)
iter = 1630, accuracy (avg) = 0.842944 (all), 0.851228 (pos), 0.836660 (neg)
data reader: epoch = 0, batch = 1631 / 4040
iter = 1631, cls_loss (cur) = 0.272451, cls_loss (avg) = 0.340094, lr = 0.010000
iter = 1631, accuracy (cur) = 0.900000 (all), 0.880000 (pos), 0.920000 (neg)
iter = 1631, accuracy (avg) = 0.843515 (all), 0.851516 (pos), 0.837493 (neg)
data reader: epoch = 0, batch = 1632 / 4040
iter = 1632, cls_loss (cur) = 0.367411, cls_loss (avg) = 0.340368, lr = 0.010000
iter = 1632, accuracy (cur) = 0.800000 (all), 0.680000 (pos), 0.920000 (neg)
iter = 1632, accuracy (avg) = 0.843079 (all), 0.849801 (pos), 0.838319 (neg)
data reader: epoch = 0, batch = 1633 / 4040
iter = 1633, cls_loss (cur) = 0.385732, cls_loss (avg) = 0.340821, lr = 0.010000
iter = 1633, accuracy (cur) = 0.760000 (all), 0.821429 (pos), 0.681818 (neg)
iter = 1633, accuracy (avg) = 0.842249 (all), 0.849517 (pos), 0.836754 (neg)
data reader: epoch = 0, batch = 1634 / 4040
iter = 1634, cls_loss (cur) = 0.353512, cls_loss (avg) = 0.340948, lr = 0.010000
iter = 1634, accuracy (cur) = 0.820000 (all), 0.904762 (pos), 0.758621 (neg)
iter = 1634, accuracy (avg) = 0.842026 (all), 0.850069 (pos), 0.835972 (neg)
data reader: epoch = 0, batch = 1635 / 4040
iter = 1635, cls_loss (cur) = 0.352475, cls_loss (avg) = 0.341063, lr = 0.010000
iter = 1635, accuracy (cur) = 0.880000 (all), 0.818182 (pos), 0.928571 (neg)
iter = 1635, accuracy (avg) = 0.842406 (all), 0.849751 (pos), 0.836898 (neg)
data reader: epoch = 0, batch = 1636 / 4040
iter = 1636, cls_loss (cur) = 0.191281, cls_loss (avg) = 0.339566, lr = 0.010000
iter = 1636, accuracy (cur) = 0.940000 (all), 0.961538 (pos), 0.916667 (neg)
iter = 1636, accuracy (avg) = 0.843382 (all), 0.850868 (pos), 0.837696 (neg)
data reader: epoch = 0, batch = 1637 / 4040
iter = 1637, cls_loss (cur) = 0.217508, cls_loss (avg) = 0.338345, lr = 0.010000
iter = 1637, accuracy (cur) = 0.940000 (all), 0.964286 (pos), 0.909091 (neg)
iter = 1637, accuracy (avg) = 0.844348 (all), 0.852003 (pos), 0.838410 (neg)
data reader: epoch = 0, batch = 1638 / 4040
iter = 1638, cls_loss (cur) = 0.370632, cls_loss (avg) = 0.338668, lr = 0.010000
iter = 1638, accuracy (cur) = 0.840000 (all), 0.827586 (pos), 0.857143 (neg)
iter = 1638, accuracy (avg) = 0.844305 (all), 0.851759 (pos), 0.838597 (neg)
data reader: epoch = 0, batch = 1639 / 4040
iter = 1639, cls_loss (cur) = 0.235791, cls_loss (avg) = 0.337639, lr = 0.010000
iter = 1639, accuracy (cur) = 0.940000 (all), 1.000000 (pos), 0.880000 (neg)
iter = 1639, accuracy (avg) = 0.845262 (all), 0.853241 (pos), 0.839011 (neg)
data reader: epoch = 0, batch = 1640 / 4040
iter = 1640, cls_loss (cur) = 0.384564, cls_loss (avg) = 0.338108, lr = 0.010000
iter = 1640, accuracy (cur) = 0.840000 (all), 0.875000 (pos), 0.807692 (neg)
iter = 1640, accuracy (avg) = 0.845209 (all), 0.853459 (pos), 0.838698 (neg)
data reader: epoch = 0, batch = 1641 / 4040
iter = 1641, cls_loss (cur) = 0.353846, cls_loss (avg) = 0.338266, lr = 0.010000
iter = 1641, accuracy (cur) = 0.760000 (all), 0.720000 (pos), 0.800000 (neg)
iter = 1641, accuracy (avg) = 0.844357 (all), 0.852124 (pos), 0.838311 (neg)
data reader: epoch = 0, batch = 1642 / 4040
iter = 1642, cls_loss (cur) = 0.243249, cls_loss (avg) = 0.337316, lr = 0.010000
iter = 1642, accuracy (cur) = 0.920000 (all), 0.875000 (pos), 0.961538 (neg)
iter = 1642, accuracy (avg) = 0.845113 (all), 0.852353 (pos), 0.839543 (neg)
data reader: epoch = 0, batch = 1643 / 4040
iter = 1643, cls_loss (cur) = 0.320088, cls_loss (avg) = 0.337143, lr = 0.010000
iter = 1643, accuracy (cur) = 0.880000 (all), 0.961538 (pos), 0.791667 (neg)
iter = 1643, accuracy (avg) = 0.845462 (all), 0.853445 (pos), 0.839065 (neg)
data reader: epoch = 0, batch = 1644 / 4040
iter = 1644, cls_loss (cur) = 0.315479, cls_loss (avg) = 0.336927, lr = 0.010000
iter = 1644, accuracy (cur) = 0.820000 (all), 0.666667 (pos), 0.961538 (neg)
iter = 1644, accuracy (avg) = 0.845208 (all), 0.851577 (pos), 0.840289 (neg)
data reader: epoch = 0, batch = 1645 / 4040
iter = 1645, cls_loss (cur) = 0.241988, cls_loss (avg) = 0.335977, lr = 0.010000
iter = 1645, accuracy (cur) = 0.900000 (all), 0.923077 (pos), 0.875000 (neg)
iter = 1645, accuracy (avg) = 0.845755 (all), 0.852292 (pos), 0.840636 (neg)
data reader: epoch = 0, batch = 1646 / 4040
iter = 1646, cls_loss (cur) = 0.288445, cls_loss (avg) = 0.335502, lr = 0.010000
iter = 1646, accuracy (cur) = 0.880000 (all), 0.939394 (pos), 0.764706 (neg)
iter = 1646, accuracy (avg) = 0.846098 (all), 0.853163 (pos), 0.839877 (neg)
data reader: epoch = 0, batch = 1647 / 4040
iter = 1647, cls_loss (cur) = 0.316594, cls_loss (avg) = 0.335313, lr = 0.010000
iter = 1647, accuracy (cur) = 0.800000 (all), 0.840000 (pos), 0.760000 (neg)
iter = 1647, accuracy (avg) = 0.845637 (all), 0.853031 (pos), 0.839078 (neg)
data reader: epoch = 0, batch = 1648 / 4040
iter = 1648, cls_loss (cur) = 0.252516, cls_loss (avg) = 0.334485, lr = 0.010000
iter = 1648, accuracy (cur) = 0.900000 (all), 0.931034 (pos), 0.857143 (neg)
iter = 1648, accuracy (avg) = 0.846181 (all), 0.853811 (pos), 0.839259 (neg)
data reader: epoch = 0, batch = 1649 / 4040
iter = 1649, cls_loss (cur) = 0.273505, cls_loss (avg) = 0.333875, lr = 0.010000
iter = 1649, accuracy (cur) = 0.880000 (all), 0.958333 (pos), 0.807692 (neg)
iter = 1649, accuracy (avg) = 0.846519 (all), 0.854856 (pos), 0.838943 (neg)
data reader: epoch = 0, batch = 1650 / 4040
iter = 1650, cls_loss (cur) = 0.398860, cls_loss (avg) = 0.334525, lr = 0.010000
iter = 1650, accuracy (cur) = 0.840000 (all), 1.000000 (pos), 0.733333 (neg)
iter = 1650, accuracy (avg) = 0.846454 (all), 0.856308 (pos), 0.837887 (neg)
data reader: epoch = 0, batch = 1651 / 4040
iter = 1651, cls_loss (cur) = 0.335811, cls_loss (avg) = 0.334538, lr = 0.010000
iter = 1651, accuracy (cur) = 0.820000 (all), 0.961538 (pos), 0.666667 (neg)
iter = 1651, accuracy (avg) = 0.846189 (all), 0.857360 (pos), 0.836175 (neg)
data reader: epoch = 0, batch = 1652 / 4040
iter = 1652, cls_loss (cur) = 0.487325, cls_loss (avg) = 0.336066, lr = 0.010000
iter = 1652, accuracy (cur) = 0.720000 (all), 0.814815 (pos), 0.608696 (neg)
iter = 1652, accuracy (avg) = 0.844927 (all), 0.856935 (pos), 0.833900 (neg)
data reader: epoch = 0, batch = 1653 / 4040
iter = 1653, cls_loss (cur) = 0.392747, cls_loss (avg) = 0.336633, lr = 0.010000
iter = 1653, accuracy (cur) = 0.800000 (all), 0.750000 (pos), 0.846154 (neg)
iter = 1653, accuracy (avg) = 0.844478 (all), 0.855865 (pos), 0.834023 (neg)
data reader: epoch = 0, batch = 1654 / 4040
iter = 1654, cls_loss (cur) = 0.301646, cls_loss (avg) = 0.336283, lr = 0.010000
iter = 1654, accuracy (cur) = 0.880000 (all), 1.000000 (pos), 0.750000 (neg)
iter = 1654, accuracy (avg) = 0.844833 (all), 0.857307 (pos), 0.833182 (neg)
data reader: epoch = 0, batch = 1655 / 4040
iter = 1655, cls_loss (cur) = 0.395396, cls_loss (avg) = 0.336874, lr = 0.010000
iter = 1655, accuracy (cur) = 0.800000 (all), 0.791667 (pos), 0.807692 (neg)
iter = 1655, accuracy (avg) = 0.844385 (all), 0.856650 (pos), 0.832928 (neg)
data reader: epoch = 0, batch = 1656 / 4040
iter = 1656, cls_loss (cur) = 0.448669, cls_loss (avg) = 0.337992, lr = 0.010000
iter = 1656, accuracy (cur) = 0.780000 (all), 0.625000 (pos), 0.923077 (neg)
iter = 1656, accuracy (avg) = 0.843741 (all), 0.854334 (pos), 0.833829 (neg)
data reader: epoch = 0, batch = 1657 / 4040
iter = 1657, cls_loss (cur) = 0.296746, cls_loss (avg) = 0.337579, lr = 0.010000
iter = 1657, accuracy (cur) = 0.880000 (all), 0.892857 (pos), 0.863636 (neg)
iter = 1657, accuracy (avg) = 0.844103 (all), 0.854719 (pos), 0.834127 (neg)
data reader: epoch = 0, batch = 1658 / 4040
iter = 1658, cls_loss (cur) = 0.331435, cls_loss (avg) = 0.337518, lr = 0.010000
iter = 1658, accuracy (cur) = 0.900000 (all), 0.857143 (pos), 0.931034 (neg)
iter = 1658, accuracy (avg) = 0.844662 (all), 0.854743 (pos), 0.835096 (neg)
data reader: epoch = 0, batch = 1659 / 4040
iter = 1659, cls_loss (cur) = 0.347799, cls_loss (avg) = 0.337621, lr = 0.010000
iter = 1659, accuracy (cur) = 0.880000 (all), 0.800000 (pos), 0.960000 (neg)
iter = 1659, accuracy (avg) = 0.845016 (all), 0.854196 (pos), 0.836345 (neg)
data reader: epoch = 0, batch = 1660 / 4040
iter = 1660, cls_loss (cur) = 0.377274, cls_loss (avg) = 0.338017, lr = 0.010000
iter = 1660, accuracy (cur) = 0.840000 (all), 0.925926 (pos), 0.739130 (neg)
iter = 1660, accuracy (avg) = 0.844966 (all), 0.854913 (pos), 0.835373 (neg)
data reader: epoch = 0, batch = 1661 / 4040
iter = 1661, cls_loss (cur) = 0.245133, cls_loss (avg) = 0.337088, lr = 0.010000
iter = 1661, accuracy (cur) = 0.900000 (all), 0.857143 (pos), 0.954545 (neg)
iter = 1661, accuracy (avg) = 0.845516 (all), 0.854935 (pos), 0.836565 (neg)
data reader: epoch = 0, batch = 1662 / 4040
iter = 1662, cls_loss (cur) = 0.434822, cls_loss (avg) = 0.338066, lr = 0.010000
iter = 1662, accuracy (cur) = 0.840000 (all), 0.736842 (pos), 0.903226 (neg)
iter = 1662, accuracy (avg) = 0.845461 (all), 0.853755 (pos), 0.837231 (neg)
data reader: epoch = 0, batch = 1663 / 4040
iter = 1663, cls_loss (cur) = 0.321448, cls_loss (avg) = 0.337900, lr = 0.010000
iter = 1663, accuracy (cur) = 0.820000 (all), 0.772727 (pos), 0.857143 (neg)
iter = 1663, accuracy (avg) = 0.845206 (all), 0.852944 (pos), 0.837431 (neg)
data reader: epoch = 0, batch = 1664 / 4040
iter = 1664, cls_loss (cur) = 0.306771, cls_loss (avg) = 0.337588, lr = 0.010000
iter = 1664, accuracy (cur) = 0.880000 (all), 0.818182 (pos), 0.928571 (neg)
iter = 1664, accuracy (avg) = 0.845554 (all), 0.852597 (pos), 0.838342 (neg)
data reader: epoch = 0, batch = 1665 / 4040
iter = 1665, cls_loss (cur) = 0.329563, cls_loss (avg) = 0.337508, lr = 0.010000
iter = 1665, accuracy (cur) = 0.860000 (all), 0.846154 (pos), 0.875000 (neg)
iter = 1665, accuracy (avg) = 0.845699 (all), 0.852532 (pos), 0.838709 (neg)
data reader: epoch = 0, batch = 1666 / 4040
iter = 1666, cls_loss (cur) = 0.316846, cls_loss (avg) = 0.337301, lr = 0.010000
iter = 1666, accuracy (cur) = 0.860000 (all), 0.950000 (pos), 0.800000 (neg)
iter = 1666, accuracy (avg) = 0.845842 (all), 0.853507 (pos), 0.838321 (neg)
data reader: epoch = 0, batch = 1667 / 4040
iter = 1667, cls_loss (cur) = 0.324693, cls_loss (avg) = 0.337175, lr = 0.010000
iter = 1667, accuracy (cur) = 0.840000 (all), 0.866667 (pos), 0.800000 (neg)
iter = 1667, accuracy (avg) = 0.845783 (all), 0.853638 (pos), 0.837938 (neg)
data reader: epoch = 0, batch = 1668 / 4040
iter = 1668, cls_loss (cur) = 0.384943, cls_loss (avg) = 0.337653, lr = 0.010000
iter = 1668, accuracy (cur) = 0.760000 (all), 0.708333 (pos), 0.807692 (neg)
iter = 1668, accuracy (avg) = 0.844925 (all), 0.852185 (pos), 0.837636 (neg)
data reader: epoch = 0, batch = 1669 / 4040
iter = 1669, cls_loss (cur) = 0.447963, cls_loss (avg) = 0.338756, lr = 0.010000
iter = 1669, accuracy (cur) = 0.800000 (all), 0.944444 (pos), 0.718750 (neg)
iter = 1669, accuracy (avg) = 0.844476 (all), 0.853108 (pos), 0.836447 (neg)
data reader: epoch = 0, batch = 1670 / 4040
iter = 1670, cls_loss (cur) = 0.260164, cls_loss (avg) = 0.337970, lr = 0.010000
iter = 1670, accuracy (cur) = 0.920000 (all), 0.933333 (pos), 0.900000 (neg)
iter = 1670, accuracy (avg) = 0.845231 (all), 0.853910 (pos), 0.837082 (neg)
data reader: epoch = 0, batch = 1671 / 4040
iter = 1671, cls_loss (cur) = 0.412005, cls_loss (avg) = 0.338710, lr = 0.010000
iter = 1671, accuracy (cur) = 0.820000 (all), 0.851852 (pos), 0.782609 (neg)
iter = 1671, accuracy (avg) = 0.844979 (all), 0.853890 (pos), 0.836538 (neg)
data reader: epoch = 0, batch = 1672 / 4040
iter = 1672, cls_loss (cur) = 0.331874, cls_loss (avg) = 0.338642, lr = 0.010000
iter = 1672, accuracy (cur) = 0.880000 (all), 0.789474 (pos), 0.935484 (neg)
iter = 1672, accuracy (avg) = 0.845329 (all), 0.853246 (pos), 0.837527 (neg)
data reader: epoch = 0, batch = 1673 / 4040
iter = 1673, cls_loss (cur) = 0.464069, cls_loss (avg) = 0.339896, lr = 0.010000
iter = 1673, accuracy (cur) = 0.760000 (all), 0.818182 (pos), 0.714286 (neg)
iter = 1673, accuracy (avg) = 0.844476 (all), 0.852895 (pos), 0.836295 (neg)
data reader: epoch = 0, batch = 1674 / 4040
iter = 1674, cls_loss (cur) = 0.409676, cls_loss (avg) = 0.340594, lr = 0.010000
iter = 1674, accuracy (cur) = 0.780000 (all), 0.863636 (pos), 0.714286 (neg)
iter = 1674, accuracy (avg) = 0.843831 (all), 0.853002 (pos), 0.835075 (neg)
data reader: epoch = 0, batch = 1675 / 4040
iter = 1675, cls_loss (cur) = 0.294697, cls_loss (avg) = 0.340135, lr = 0.010000
iter = 1675, accuracy (cur) = 0.900000 (all), 1.000000 (pos), 0.814815 (neg)
iter = 1675, accuracy (avg) = 0.844393 (all), 0.854472 (pos), 0.834872 (neg)
data reader: epoch = 0, batch = 1676 / 4040
iter = 1676, cls_loss (cur) = 0.240380, cls_loss (avg) = 0.339138, lr = 0.010000
iter = 1676, accuracy (cur) = 0.920000 (all), 0.952381 (pos), 0.896552 (neg)
iter = 1676, accuracy (avg) = 0.845149 (all), 0.855451 (pos), 0.835489 (neg)
data reader: epoch = 0, batch = 1677 / 4040
iter = 1677, cls_loss (cur) = 0.377901, cls_loss (avg) = 0.339525, lr = 0.010000
iter = 1677, accuracy (cur) = 0.780000 (all), 0.705882 (pos), 0.937500 (neg)
iter = 1677, accuracy (avg) = 0.844497 (all), 0.853956 (pos), 0.836509 (neg)
data reader: epoch = 0, batch = 1678 / 4040
iter = 1678, cls_loss (cur) = 0.395869, cls_loss (avg) = 0.340089, lr = 0.010000
iter = 1678, accuracy (cur) = 0.820000 (all), 0.880000 (pos), 0.760000 (neg)
iter = 1678, accuracy (avg) = 0.844253 (all), 0.854216 (pos), 0.835744 (neg)
data reader: epoch = 0, batch = 1679 / 4040
iter = 1679, cls_loss (cur) = 0.330445, cls_loss (avg) = 0.339992, lr = 0.010000
iter = 1679, accuracy (cur) = 0.880000 (all), 0.827586 (pos), 0.952381 (neg)
iter = 1679, accuracy (avg) = 0.844610 (all), 0.853950 (pos), 0.836910 (neg)
data reader: epoch = 0, batch = 1680 / 4040
iter = 1680, cls_loss (cur) = 0.359837, cls_loss (avg) = 0.340191, lr = 0.010000
iter = 1680, accuracy (cur) = 0.880000 (all), 0.750000 (pos), 1.000000 (neg)
iter = 1680, accuracy (avg) = 0.844964 (all), 0.852910 (pos), 0.838541 (neg)
data reader: epoch = 0, batch = 1681 / 4040
iter = 1681, cls_loss (cur) = 0.366738, cls_loss (avg) = 0.340456, lr = 0.010000
iter = 1681, accuracy (cur) = 0.780000 (all), 0.782609 (pos), 0.777778 (neg)
iter = 1681, accuracy (avg) = 0.844314 (all), 0.852207 (pos), 0.837934 (neg)
data reader: epoch = 0, batch = 1682 / 4040
iter = 1682, cls_loss (cur) = 0.247819, cls_loss (avg) = 0.339530, lr = 0.010000
iter = 1682, accuracy (cur) = 0.880000 (all), 0.875000 (pos), 0.888889 (neg)
iter = 1682, accuracy (avg) = 0.844671 (all), 0.852435 (pos), 0.838443 (neg)
data reader: epoch = 0, batch = 1683 / 4040
iter = 1683, cls_loss (cur) = 0.285150, cls_loss (avg) = 0.338986, lr = 0.010000
iter = 1683, accuracy (cur) = 0.920000 (all), 0.909091 (pos), 0.928571 (neg)
iter = 1683, accuracy (avg) = 0.845424 (all), 0.853002 (pos), 0.839344 (neg)
data reader: epoch = 0, batch = 1684 / 4040
iter = 1684, cls_loss (cur) = 0.348041, cls_loss (avg) = 0.339077, lr = 0.010000
iter = 1684, accuracy (cur) = 0.860000 (all), 0.894737 (pos), 0.838710 (neg)
iter = 1684, accuracy (avg) = 0.845570 (all), 0.853419 (pos), 0.839338 (neg)
data reader: epoch = 0, batch = 1685 / 4040
iter = 1685, cls_loss (cur) = 0.285450, cls_loss (avg) = 0.338540, lr = 0.010000
iter = 1685, accuracy (cur) = 0.900000 (all), 0.962963 (pos), 0.826087 (neg)
iter = 1685, accuracy (avg) = 0.846114 (all), 0.854515 (pos), 0.839206 (neg)
data reader: epoch = 0, batch = 1686 / 4040
iter = 1686, cls_loss (cur) = 0.399743, cls_loss (avg) = 0.339152, lr = 0.010000
iter = 1686, accuracy (cur) = 0.800000 (all), 0.894737 (pos), 0.741935 (neg)
iter = 1686, accuracy (avg) = 0.845653 (all), 0.854917 (pos), 0.838233 (neg)
data reader: epoch = 0, batch = 1687 / 4040
iter = 1687, cls_loss (cur) = 0.259865, cls_loss (avg) = 0.338360, lr = 0.010000
iter = 1687, accuracy (cur) = 0.920000 (all), 0.923077 (pos), 0.916667 (neg)
iter = 1687, accuracy (avg) = 0.846397 (all), 0.855598 (pos), 0.839017 (neg)
data reader: epoch = 0, batch = 1688 / 4040
iter = 1688, cls_loss (cur) = 0.481935, cls_loss (avg) = 0.339795, lr = 0.010000
iter = 1688, accuracy (cur) = 0.800000 (all), 0.875000 (pos), 0.730769 (neg)
iter = 1688, accuracy (avg) = 0.845933 (all), 0.855792 (pos), 0.837935 (neg)
data reader: epoch = 0, batch = 1689 / 4040
iter = 1689, cls_loss (cur) = 0.407720, cls_loss (avg) = 0.340475, lr = 0.010000
iter = 1689, accuracy (cur) = 0.840000 (all), 0.851852 (pos), 0.826087 (neg)
iter = 1689, accuracy (avg) = 0.845873 (all), 0.855753 (pos), 0.837816 (neg)
data reader: epoch = 0, batch = 1690 / 4040
iter = 1690, cls_loss (cur) = 0.409979, cls_loss (avg) = 0.341170, lr = 0.010000
iter = 1690, accuracy (cur) = 0.800000 (all), 0.809524 (pos), 0.793103 (neg)
iter = 1690, accuracy (avg) = 0.845415 (all), 0.855291 (pos), 0.837369 (neg)
data reader: epoch = 0, batch = 1691 / 4040
iter = 1691, cls_loss (cur) = 0.317841, cls_loss (avg) = 0.340936, lr = 0.010000
iter = 1691, accuracy (cur) = 0.900000 (all), 0.923077 (pos), 0.875000 (neg)
iter = 1691, accuracy (avg) = 0.845961 (all), 0.855969 (pos), 0.837745 (neg)
data reader: epoch = 0, batch = 1692 / 4040
iter = 1692, cls_loss (cur) = 0.295235, cls_loss (avg) = 0.340479, lr = 0.010000
iter = 1692, accuracy (cur) = 0.860000 (all), 0.809524 (pos), 0.896552 (neg)
iter = 1692, accuracy (avg) = 0.846101 (all), 0.855504 (pos), 0.838333 (neg)
data reader: epoch = 0, batch = 1693 / 4040
iter = 1693, cls_loss (cur) = 0.319046, cls_loss (avg) = 0.340265, lr = 0.010000
iter = 1693, accuracy (cur) = 0.800000 (all), 0.727273 (pos), 0.857143 (neg)
iter = 1693, accuracy (avg) = 0.845640 (all), 0.854222 (pos), 0.838522 (neg)
data reader: epoch = 0, batch = 1694 / 4040
iter = 1694, cls_loss (cur) = 0.292122, cls_loss (avg) = 0.339783, lr = 0.010000
iter = 1694, accuracy (cur) = 0.880000 (all), 0.913043 (pos), 0.851852 (neg)
iter = 1694, accuracy (avg) = 0.845984 (all), 0.854810 (pos), 0.838655 (neg)
data reader: epoch = 0, batch = 1695 / 4040
iter = 1695, cls_loss (cur) = 0.333013, cls_loss (avg) = 0.339716, lr = 0.010000
iter = 1695, accuracy (cur) = 0.880000 (all), 0.833333 (pos), 0.923077 (neg)
iter = 1695, accuracy (avg) = 0.846324 (all), 0.854595 (pos), 0.839499 (neg)
data reader: epoch = 0, batch = 1696 / 4040
iter = 1696, cls_loss (cur) = 0.315427, cls_loss (avg) = 0.339473, lr = 0.010000
iter = 1696, accuracy (cur) = 0.860000 (all), 0.866667 (pos), 0.850000 (neg)
iter = 1696, accuracy (avg) = 0.846461 (all), 0.854716 (pos), 0.839604 (neg)
data reader: epoch = 0, batch = 1697 / 4040
iter = 1697, cls_loss (cur) = 0.324948, cls_loss (avg) = 0.339328, lr = 0.010000
iter = 1697, accuracy (cur) = 0.820000 (all), 0.769231 (pos), 0.875000 (neg)
iter = 1697, accuracy (avg) = 0.846196 (all), 0.853861 (pos), 0.839958 (neg)
data reader: epoch = 0, batch = 1698 / 4040
iter = 1698, cls_loss (cur) = 0.326241, cls_loss (avg) = 0.339197, lr = 0.010000
iter = 1698, accuracy (cur) = 0.840000 (all), 0.846154 (pos), 0.833333 (neg)
iter = 1698, accuracy (avg) = 0.846134 (all), 0.853784 (pos), 0.839892 (neg)
data reader: epoch = 0, batch = 1699 / 4040
iter = 1699, cls_loss (cur) = 0.321842, cls_loss (avg) = 0.339023, lr = 0.010000
iter = 1699, accuracy (cur) = 0.840000 (all), 0.791667 (pos), 0.884615 (neg)
iter = 1699, accuracy (avg) = 0.846073 (all), 0.853163 (pos), 0.840339 (neg)
data reader: epoch = 0, batch = 1700 / 4040
iter = 1700, cls_loss (cur) = 0.350858, cls_loss (avg) = 0.339142, lr = 0.010000
iter = 1700, accuracy (cur) = 0.840000 (all), 0.720000 (pos), 0.960000 (neg)
iter = 1700, accuracy (avg) = 0.846012 (all), 0.851831 (pos), 0.841536 (neg)
data reader: epoch = 0, batch = 1701 / 4040
iter = 1701, cls_loss (cur) = 0.314736, cls_loss (avg) = 0.338898, lr = 0.010000
iter = 1701, accuracy (cur) = 0.880000 (all), 0.904762 (pos), 0.862069 (neg)
iter = 1701, accuracy (avg) = 0.846352 (all), 0.852361 (pos), 0.841741 (neg)
data reader: epoch = 0, batch = 1702 / 4040
iter = 1702, cls_loss (cur) = 0.376084, cls_loss (avg) = 0.339269, lr = 0.010000
iter = 1702, accuracy (cur) = 0.860000 (all), 0.923077 (pos), 0.791667 (neg)
iter = 1702, accuracy (avg) = 0.846488 (all), 0.853068 (pos), 0.841240 (neg)
data reader: epoch = 0, batch = 1703 / 4040
iter = 1703, cls_loss (cur) = 0.280098, cls_loss (avg) = 0.338678, lr = 0.010000
iter = 1703, accuracy (cur) = 0.900000 (all), 0.809524 (pos), 0.965517 (neg)
iter = 1703, accuracy (avg) = 0.847023 (all), 0.852632 (pos), 0.842483 (neg)
data reader: epoch = 0, batch = 1704 / 4040
iter = 1704, cls_loss (cur) = 0.270196, cls_loss (avg) = 0.337993, lr = 0.010000
iter = 1704, accuracy (cur) = 0.880000 (all), 0.846154 (pos), 0.916667 (neg)
iter = 1704, accuracy (avg) = 0.847353 (all), 0.852567 (pos), 0.843225 (neg)
data reader: epoch = 0, batch = 1705 / 4040
iter = 1705, cls_loss (cur) = 0.242350, cls_loss (avg) = 0.337036, lr = 0.010000
iter = 1705, accuracy (cur) = 0.920000 (all), 0.863636 (pos), 0.964286 (neg)
iter = 1705, accuracy (avg) = 0.848080 (all), 0.852678 (pos), 0.844435 (neg)
data reader: epoch = 0, batch = 1706 / 4040
iter = 1706, cls_loss (cur) = 0.280556, cls_loss (avg) = 0.336472, lr = 0.010000
iter = 1706, accuracy (cur) = 0.860000 (all), 0.842105 (pos), 0.870968 (neg)
iter = 1706, accuracy (avg) = 0.848199 (all), 0.852572 (pos), 0.844701 (neg)
data reader: epoch = 0, batch = 1707 / 4040
iter = 1707, cls_loss (cur) = 0.458679, cls_loss (avg) = 0.337694, lr = 0.010000
iter = 1707, accuracy (cur) = 0.740000 (all), 0.909091 (pos), 0.607143 (neg)
iter = 1707, accuracy (avg) = 0.847117 (all), 0.853138 (pos), 0.842325 (neg)
data reader: epoch = 0, batch = 1708 / 4040
iter = 1708, cls_loss (cur) = 0.193261, cls_loss (avg) = 0.336249, lr = 0.010000
iter = 1708, accuracy (cur) = 0.960000 (all), 0.933333 (pos), 1.000000 (neg)
iter = 1708, accuracy (avg) = 0.848246 (all), 0.853940 (pos), 0.843902 (neg)
data reader: epoch = 0, batch = 1709 / 4040
iter = 1709, cls_loss (cur) = 0.294523, cls_loss (avg) = 0.335832, lr = 0.010000
iter = 1709, accuracy (cur) = 0.880000 (all), 0.833333 (pos), 0.923077 (neg)
iter = 1709, accuracy (avg) = 0.848563 (all), 0.853734 (pos), 0.844694 (neg)
data reader: epoch = 0, batch = 1710 / 4040
iter = 1710, cls_loss (cur) = 0.476478, cls_loss (avg) = 0.337239, lr = 0.010000
iter = 1710, accuracy (cur) = 0.760000 (all), 0.727273 (pos), 0.785714 (neg)
iter = 1710, accuracy (avg) = 0.847678 (all), 0.852469 (pos), 0.844104 (neg)
data reader: epoch = 0, batch = 1711 / 4040
iter = 1711, cls_loss (cur) = 0.260784, cls_loss (avg) = 0.336474, lr = 0.010000
iter = 1711, accuracy (cur) = 0.900000 (all), 0.923077 (pos), 0.875000 (neg)
iter = 1711, accuracy (avg) = 0.848201 (all), 0.853175 (pos), 0.844413 (neg)
data reader: epoch = 0, batch = 1712 / 4040
iter = 1712, cls_loss (cur) = 0.301856, cls_loss (avg) = 0.336128, lr = 0.010000
iter = 1712, accuracy (cur) = 0.860000 (all), 0.782609 (pos), 0.925926 (neg)
iter = 1712, accuracy (avg) = 0.848319 (all), 0.852469 (pos), 0.845228 (neg)
data reader: epoch = 0, batch = 1713 / 4040
iter = 1713, cls_loss (cur) = 0.327916, cls_loss (avg) = 0.336046, lr = 0.010000
iter = 1713, accuracy (cur) = 0.860000 (all), 0.777778 (pos), 0.956522 (neg)
iter = 1713, accuracy (avg) = 0.848436 (all), 0.851722 (pos), 0.846341 (neg)
data reader: epoch = 0, batch = 1714 / 4040
iter = 1714, cls_loss (cur) = 0.329211, cls_loss (avg) = 0.335977, lr = 0.010000
iter = 1714, accuracy (cur) = 0.880000 (all), 0.827586 (pos), 0.952381 (neg)
iter = 1714, accuracy (avg) = 0.848751 (all), 0.851481 (pos), 0.847401 (neg)
data reader: epoch = 0, batch = 1715 / 4040
iter = 1715, cls_loss (cur) = 0.233963, cls_loss (avg) = 0.334957, lr = 0.010000
iter = 1715, accuracy (cur) = 0.920000 (all), 0.880000 (pos), 0.960000 (neg)
iter = 1715, accuracy (avg) = 0.849464 (all), 0.851766 (pos), 0.848527 (neg)
data reader: epoch = 0, batch = 1716 / 4040
iter = 1716, cls_loss (cur) = 0.423648, cls_loss (avg) = 0.335844, lr = 0.010000
iter = 1716, accuracy (cur) = 0.820000 (all), 0.833333 (pos), 0.807692 (neg)
iter = 1716, accuracy (avg) = 0.849169 (all), 0.851582 (pos), 0.848119 (neg)
data reader: epoch = 0, batch = 1717 / 4040
iter = 1717, cls_loss (cur) = 0.485001, cls_loss (avg) = 0.337336, lr = 0.010000
iter = 1717, accuracy (cur) = 0.820000 (all), 0.850000 (pos), 0.800000 (neg)
iter = 1717, accuracy (avg) = 0.848877 (all), 0.851566 (pos), 0.847638 (neg)
data reader: epoch = 0, batch = 1718 / 4040
iter = 1718, cls_loss (cur) = 0.284203, cls_loss (avg) = 0.336804, lr = 0.010000
iter = 1718, accuracy (cur) = 0.880000 (all), 0.846154 (pos), 0.916667 (neg)
iter = 1718, accuracy (avg) = 0.849189 (all), 0.851512 (pos), 0.848328 (neg)
data reader: epoch = 0, batch = 1719 / 4040
iter = 1719, cls_loss (cur) = 0.278800, cls_loss (avg) = 0.336224, lr = 0.010000
iter = 1719, accuracy (cur) = 0.880000 (all), 0.952381 (pos), 0.827586 (neg)
iter = 1719, accuracy (avg) = 0.849497 (all), 0.852521 (pos), 0.848121 (neg)
data reader: epoch = 0, batch = 1720 / 4040
iter = 1720, cls_loss (cur) = 0.331767, cls_loss (avg) = 0.336180, lr = 0.010000
iter = 1720, accuracy (cur) = 0.840000 (all), 0.880000 (pos), 0.800000 (neg)
iter = 1720, accuracy (avg) = 0.849402 (all), 0.852795 (pos), 0.847639 (neg)
data reader: epoch = 0, batch = 1721 / 4040
iter = 1721, cls_loss (cur) = 0.364103, cls_loss (avg) = 0.336459, lr = 0.010000
iter = 1721, accuracy (cur) = 0.820000 (all), 0.761905 (pos), 0.862069 (neg)
iter = 1721, accuracy (avg) = 0.849108 (all), 0.851887 (pos), 0.847784 (neg)
data reader: epoch = 0, batch = 1722 / 4040
iter = 1722, cls_loss (cur) = 0.405150, cls_loss (avg) = 0.337146, lr = 0.010000
iter = 1722, accuracy (cur) = 0.820000 (all), 0.827586 (pos), 0.809524 (neg)
iter = 1722, accuracy (avg) = 0.848817 (all), 0.851644 (pos), 0.847401 (neg)
data reader: epoch = 0, batch = 1723 / 4040
iter = 1723, cls_loss (cur) = 0.310749, cls_loss (avg) = 0.336882, lr = 0.010000
iter = 1723, accuracy (cur) = 0.860000 (all), 0.761905 (pos), 0.931034 (neg)
iter = 1723, accuracy (avg) = 0.848929 (all), 0.850746 (pos), 0.848237 (neg)
data reader: epoch = 0, batch = 1724 / 4040
iter = 1724, cls_loss (cur) = 0.405444, cls_loss (avg) = 0.337568, lr = 0.010000
iter = 1724, accuracy (cur) = 0.820000 (all), 0.892857 (pos), 0.727273 (neg)
iter = 1724, accuracy (avg) = 0.848639 (all), 0.851167 (pos), 0.847028 (neg)
data reader: epoch = 0, batch = 1725 / 4040
iter = 1725, cls_loss (cur) = 0.278671, cls_loss (avg) = 0.336979, lr = 0.010000
iter = 1725, accuracy (cur) = 0.880000 (all), 0.884615 (pos), 0.875000 (neg)
iter = 1725, accuracy (avg) = 0.848953 (all), 0.851502 (pos), 0.847308 (neg)
data reader: epoch = 0, batch = 1726 / 4040
iter = 1726, cls_loss (cur) = 0.395041, cls_loss (avg) = 0.337559, lr = 0.010000
iter = 1726, accuracy (cur) = 0.820000 (all), 0.769231 (pos), 0.875000 (neg)
iter = 1726, accuracy (avg) = 0.848663 (all), 0.850679 (pos), 0.847584 (neg)
data reader: epoch = 0, batch = 1727 / 4040
iter = 1727, cls_loss (cur) = 0.399165, cls_loss (avg) = 0.338175, lr = 0.010000
iter = 1727, accuracy (cur) = 0.820000 (all), 0.760000 (pos), 0.880000 (neg)
iter = 1727, accuracy (avg) = 0.848377 (all), 0.849772 (pos), 0.847909 (neg)
data reader: epoch = 0, batch = 1728 / 4040
iter = 1728, cls_loss (cur) = 0.339434, cls_loss (avg) = 0.338188, lr = 0.010000
iter = 1728, accuracy (cur) = 0.880000 (all), 0.923077 (pos), 0.833333 (neg)
iter = 1728, accuracy (avg) = 0.848693 (all), 0.850505 (pos), 0.847763 (neg)
data reader: epoch = 0, batch = 1729 / 4040
iter = 1729, cls_loss (cur) = 0.268548, cls_loss (avg) = 0.337491, lr = 0.010000
iter = 1729, accuracy (cur) = 0.880000 (all), 0.961538 (pos), 0.791667 (neg)
iter = 1729, accuracy (avg) = 0.849006 (all), 0.851616 (pos), 0.847202 (neg)
data reader: epoch = 0, batch = 1730 / 4040
iter = 1730, cls_loss (cur) = 0.352997, cls_loss (avg) = 0.337647, lr = 0.010000
iter = 1730, accuracy (cur) = 0.840000 (all), 0.807692 (pos), 0.875000 (neg)
iter = 1730, accuracy (avg) = 0.848916 (all), 0.851176 (pos), 0.847480 (neg)
data reader: epoch = 0, batch = 1731 / 4040
iter = 1731, cls_loss (cur) = 0.327155, cls_loss (avg) = 0.337542, lr = 0.010000
iter = 1731, accuracy (cur) = 0.880000 (all), 0.952381 (pos), 0.827586 (neg)
iter = 1731, accuracy (avg) = 0.849227 (all), 0.852188 (pos), 0.847281 (neg)
data reader: epoch = 0, batch = 1732 / 4040
iter = 1732, cls_loss (cur) = 0.379256, cls_loss (avg) = 0.337959, lr = 0.010000
iter = 1732, accuracy (cur) = 0.820000 (all), 0.840000 (pos), 0.800000 (neg)
iter = 1732, accuracy (avg) = 0.848934 (all), 0.852067 (pos), 0.846808 (neg)
data reader: epoch = 0, batch = 1733 / 4040
iter = 1733, cls_loss (cur) = 0.205065, cls_loss (avg) = 0.336630, lr = 0.010000
iter = 1733, accuracy (cur) = 0.960000 (all), 1.000000 (pos), 0.909091 (neg)
iter = 1733, accuracy (avg) = 0.850045 (all), 0.853546 (pos), 0.847431 (neg)
data reader: epoch = 0, batch = 1734 / 4040
iter = 1734, cls_loss (cur) = 0.434932, cls_loss (avg) = 0.337613, lr = 0.010000
iter = 1734, accuracy (cur) = 0.760000 (all), 0.766667 (pos), 0.750000 (neg)
iter = 1734, accuracy (avg) = 0.849145 (all), 0.852677 (pos), 0.846457 (neg)
data reader: epoch = 0, batch = 1735 / 4040
iter = 1735, cls_loss (cur) = 0.332731, cls_loss (avg) = 0.337564, lr = 0.010000
iter = 1735, accuracy (cur) = 0.860000 (all), 0.850000 (pos), 0.866667 (neg)
iter = 1735, accuracy (avg) = 0.849253 (all), 0.852650 (pos), 0.846659 (neg)
data reader: epoch = 0, batch = 1736 / 4040
iter = 1736, cls_loss (cur) = 0.276441, cls_loss (avg) = 0.336953, lr = 0.010000
iter = 1736, accuracy (cur) = 0.900000 (all), 0.857143 (pos), 0.931034 (neg)
iter = 1736, accuracy (avg) = 0.849761 (all), 0.852695 (pos), 0.847503 (neg)
data reader: epoch = 0, batch = 1737 / 4040
iter = 1737, cls_loss (cur) = 0.382931, cls_loss (avg) = 0.337413, lr = 0.010000
iter = 1737, accuracy (cur) = 0.840000 (all), 1.000000 (pos), 0.703704 (neg)
iter = 1737, accuracy (avg) = 0.849663 (all), 0.854168 (pos), 0.846065 (neg)
data reader: epoch = 0, batch = 1738 / 4040
iter = 1738, cls_loss (cur) = 0.278657, cls_loss (avg) = 0.336825, lr = 0.010000
iter = 1738, accuracy (cur) = 0.920000 (all), 0.884615 (pos), 0.958333 (neg)
iter = 1738, accuracy (avg) = 0.850366 (all), 0.854473 (pos), 0.847187 (neg)
data reader: epoch = 0, batch = 1739 / 4040
iter = 1739, cls_loss (cur) = 0.443247, cls_loss (avg) = 0.337889, lr = 0.010000
iter = 1739, accuracy (cur) = 0.860000 (all), 0.800000 (pos), 0.920000 (neg)
iter = 1739, accuracy (avg) = 0.850463 (all), 0.853928 (pos), 0.847915 (neg)
data reader: epoch = 0, batch = 1740 / 4040
iter = 1740, cls_loss (cur) = 0.243669, cls_loss (avg) = 0.336947, lr = 0.010000
iter = 1740, accuracy (cur) = 0.880000 (all), 0.840000 (pos), 0.920000 (neg)
iter = 1740, accuracy (avg) = 0.850758 (all), 0.853789 (pos), 0.848636 (neg)
data reader: epoch = 0, batch = 1741 / 4040
iter = 1741, cls_loss (cur) = 0.242243, cls_loss (avg) = 0.336000, lr = 0.010000
iter = 1741, accuracy (cur) = 0.940000 (all), 0.896552 (pos), 1.000000 (neg)
iter = 1741, accuracy (avg) = 0.851651 (all), 0.854216 (pos), 0.850150 (neg)
data reader: epoch = 0, batch = 1742 / 4040
iter = 1742, cls_loss (cur) = 0.265681, cls_loss (avg) = 0.335297, lr = 0.010000
iter = 1742, accuracy (cur) = 0.920000 (all), 0.916667 (pos), 0.923077 (neg)
iter = 1742, accuracy (avg) = 0.852334 (all), 0.854841 (pos), 0.850879 (neg)
data reader: epoch = 0, batch = 1743 / 4040
iter = 1743, cls_loss (cur) = 0.366945, cls_loss (avg) = 0.335613, lr = 0.010000
iter = 1743, accuracy (cur) = 0.800000 (all), 0.800000 (pos), 0.800000 (neg)
iter = 1743, accuracy (avg) = 0.851811 (all), 0.854292 (pos), 0.850370 (neg)
data reader: epoch = 0, batch = 1744 / 4040
iter = 1744, cls_loss (cur) = 0.331143, cls_loss (avg) = 0.335569, lr = 0.010000
iter = 1744, accuracy (cur) = 0.820000 (all), 0.928571 (pos), 0.681818 (neg)
iter = 1744, accuracy (avg) = 0.851493 (all), 0.855035 (pos), 0.848685 (neg)
data reader: epoch = 0, batch = 1745 / 4040
iter = 1745, cls_loss (cur) = 0.306015, cls_loss (avg) = 0.335273, lr = 0.010000
iter = 1745, accuracy (cur) = 0.880000 (all), 0.875000 (pos), 0.884615 (neg)
iter = 1745, accuracy (avg) = 0.851778 (all), 0.855235 (pos), 0.849044 (neg)
data reader: epoch = 0, batch = 1746 / 4040
iter = 1746, cls_loss (cur) = 0.302301, cls_loss (avg) = 0.334943, lr = 0.010000
iter = 1746, accuracy (cur) = 0.880000 (all), 0.894737 (pos), 0.870968 (neg)
iter = 1746, accuracy (avg) = 0.852060 (all), 0.855630 (pos), 0.849263 (neg)
data reader: epoch = 0, batch = 1747 / 4040
iter = 1747, cls_loss (cur) = 0.395803, cls_loss (avg) = 0.335552, lr = 0.010000
iter = 1747, accuracy (cur) = 0.820000 (all), 0.857143 (pos), 0.772727 (neg)
iter = 1747, accuracy (avg) = 0.851739 (all), 0.855645 (pos), 0.848498 (neg)
data reader: epoch = 0, batch = 1748 / 4040
iter = 1748, cls_loss (cur) = 0.286137, cls_loss (avg) = 0.335058, lr = 0.010000
iter = 1748, accuracy (cur) = 0.960000 (all), 0.954545 (pos), 0.964286 (neg)
iter = 1748, accuracy (avg) = 0.852822 (all), 0.856634 (pos), 0.849656 (neg)
data reader: epoch = 0, batch = 1749 / 4040
iter = 1749, cls_loss (cur) = 0.356660, cls_loss (avg) = 0.335274, lr = 0.010000
iter = 1749, accuracy (cur) = 0.880000 (all), 0.892857 (pos), 0.863636 (neg)
iter = 1749, accuracy (avg) = 0.853094 (all), 0.856996 (pos), 0.849796 (neg)
data reader: epoch = 0, batch = 1750 / 4040
iter = 1750, cls_loss (cur) = 0.269186, cls_loss (avg) = 0.334613, lr = 0.010000
iter = 1750, accuracy (cur) = 0.880000 (all), 0.888889 (pos), 0.875000 (neg)
iter = 1750, accuracy (avg) = 0.853363 (all), 0.857315 (pos), 0.850048 (neg)
data reader: epoch = 0, batch = 1751 / 4040
iter = 1751, cls_loss (cur) = 0.452477, cls_loss (avg) = 0.335792, lr = 0.010000
iter = 1751, accuracy (cur) = 0.840000 (all), 0.909091 (pos), 0.785714 (neg)
iter = 1751, accuracy (avg) = 0.853229 (all), 0.857833 (pos), 0.849404 (neg)
data reader: epoch = 0, batch = 1752 / 4040
iter = 1752, cls_loss (cur) = 0.264697, cls_loss (avg) = 0.335081, lr = 0.010000
iter = 1752, accuracy (cur) = 0.900000 (all), 0.913043 (pos), 0.888889 (neg)
iter = 1752, accuracy (avg) = 0.853697 (all), 0.858385 (pos), 0.849799 (neg)
data reader: epoch = 0, batch = 1753 / 4040
iter = 1753, cls_loss (cur) = 0.334157, cls_loss (avg) = 0.335071, lr = 0.010000
iter = 1753, accuracy (cur) = 0.820000 (all), 0.833333 (pos), 0.800000 (neg)
iter = 1753, accuracy (avg) = 0.853360 (all), 0.858135 (pos), 0.849301 (neg)
data reader: epoch = 0, batch = 1754 / 4040
iter = 1754, cls_loss (cur) = 0.242298, cls_loss (avg) = 0.334144, lr = 0.010000
iter = 1754, accuracy (cur) = 0.940000 (all), 0.962963 (pos), 0.913043 (neg)
iter = 1754, accuracy (avg) = 0.854226 (all), 0.859183 (pos), 0.849939 (neg)
data reader: epoch = 0, batch = 1755 / 4040
iter = 1755, cls_loss (cur) = 0.303148, cls_loss (avg) = 0.333834, lr = 0.010000
iter = 1755, accuracy (cur) = 0.920000 (all), 0.888889 (pos), 0.956522 (neg)
iter = 1755, accuracy (avg) = 0.854884 (all), 0.859480 (pos), 0.851004 (neg)
data reader: epoch = 0, batch = 1756 / 4040
iter = 1756, cls_loss (cur) = 0.363992, cls_loss (avg) = 0.334135, lr = 0.010000
iter = 1756, accuracy (cur) = 0.840000 (all), 0.900000 (pos), 0.800000 (neg)
iter = 1756, accuracy (avg) = 0.854735 (all), 0.859885 (pos), 0.850494 (neg)
data reader: epoch = 0, batch = 1757 / 4040
iter = 1757, cls_loss (cur) = 0.331102, cls_loss (avg) = 0.334105, lr = 0.010000
iter = 1757, accuracy (cur) = 0.880000 (all), 0.818182 (pos), 0.928571 (neg)
iter = 1757, accuracy (avg) = 0.854988 (all), 0.859468 (pos), 0.851275 (neg)
data reader: epoch = 0, batch = 1758 / 4040
iter = 1758, cls_loss (cur) = 0.299125, cls_loss (avg) = 0.333755, lr = 0.010000
iter = 1758, accuracy (cur) = 0.860000 (all), 0.791667 (pos), 0.923077 (neg)
iter = 1758, accuracy (avg) = 0.855038 (all), 0.858790 (pos), 0.851993 (neg)
data reader: epoch = 0, batch = 1759 / 4040
iter = 1759, cls_loss (cur) = 0.309167, cls_loss (avg) = 0.333509, lr = 0.010000
iter = 1759, accuracy (cur) = 0.840000 (all), 0.823529 (pos), 0.875000 (neg)
iter = 1759, accuracy (avg) = 0.854888 (all), 0.858437 (pos), 0.852223 (neg)
data reader: epoch = 0, batch = 1760 / 4040
iter = 1760, cls_loss (cur) = 0.419017, cls_loss (avg) = 0.334364, lr = 0.010000
iter = 1760, accuracy (cur) = 0.780000 (all), 0.774194 (pos), 0.789474 (neg)
iter = 1760, accuracy (avg) = 0.854139 (all), 0.857595 (pos), 0.851596 (neg)
data reader: epoch = 0, batch = 1761 / 4040
iter = 1761, cls_loss (cur) = 0.434658, cls_loss (avg) = 0.335367, lr = 0.010000
iter = 1761, accuracy (cur) = 0.760000 (all), 0.760000 (pos), 0.760000 (neg)
iter = 1761, accuracy (avg) = 0.853197 (all), 0.856619 (pos), 0.850680 (neg)
data reader: epoch = 0, batch = 1762 / 4040
iter = 1762, cls_loss (cur) = 0.359940, cls_loss (avg) = 0.335613, lr = 0.010000
iter = 1762, accuracy (cur) = 0.780000 (all), 0.840000 (pos), 0.720000 (neg)
iter = 1762, accuracy (avg) = 0.852465 (all), 0.856453 (pos), 0.849373 (neg)
data reader: epoch = 0, batch = 1763 / 4040
iter = 1763, cls_loss (cur) = 0.328492, cls_loss (avg) = 0.335542, lr = 0.010000
iter = 1763, accuracy (cur) = 0.840000 (all), 0.894737 (pos), 0.806452 (neg)
iter = 1763, accuracy (avg) = 0.852341 (all), 0.856836 (pos), 0.848944 (neg)
data reader: epoch = 0, batch = 1764 / 4040
iter = 1764, cls_loss (cur) = 0.427485, cls_loss (avg) = 0.336461, lr = 0.010000
iter = 1764, accuracy (cur) = 0.800000 (all), 0.826087 (pos), 0.777778 (neg)
iter = 1764, accuracy (avg) = 0.851817 (all), 0.856528 (pos), 0.848232 (neg)
data reader: epoch = 0, batch = 1765 / 4040
iter = 1765, cls_loss (cur) = 0.377818, cls_loss (avg) = 0.336875, lr = 0.010000
iter = 1765, accuracy (cur) = 0.820000 (all), 0.750000 (pos), 0.884615 (neg)
iter = 1765, accuracy (avg) = 0.851499 (all), 0.855463 (pos), 0.848596 (neg)
data reader: epoch = 0, batch = 1766 / 4040
iter = 1766, cls_loss (cur) = 0.288836, cls_loss (avg) = 0.336394, lr = 0.010000
iter = 1766, accuracy (cur) = 0.880000 (all), 0.807692 (pos), 0.958333 (neg)
iter = 1766, accuracy (avg) = 0.851784 (all), 0.854985 (pos), 0.849693 (neg)
data reader: epoch = 0, batch = 1767 / 4040
iter = 1767, cls_loss (cur) = 0.443310, cls_loss (avg) = 0.337464, lr = 0.010000
iter = 1767, accuracy (cur) = 0.760000 (all), 0.714286 (pos), 0.818182 (neg)
iter = 1767, accuracy (avg) = 0.850866 (all), 0.853578 (pos), 0.849378 (neg)
data reader: epoch = 0, batch = 1768 / 4040
iter = 1768, cls_loss (cur) = 0.246548, cls_loss (avg) = 0.336554, lr = 0.010000
iter = 1768, accuracy (cur) = 0.880000 (all), 0.909091 (pos), 0.823529 (neg)
iter = 1768, accuracy (avg) = 0.851158 (all), 0.854133 (pos), 0.849120 (neg)
data reader: epoch = 0, batch = 1769 / 4040
iter = 1769, cls_loss (cur) = 0.262916, cls_loss (avg) = 0.335818, lr = 0.010000
iter = 1769, accuracy (cur) = 0.900000 (all), 0.964286 (pos), 0.818182 (neg)
iter = 1769, accuracy (avg) = 0.851646 (all), 0.855235 (pos), 0.848810 (neg)
data reader: epoch = 0, batch = 1770 / 4040
iter = 1770, cls_loss (cur) = 0.338646, cls_loss (avg) = 0.335846, lr = 0.010000
iter = 1770, accuracy (cur) = 0.840000 (all), 0.840000 (pos), 0.840000 (neg)
iter = 1770, accuracy (avg) = 0.851530 (all), 0.855083 (pos), 0.848722 (neg)
data reader: epoch = 0, batch = 1771 / 4040
iter = 1771, cls_loss (cur) = 0.382121, cls_loss (avg) = 0.336309, lr = 0.010000
iter = 1771, accuracy (cur) = 0.820000 (all), 0.866667 (pos), 0.750000 (neg)
iter = 1771, accuracy (avg) = 0.851214 (all), 0.855198 (pos), 0.847735 (neg)
data reader: epoch = 0, batch = 1772 / 4040
iter = 1772, cls_loss (cur) = 0.247915, cls_loss (avg) = 0.335425, lr = 0.010000
iter = 1772, accuracy (cur) = 0.940000 (all), 1.000000 (pos), 0.875000 (neg)
iter = 1772, accuracy (avg) = 0.852102 (all), 0.856646 (pos), 0.848008 (neg)
data reader: epoch = 0, batch = 1773 / 4040
iter = 1773, cls_loss (cur) = 0.269975, cls_loss (avg) = 0.334771, lr = 0.010000
iter = 1773, accuracy (cur) = 0.900000 (all), 0.941176 (pos), 0.812500 (neg)
iter = 1773, accuracy (avg) = 0.852581 (all), 0.857492 (pos), 0.847653 (neg)
data reader: epoch = 0, batch = 1774 / 4040
iter = 1774, cls_loss (cur) = 0.354179, cls_loss (avg) = 0.334965, lr = 0.010000
iter = 1774, accuracy (cur) = 0.820000 (all), 0.944444 (pos), 0.750000 (neg)
iter = 1774, accuracy (avg) = 0.852255 (all), 0.858361 (pos), 0.846676 (neg)
data reader: epoch = 0, batch = 1775 / 4040
iter = 1775, cls_loss (cur) = 0.148852, cls_loss (avg) = 0.333104, lr = 0.010000
iter = 1775, accuracy (cur) = 0.960000 (all), 1.000000 (pos), 0.923077 (neg)
iter = 1775, accuracy (avg) = 0.853333 (all), 0.859778 (pos), 0.847440 (neg)
data reader: epoch = 0, batch = 1776 / 4040
iter = 1776, cls_loss (cur) = 0.195413, cls_loss (avg) = 0.331727, lr = 0.010000
iter = 1776, accuracy (cur) = 0.960000 (all), 0.969697 (pos), 0.941176 (neg)
iter = 1776, accuracy (avg) = 0.854399 (all), 0.860877 (pos), 0.848377 (neg)
data reader: epoch = 0, batch = 1777 / 4040
iter = 1777, cls_loss (cur) = 0.386076, cls_loss (avg) = 0.332270, lr = 0.010000
iter = 1777, accuracy (cur) = 0.840000 (all), 0.928571 (pos), 0.727273 (neg)
iter = 1777, accuracy (avg) = 0.854255 (all), 0.861554 (pos), 0.847166 (neg)
data reader: epoch = 0, batch = 1778 / 4040
iter = 1778, cls_loss (cur) = 0.298073, cls_loss (avg) = 0.331928, lr = 0.010000
iter = 1778, accuracy (cur) = 0.840000 (all), 0.916667 (pos), 0.769231 (neg)
iter = 1778, accuracy (avg) = 0.854113 (all), 0.862105 (pos), 0.846387 (neg)
data reader: epoch = 0, batch = 1779 / 4040
iter = 1779, cls_loss (cur) = 0.384687, cls_loss (avg) = 0.332456, lr = 0.010000
iter = 1779, accuracy (cur) = 0.800000 (all), 0.931034 (pos), 0.619048 (neg)
iter = 1779, accuracy (avg) = 0.853572 (all), 0.862794 (pos), 0.844114 (neg)
data reader: epoch = 0, batch = 1780 / 4040
iter = 1780, cls_loss (cur) = 0.384340, cls_loss (avg) = 0.332975, lr = 0.010000
iter = 1780, accuracy (cur) = 0.840000 (all), 0.814815 (pos), 0.869565 (neg)
iter = 1780, accuracy (avg) = 0.853436 (all), 0.862314 (pos), 0.844368 (neg)
data reader: epoch = 0, batch = 1781 / 4040
iter = 1781, cls_loss (cur) = 0.322574, cls_loss (avg) = 0.332871, lr = 0.010000
iter = 1781, accuracy (cur) = 0.800000 (all), 0.833333 (pos), 0.781250 (neg)
iter = 1781, accuracy (avg) = 0.852902 (all), 0.862025 (pos), 0.843737 (neg)
data reader: epoch = 0, batch = 1782 / 4040
iter = 1782, cls_loss (cur) = 0.302739, cls_loss (avg) = 0.332569, lr = 0.010000
iter = 1782, accuracy (cur) = 0.880000 (all), 0.928571 (pos), 0.818182 (neg)
iter = 1782, accuracy (avg) = 0.853173 (all), 0.862690 (pos), 0.843481 (neg)
data reader: epoch = 0, batch = 1783 / 4040
iter = 1783, cls_loss (cur) = 0.309943, cls_loss (avg) = 0.332343, lr = 0.010000
iter = 1783, accuracy (cur) = 0.840000 (all), 0.740741 (pos), 0.956522 (neg)
iter = 1783, accuracy (avg) = 0.853041 (all), 0.861471 (pos), 0.844612 (neg)
data reader: epoch = 0, batch = 1784 / 4040
iter = 1784, cls_loss (cur) = 0.366455, cls_loss (avg) = 0.332684, lr = 0.010000
iter = 1784, accuracy (cur) = 0.860000 (all), 0.851852 (pos), 0.869565 (neg)
iter = 1784, accuracy (avg) = 0.853111 (all), 0.861374 (pos), 0.844861 (neg)
data reader: epoch = 0, batch = 1785 / 4040
iter = 1785, cls_loss (cur) = 0.288401, cls_loss (avg) = 0.332241, lr = 0.010000
iter = 1785, accuracy (cur) = 0.840000 (all), 0.826087 (pos), 0.851852 (neg)
iter = 1785, accuracy (avg) = 0.852979 (all), 0.861022 (pos), 0.844931 (neg)
data reader: epoch = 0, batch = 1786 / 4040
iter = 1786, cls_loss (cur) = 0.313000, cls_loss (avg) = 0.332049, lr = 0.010000
iter = 1786, accuracy (cur) = 0.840000 (all), 0.821429 (pos), 0.863636 (neg)
iter = 1786, accuracy (avg) = 0.852850 (all), 0.860626 (pos), 0.845118 (neg)
data reader: epoch = 0, batch = 1787 / 4040
iter = 1787, cls_loss (cur) = 0.261794, cls_loss (avg) = 0.331346, lr = 0.010000
iter = 1787, accuracy (cur) = 0.880000 (all), 0.851852 (pos), 0.913043 (neg)
iter = 1787, accuracy (avg) = 0.853121 (all), 0.860538 (pos), 0.845798 (neg)
data reader: epoch = 0, batch = 1788 / 4040
iter = 1788, cls_loss (cur) = 0.228350, cls_loss (avg) = 0.330316, lr = 0.010000
iter = 1788, accuracy (cur) = 0.920000 (all), 0.909091 (pos), 0.928571 (neg)
iter = 1788, accuracy (avg) = 0.853790 (all), 0.861023 (pos), 0.846625 (neg)
data reader: epoch = 0, batch = 1789 / 4040
iter = 1789, cls_loss (cur) = 0.299450, cls_loss (avg) = 0.330008, lr = 0.010000
iter = 1789, accuracy (cur) = 0.860000 (all), 0.875000 (pos), 0.846154 (neg)
iter = 1789, accuracy (avg) = 0.853852 (all), 0.861163 (pos), 0.846621 (neg)
data reader: epoch = 0, batch = 1790 / 4040
iter = 1790, cls_loss (cur) = 0.351805, cls_loss (avg) = 0.330226, lr = 0.010000
iter = 1790, accuracy (cur) = 0.840000 (all), 0.875000 (pos), 0.807692 (neg)
iter = 1790, accuracy (avg) = 0.853713 (all), 0.861302 (pos), 0.846231 (neg)
data reader: epoch = 0, batch = 1791 / 4040
iter = 1791, cls_loss (cur) = 0.351664, cls_loss (avg) = 0.330440, lr = 0.010000
iter = 1791, accuracy (cur) = 0.860000 (all), 0.833333 (pos), 0.884615 (neg)
iter = 1791, accuracy (avg) = 0.853776 (all), 0.861022 (pos), 0.846615 (neg)
data reader: epoch = 0, batch = 1792 / 4040
iter = 1792, cls_loss (cur) = 0.299150, cls_loss (avg) = 0.330127, lr = 0.010000
iter = 1792, accuracy (cur) = 0.900000 (all), 0.916667 (pos), 0.884615 (neg)
iter = 1792, accuracy (avg) = 0.854239 (all), 0.861578 (pos), 0.846995 (neg)
data reader: epoch = 0, batch = 1793 / 4040
iter = 1793, cls_loss (cur) = 0.301920, cls_loss (avg) = 0.329845, lr = 0.010000
iter = 1793, accuracy (cur) = 0.860000 (all), 0.928571 (pos), 0.772727 (neg)
iter = 1793, accuracy (avg) = 0.854296 (all), 0.862248 (pos), 0.846252 (neg)
data reader: epoch = 0, batch = 1794 / 4040
iter = 1794, cls_loss (cur) = 0.323636, cls_loss (avg) = 0.329783, lr = 0.010000
iter = 1794, accuracy (cur) = 0.820000 (all), 0.727273 (pos), 0.892857 (neg)
iter = 1794, accuracy (avg) = 0.853953 (all), 0.860898 (pos), 0.846719 (neg)
data reader: epoch = 0, batch = 1795 / 4040
iter = 1795, cls_loss (cur) = 0.296338, cls_loss (avg) = 0.329449, lr = 0.010000
iter = 1795, accuracy (cur) = 0.880000 (all), 0.888889 (pos), 0.869565 (neg)
iter = 1795, accuracy (avg) = 0.854214 (all), 0.861178 (pos), 0.846947 (neg)
data reader: epoch = 0, batch = 1796 / 4040
iter = 1796, cls_loss (cur) = 0.218554, cls_loss (avg) = 0.328340, lr = 0.010000
iter = 1796, accuracy (cur) = 0.960000 (all), 1.000000 (pos), 0.928571 (neg)
iter = 1796, accuracy (avg) = 0.855272 (all), 0.862567 (pos), 0.847763 (neg)
data reader: epoch = 0, batch = 1797 / 4040
iter = 1797, cls_loss (cur) = 0.165721, cls_loss (avg) = 0.326713, lr = 0.010000
iter = 1797, accuracy (cur) = 1.000000 (all), 1.000000 (pos), 1.000000 (neg)
iter = 1797, accuracy (avg) = 0.856719 (all), 0.863941 (pos), 0.849286 (neg)
data reader: epoch = 0, batch = 1798 / 4040
iter = 1798, cls_loss (cur) = 0.329749, cls_loss (avg) = 0.326744, lr = 0.010000
iter = 1798, accuracy (cur) = 0.860000 (all), 0.923077 (pos), 0.791667 (neg)
iter = 1798, accuracy (avg) = 0.856752 (all), 0.864532 (pos), 0.848709 (neg)
data reader: epoch = 0, batch = 1799 / 4040
iter = 1799, cls_loss (cur) = 0.353326, cls_loss (avg) = 0.327010, lr = 0.010000
iter = 1799, accuracy (cur) = 0.840000 (all), 0.857143 (pos), 0.818182 (neg)
iter = 1799, accuracy (avg) = 0.856584 (all), 0.864458 (pos), 0.848404 (neg)
data reader: epoch = 0, batch = 1800 / 4040
iter = 1800, cls_loss (cur) = 0.401935, cls_loss (avg) = 0.327759, lr = 0.010000
iter = 1800, accuracy (cur) = 0.780000 (all), 0.730769 (pos), 0.833333 (neg)
iter = 1800, accuracy (avg) = 0.855818 (all), 0.863121 (pos), 0.848253 (neg)
data reader: epoch = 0, batch = 1801 / 4040
iter = 1801, cls_loss (cur) = 0.341473, cls_loss (avg) = 0.327896, lr = 0.010000
iter = 1801, accuracy (cur) = 0.880000 (all), 0.823529 (pos), 0.909091 (neg)
iter = 1801, accuracy (avg) = 0.856060 (all), 0.862726 (pos), 0.848862 (neg)
data reader: epoch = 0, batch = 1802 / 4040
iter = 1802, cls_loss (cur) = 0.320620, cls_loss (avg) = 0.327823, lr = 0.010000
iter = 1802, accuracy (cur) = 0.840000 (all), 0.894737 (pos), 0.806452 (neg)
iter = 1802, accuracy (avg) = 0.855900 (all), 0.863046 (pos), 0.848438 (neg)
data reader: epoch = 0, batch = 1803 / 4040
iter = 1803, cls_loss (cur) = 0.475530, cls_loss (avg) = 0.329300, lr = 0.010000
iter = 1803, accuracy (cur) = 0.820000 (all), 0.733333 (pos), 0.857143 (neg)
iter = 1803, accuracy (avg) = 0.855541 (all), 0.861749 (pos), 0.848525 (neg)
data reader: epoch = 0, batch = 1804 / 4040
iter = 1804, cls_loss (cur) = 0.310363, cls_loss (avg) = 0.329111, lr = 0.010000
iter = 1804, accuracy (cur) = 0.880000 (all), 0.875000 (pos), 0.884615 (neg)
iter = 1804, accuracy (avg) = 0.855785 (all), 0.861881 (pos), 0.848886 (neg)
data reader: epoch = 0, batch = 1805 / 4040
iter = 1805, cls_loss (cur) = 0.458243, cls_loss (avg) = 0.330402, lr = 0.010000
iter = 1805, accuracy (cur) = 0.760000 (all), 0.714286 (pos), 0.818182 (neg)
iter = 1805, accuracy (avg) = 0.854827 (all), 0.860405 (pos), 0.848579 (neg)
data reader: epoch = 0, batch = 1806 / 4040
iter = 1806, cls_loss (cur) = 0.416666, cls_loss (avg) = 0.331265, lr = 0.010000
iter = 1806, accuracy (cur) = 0.840000 (all), 0.848485 (pos), 0.823529 (neg)
iter = 1806, accuracy (avg) = 0.854679 (all), 0.860286 (pos), 0.848328 (neg)
data reader: epoch = 0, batch = 1807 / 4040
iter = 1807, cls_loss (cur) = 0.271667, cls_loss (avg) = 0.330669, lr = 0.010000
iter = 1807, accuracy (cur) = 0.840000 (all), 0.884615 (pos), 0.791667 (neg)
iter = 1807, accuracy (avg) = 0.854532 (all), 0.860529 (pos), 0.847762 (neg)
data reader: epoch = 0, batch = 1808 / 4040
iter = 1808, cls_loss (cur) = 0.315274, cls_loss (avg) = 0.330515, lr = 0.010000
iter = 1808, accuracy (cur) = 0.900000 (all), 0.862069 (pos), 0.952381 (neg)
iter = 1808, accuracy (avg) = 0.854987 (all), 0.860545 (pos), 0.848808 (neg)
data reader: epoch = 0, batch = 1809 / 4040
iter = 1809, cls_loss (cur) = 0.404584, cls_loss (avg) = 0.331256, lr = 0.010000
iter = 1809, accuracy (cur) = 0.780000 (all), 0.636364 (pos), 0.892857 (neg)
iter = 1809, accuracy (avg) = 0.854237 (all), 0.858303 (pos), 0.849248 (neg)
data reader: epoch = 0, batch = 1810 / 4040
iter = 1810, cls_loss (cur) = 0.370830, cls_loss (avg) = 0.331651, lr = 0.010000
iter = 1810, accuracy (cur) = 0.900000 (all), 0.904762 (pos), 0.896552 (neg)
iter = 1810, accuracy (avg) = 0.854695 (all), 0.858767 (pos), 0.849721 (neg)
data reader: epoch = 0, batch = 1811 / 4040
iter = 1811, cls_loss (cur) = 0.224109, cls_loss (avg) = 0.330576, lr = 0.010000
iter = 1811, accuracy (cur) = 0.880000 (all), 0.952381 (pos), 0.827586 (neg)
iter = 1811, accuracy (avg) = 0.854948 (all), 0.859704 (pos), 0.849500 (neg)
data reader: epoch = 0, batch = 1812 / 4040
iter = 1812, cls_loss (cur) = 0.329420, cls_loss (avg) = 0.330564, lr = 0.010000
iter = 1812, accuracy (cur) = 0.860000 (all), 0.851852 (pos), 0.869565 (neg)
iter = 1812, accuracy (avg) = 0.854998 (all), 0.859625 (pos), 0.849701 (neg)
data reader: epoch = 0, batch = 1813 / 4040
iter = 1813, cls_loss (cur) = 0.349761, cls_loss (avg) = 0.330756, lr = 0.010000
iter = 1813, accuracy (cur) = 0.840000 (all), 0.782609 (pos), 0.888889 (neg)
iter = 1813, accuracy (avg) = 0.854848 (all), 0.858855 (pos), 0.850092 (neg)
data reader: epoch = 0, batch = 1814 / 4040
iter = 1814, cls_loss (cur) = 0.247047, cls_loss (avg) = 0.329919, lr = 0.010000
iter = 1814, accuracy (cur) = 0.880000 (all), 0.827586 (pos), 0.952381 (neg)
iter = 1814, accuracy (avg) = 0.855100 (all), 0.858542 (pos), 0.851115 (neg)
data reader: epoch = 0, batch = 1815 / 4040
iter = 1815, cls_loss (cur) = 0.405059, cls_loss (avg) = 0.330671, lr = 0.010000
iter = 1815, accuracy (cur) = 0.800000 (all), 0.956522 (pos), 0.666667 (neg)
iter = 1815, accuracy (avg) = 0.854549 (all), 0.859522 (pos), 0.849271 (neg)
data reader: epoch = 0, batch = 1816 / 4040
iter = 1816, cls_loss (cur) = 0.397662, cls_loss (avg) = 0.331341, lr = 0.010000
iter = 1816, accuracy (cur) = 0.840000 (all), 0.857143 (pos), 0.818182 (neg)
iter = 1816, accuracy (avg) = 0.854403 (all), 0.859498 (pos), 0.848960 (neg)
data reader: epoch = 0, batch = 1817 / 4040
iter = 1817, cls_loss (cur) = 0.349159, cls_loss (avg) = 0.331519, lr = 0.010000
iter = 1817, accuracy (cur) = 0.840000 (all), 0.833333 (pos), 0.850000 (neg)
iter = 1817, accuracy (avg) = 0.854259 (all), 0.859237 (pos), 0.848970 (neg)
data reader: epoch = 0, batch = 1818 / 4040
iter = 1818, cls_loss (cur) = 0.350306, cls_loss (avg) = 0.331707, lr = 0.010000
iter = 1818, accuracy (cur) = 0.860000 (all), 0.892857 (pos), 0.818182 (neg)
iter = 1818, accuracy (avg) = 0.854317 (all), 0.859573 (pos), 0.848662 (neg)
data reader: epoch = 0, batch = 1819 / 4040
iter = 1819, cls_loss (cur) = 0.397053, cls_loss (avg) = 0.332360, lr = 0.010000
iter = 1819, accuracy (cur) = 0.760000 (all), 0.904762 (pos), 0.655172 (neg)
iter = 1819, accuracy (avg) = 0.853373 (all), 0.860025 (pos), 0.846728 (neg)
data reader: epoch = 0, batch = 1820 / 4040
iter = 1820, cls_loss (cur) = 0.256441, cls_loss (avg) = 0.331601, lr = 0.010000
iter = 1820, accuracy (cur) = 0.900000 (all), 0.833333 (pos), 0.961538 (neg)
iter = 1820, accuracy (avg) = 0.853840 (all), 0.859758 (pos), 0.847876 (neg)
data reader: epoch = 0, batch = 1821 / 4040
iter = 1821, cls_loss (cur) = 0.367023, cls_loss (avg) = 0.331955, lr = 0.010000
iter = 1821, accuracy (cur) = 0.780000 (all), 0.777778 (pos), 0.782609 (neg)
iter = 1821, accuracy (avg) = 0.853101 (all), 0.858938 (pos), 0.847223 (neg)
data reader: epoch = 0, batch = 1822 / 4040
iter = 1822, cls_loss (cur) = 0.241069, cls_loss (avg) = 0.331046, lr = 0.010000
iter = 1822, accuracy (cur) = 0.920000 (all), 0.869565 (pos), 0.962963 (neg)
iter = 1822, accuracy (avg) = 0.853770 (all), 0.859044 (pos), 0.848380 (neg)
data reader: epoch = 0, batch = 1823 / 4040
iter = 1823, cls_loss (cur) = 0.273560, cls_loss (avg) = 0.330471, lr = 0.010000
iter = 1823, accuracy (cur) = 0.880000 (all), 0.920000 (pos), 0.840000 (neg)
iter = 1823, accuracy (avg) = 0.854033 (all), 0.859654 (pos), 0.848297 (neg)
data reader: epoch = 0, batch = 1824 / 4040
iter = 1824, cls_loss (cur) = 0.406927, cls_loss (avg) = 0.331236, lr = 0.010000
iter = 1824, accuracy (cur) = 0.840000 (all), 0.888889 (pos), 0.782609 (neg)
iter = 1824, accuracy (avg) = 0.853892 (all), 0.859946 (pos), 0.847640 (neg)
data reader: epoch = 0, batch = 1825 / 4040
iter = 1825, cls_loss (cur) = 0.280756, cls_loss (avg) = 0.330731, lr = 0.010000
iter = 1825, accuracy (cur) = 0.900000 (all), 0.875000 (pos), 0.944444 (neg)
iter = 1825, accuracy (avg) = 0.854353 (all), 0.860097 (pos), 0.848608 (neg)
data reader: epoch = 0, batch = 1826 / 4040
iter = 1826, cls_loss (cur) = 0.345415, cls_loss (avg) = 0.330878, lr = 0.010000
iter = 1826, accuracy (cur) = 0.800000 (all), 0.785714 (pos), 0.818182 (neg)
iter = 1826, accuracy (avg) = 0.853810 (all), 0.859353 (pos), 0.848304 (neg)
data reader: epoch = 0, batch = 1827 / 4040
iter = 1827, cls_loss (cur) = 0.232861, cls_loss (avg) = 0.329898, lr = 0.010000
iter = 1827, accuracy (cur) = 0.920000 (all), 0.933333 (pos), 0.900000 (neg)
iter = 1827, accuracy (avg) = 0.854472 (all), 0.860093 (pos), 0.848820 (neg)
data reader: epoch = 0, batch = 1828 / 4040
iter = 1828, cls_loss (cur) = 0.323952, cls_loss (avg) = 0.329838, lr = 0.010000
iter = 1828, accuracy (cur) = 0.900000 (all), 0.913043 (pos), 0.888889 (neg)
iter = 1828, accuracy (avg) = 0.854927 (all), 0.860622 (pos), 0.849221 (neg)
data reader: epoch = 0, batch = 1829 / 4040
iter = 1829, cls_loss (cur) = 0.287596, cls_loss (avg) = 0.329416, lr = 0.010000
iter = 1829, accuracy (cur) = 0.860000 (all), 1.000000 (pos), 0.750000 (neg)
iter = 1829, accuracy (avg) = 0.854978 (all), 0.862016 (pos), 0.848229 (neg)
data reader: epoch = 0, batch = 1830 / 4040
iter = 1830, cls_loss (cur) = 0.258583, cls_loss (avg) = 0.328708, lr = 0.010000
iter = 1830, accuracy (cur) = 0.940000 (all), 0.958333 (pos), 0.923077 (neg)
iter = 1830, accuracy (avg) = 0.855828 (all), 0.862979 (pos), 0.848977 (neg)
data reader: epoch = 0, batch = 1831 / 4040
iter = 1831, cls_loss (cur) = 0.353514, cls_loss (avg) = 0.328956, lr = 0.010000
iter = 1831, accuracy (cur) = 0.800000 (all), 0.727273 (pos), 0.857143 (neg)
iter = 1831, accuracy (avg) = 0.855270 (all), 0.861622 (pos), 0.849059 (neg)
data reader: epoch = 0, batch = 1832 / 4040
iter = 1832, cls_loss (cur) = 0.366705, cls_loss (avg) = 0.329333, lr = 0.010000
iter = 1832, accuracy (cur) = 0.860000 (all), 0.880000 (pos), 0.840000 (neg)
iter = 1832, accuracy (avg) = 0.855317 (all), 0.861806 (pos), 0.848968 (neg)
data reader: epoch = 0, batch = 1833 / 4040
iter = 1833, cls_loss (cur) = 0.349628, cls_loss (avg) = 0.329536, lr = 0.010000
iter = 1833, accuracy (cur) = 0.820000 (all), 0.894737 (pos), 0.774194 (neg)
iter = 1833, accuracy (avg) = 0.854964 (all), 0.862135 (pos), 0.848221 (neg)
data reader: epoch = 0, batch = 1834 / 4040
iter = 1834, cls_loss (cur) = 0.327991, cls_loss (avg) = 0.329521, lr = 0.010000
iter = 1834, accuracy (cur) = 0.820000 (all), 0.833333 (pos), 0.807692 (neg)
iter = 1834, accuracy (avg) = 0.854614 (all), 0.861847 (pos), 0.847815 (neg)
data reader: epoch = 0, batch = 1835 / 4040
iter = 1835, cls_loss (cur) = 0.297079, cls_loss (avg) = 0.329196, lr = 0.010000
iter = 1835, accuracy (cur) = 0.860000 (all), 0.750000 (pos), 0.961538 (neg)
iter = 1835, accuracy (avg) = 0.854668 (all), 0.860729 (pos), 0.848953 (neg)
data reader: epoch = 0, batch = 1836 / 4040
iter = 1836, cls_loss (cur) = 0.340635, cls_loss (avg) = 0.329311, lr = 0.010000
iter = 1836, accuracy (cur) = 0.860000 (all), 0.840000 (pos), 0.880000 (neg)
iter = 1836, accuracy (avg) = 0.854721 (all), 0.860521 (pos), 0.849263 (neg)
data reader: epoch = 0, batch = 1837 / 4040
iter = 1837, cls_loss (cur) = 0.681369, cls_loss (avg) = 0.332831, lr = 0.010000
iter = 1837, accuracy (cur) = 0.680000 (all), 0.677419 (pos), 0.684211 (neg)
iter = 1837, accuracy (avg) = 0.852974 (all), 0.858690 (pos), 0.847613 (neg)
data reader: epoch = 0, batch = 1838 / 4040
iter = 1838, cls_loss (cur) = 0.332374, cls_loss (avg) = 0.332827, lr = 0.010000
iter = 1838, accuracy (cur) = 0.860000 (all), 0.840000 (pos), 0.880000 (neg)
iter = 1838, accuracy (avg) = 0.853044 (all), 0.858503 (pos), 0.847937 (neg)
data reader: epoch = 0, batch = 1839 / 4040
iter = 1839, cls_loss (cur) = 0.339050, cls_loss (avg) = 0.332889, lr = 0.010000
iter = 1839, accuracy (cur) = 0.840000 (all), 0.851852 (pos), 0.826087 (neg)
iter = 1839, accuracy (avg) = 0.852914 (all), 0.858437 (pos), 0.847718 (neg)
data reader: epoch = 0, batch = 1840 / 4040
iter = 1840, cls_loss (cur) = 0.234608, cls_loss (avg) = 0.331906, lr = 0.010000
iter = 1840, accuracy (cur) = 0.920000 (all), 1.000000 (pos), 0.818182 (neg)
iter = 1840, accuracy (avg) = 0.853585 (all), 0.859853 (pos), 0.847423 (neg)
data reader: epoch = 0, batch = 1841 / 4040
iter = 1841, cls_loss (cur) = 0.279735, cls_loss (avg) = 0.331384, lr = 0.010000
iter = 1841, accuracy (cur) = 0.880000 (all), 1.000000 (pos), 0.777778 (neg)
iter = 1841, accuracy (avg) = 0.853849 (all), 0.861254 (pos), 0.846726 (neg)
data reader: epoch = 0, batch = 1842 / 4040
iter = 1842, cls_loss (cur) = 0.435634, cls_loss (avg) = 0.332427, lr = 0.010000
iter = 1842, accuracy (cur) = 0.820000 (all), 0.739130 (pos), 0.888889 (neg)
iter = 1842, accuracy (avg) = 0.853511 (all), 0.860033 (pos), 0.847148 (neg)
data reader: epoch = 0, batch = 1843 / 4040
iter = 1843, cls_loss (cur) = 0.293583, cls_loss (avg) = 0.332038, lr = 0.010000
iter = 1843, accuracy (cur) = 0.840000 (all), 0.878788 (pos), 0.764706 (neg)
iter = 1843, accuracy (avg) = 0.853375 (all), 0.860220 (pos), 0.846323 (neg)
data reader: epoch = 0, batch = 1844 / 4040
iter = 1844, cls_loss (cur) = 0.460884, cls_loss (avg) = 0.333327, lr = 0.010000
iter = 1844, accuracy (cur) = 0.860000 (all), 0.892857 (pos), 0.818182 (neg)
iter = 1844, accuracy (avg) = 0.853442 (all), 0.860547 (pos), 0.846042 (neg)
data reader: epoch = 0, batch = 1845 / 4040
iter = 1845, cls_loss (cur) = 0.399079, cls_loss (avg) = 0.333984, lr = 0.010000
iter = 1845, accuracy (cur) = 0.740000 (all), 0.807692 (pos), 0.666667 (neg)
iter = 1845, accuracy (avg) = 0.852307 (all), 0.860018 (pos), 0.844248 (neg)
data reader: epoch = 0, batch = 1846 / 4040
iter = 1846, cls_loss (cur) = 0.383704, cls_loss (avg) = 0.334482, lr = 0.010000
iter = 1846, accuracy (cur) = 0.800000 (all), 0.851852 (pos), 0.739130 (neg)
iter = 1846, accuracy (avg) = 0.851784 (all), 0.859936 (pos), 0.843197 (neg)
data reader: epoch = 0, batch = 1847 / 4040
iter = 1847, cls_loss (cur) = 0.441953, cls_loss (avg) = 0.335556, lr = 0.010000
iter = 1847, accuracy (cur) = 0.820000 (all), 0.892857 (pos), 0.727273 (neg)
iter = 1847, accuracy (avg) = 0.851466 (all), 0.860266 (pos), 0.842038 (neg)
data reader: epoch = 0, batch = 1848 / 4040
iter = 1848, cls_loss (cur) = 0.267161, cls_loss (avg) = 0.334872, lr = 0.010000
iter = 1848, accuracy (cur) = 0.900000 (all), 0.964286 (pos), 0.818182 (neg)
iter = 1848, accuracy (avg) = 0.851952 (all), 0.861306 (pos), 0.841799 (neg)
data reader: epoch = 0, batch = 1849 / 4040
iter = 1849, cls_loss (cur) = 0.286726, cls_loss (avg) = 0.334391, lr = 0.010000
iter = 1849, accuracy (cur) = 0.880000 (all), 0.964286 (pos), 0.772727 (neg)
iter = 1849, accuracy (avg) = 0.852232 (all), 0.862336 (pos), 0.841109 (neg)
data reader: epoch = 0, batch = 1850 / 4040
iter = 1850, cls_loss (cur) = 0.445058, cls_loss (avg) = 0.335498, lr = 0.010000
iter = 1850, accuracy (cur) = 0.800000 (all), 0.888889 (pos), 0.750000 (neg)
iter = 1850, accuracy (avg) = 0.851710 (all), 0.862601 (pos), 0.840197 (neg)
data reader: epoch = 0, batch = 1851 / 4040
iter = 1851, cls_loss (cur) = 0.337533, cls_loss (avg) = 0.335518, lr = 0.010000
iter = 1851, accuracy (cur) = 0.840000 (all), 0.800000 (pos), 0.880000 (neg)
iter = 1851, accuracy (avg) = 0.851593 (all), 0.861975 (pos), 0.840595 (neg)
data reader: epoch = 0, batch = 1852 / 4040
iter = 1852, cls_loss (cur) = 0.336504, cls_loss (avg) = 0.335528, lr = 0.010000
iter = 1852, accuracy (cur) = 0.900000 (all), 0.950000 (pos), 0.866667 (neg)
iter = 1852, accuracy (avg) = 0.852077 (all), 0.862855 (pos), 0.840856 (neg)
data reader: epoch = 0, batch = 1853 / 4040
iter = 1853, cls_loss (cur) = 0.431587, cls_loss (avg) = 0.336488, lr = 0.010000
iter = 1853, accuracy (cur) = 0.760000 (all), 0.615385 (pos), 0.916667 (neg)
iter = 1853, accuracy (avg) = 0.851156 (all), 0.860381 (pos), 0.841614 (neg)
data reader: epoch = 0, batch = 1854 / 4040
iter = 1854, cls_loss (cur) = 0.381441, cls_loss (avg) = 0.336938, lr = 0.010000
iter = 1854, accuracy (cur) = 0.820000 (all), 0.720000 (pos), 0.920000 (neg)
iter = 1854, accuracy (avg) = 0.850844 (all), 0.858977 (pos), 0.842398 (neg)
data reader: epoch = 0, batch = 1855 / 4040
iter = 1855, cls_loss (cur) = 0.323575, cls_loss (avg) = 0.336804, lr = 0.010000
iter = 1855, accuracy (cur) = 0.860000 (all), 0.869565 (pos), 0.851852 (neg)
iter = 1855, accuracy (avg) = 0.850936 (all), 0.859083 (pos), 0.842493 (neg)
data reader: epoch = 0, batch = 1856 / 4040
iter = 1856, cls_loss (cur) = 0.297284, cls_loss (avg) = 0.336409, lr = 0.010000
iter = 1856, accuracy (cur) = 0.860000 (all), 0.791667 (pos), 0.923077 (neg)
iter = 1856, accuracy (avg) = 0.851027 (all), 0.858409 (pos), 0.843299 (neg)
data reader: epoch = 0, batch = 1857 / 4040
iter = 1857, cls_loss (cur) = 0.413021, cls_loss (avg) = 0.337175, lr = 0.010000
iter = 1857, accuracy (cur) = 0.820000 (all), 0.833333 (pos), 0.812500 (neg)
iter = 1857, accuracy (avg) = 0.850716 (all), 0.858158 (pos), 0.842991 (neg)
data reader: epoch = 0, batch = 1858 / 4040
iter = 1858, cls_loss (cur) = 0.363873, cls_loss (avg) = 0.337442, lr = 0.010000
iter = 1858, accuracy (cur) = 0.840000 (all), 0.807692 (pos), 0.875000 (neg)
iter = 1858, accuracy (avg) = 0.850609 (all), 0.857653 (pos), 0.843311 (neg)
data reader: epoch = 0, batch = 1859 / 4040
iter = 1859, cls_loss (cur) = 0.377389, cls_loss (avg) = 0.337842, lr = 0.010000
iter = 1859, accuracy (cur) = 0.820000 (all), 0.888889 (pos), 0.781250 (neg)
iter = 1859, accuracy (avg) = 0.850303 (all), 0.857966 (pos), 0.842690 (neg)
data reader: epoch = 0, batch = 1860 / 4040
iter = 1860, cls_loss (cur) = 0.417241, cls_loss (avg) = 0.338636, lr = 0.010000
iter = 1860, accuracy (cur) = 0.800000 (all), 0.733333 (pos), 0.900000 (neg)
iter = 1860, accuracy (avg) = 0.849800 (all), 0.856719 (pos), 0.843263 (neg)
data reader: epoch = 0, batch = 1861 / 4040
iter = 1861, cls_loss (cur) = 0.342376, cls_loss (avg) = 0.338673, lr = 0.010000
iter = 1861, accuracy (cur) = 0.820000 (all), 0.800000 (pos), 0.833333 (neg)
iter = 1861, accuracy (avg) = 0.849502 (all), 0.856152 (pos), 0.843164 (neg)
data reader: epoch = 0, batch = 1862 / 4040
iter = 1862, cls_loss (cur) = 0.248387, cls_loss (avg) = 0.337770, lr = 0.010000
iter = 1862, accuracy (cur) = 0.860000 (all), 0.846154 (pos), 0.875000 (neg)
iter = 1862, accuracy (avg) = 0.849607 (all), 0.856052 (pos), 0.843482 (neg)
data reader: epoch = 0, batch = 1863 / 4040
iter = 1863, cls_loss (cur) = 0.323815, cls_loss (avg) = 0.337631, lr = 0.010000
iter = 1863, accuracy (cur) = 0.880000 (all), 0.894737 (pos), 0.870968 (neg)
iter = 1863, accuracy (avg) = 0.849911 (all), 0.856439 (pos), 0.843757 (neg)
data reader: epoch = 0, batch = 1864 / 4040
iter = 1864, cls_loss (cur) = 0.221222, cls_loss (avg) = 0.336467, lr = 0.010000
iter = 1864, accuracy (cur) = 0.960000 (all), 0.923077 (pos), 1.000000 (neg)
iter = 1864, accuracy (avg) = 0.851012 (all), 0.857105 (pos), 0.845319 (neg)
data reader: epoch = 0, batch = 1865 / 4040
iter = 1865, cls_loss (cur) = 0.342826, cls_loss (avg) = 0.336530, lr = 0.010000
iter = 1865, accuracy (cur) = 0.840000 (all), 0.785714 (pos), 0.909091 (neg)
iter = 1865, accuracy (avg) = 0.850902 (all), 0.856391 (pos), 0.845957 (neg)
data reader: epoch = 0, batch = 1866 / 4040
iter = 1866, cls_loss (cur) = 0.230521, cls_loss (avg) = 0.335470, lr = 0.010000
iter = 1866, accuracy (cur) = 0.920000 (all), 0.892857 (pos), 0.954545 (neg)
iter = 1866, accuracy (avg) = 0.851593 (all), 0.856756 (pos), 0.847043 (neg)
data reader: epoch = 0, batch = 1867 / 4040
iter = 1867, cls_loss (cur) = 0.469334, cls_loss (avg) = 0.336809, lr = 0.010000
iter = 1867, accuracy (cur) = 0.800000 (all), 0.750000 (pos), 0.846154 (neg)
iter = 1867, accuracy (avg) = 0.851077 (all), 0.855689 (pos), 0.847034 (neg)
data reader: epoch = 0, batch = 1868 / 4040
iter = 1868, cls_loss (cur) = 0.283395, cls_loss (avg) = 0.336275, lr = 0.010000
iter = 1868, accuracy (cur) = 0.860000 (all), 0.909091 (pos), 0.821429 (neg)
iter = 1868, accuracy (avg) = 0.851166 (all), 0.856223 (pos), 0.846778 (neg)
data reader: epoch = 0, batch = 1869 / 4040
iter = 1869, cls_loss (cur) = 0.266161, cls_loss (avg) = 0.335573, lr = 0.010000
iter = 1869, accuracy (cur) = 0.900000 (all), 0.875000 (pos), 0.923077 (neg)
iter = 1869, accuracy (avg) = 0.851654 (all), 0.856410 (pos), 0.847541 (neg)
data reader: epoch = 0, batch = 1870 / 4040
iter = 1870, cls_loss (cur) = 0.362942, cls_loss (avg) = 0.335847, lr = 0.010000
iter = 1870, accuracy (cur) = 0.760000 (all), 0.806452 (pos), 0.684211 (neg)
iter = 1870, accuracy (avg) = 0.850738 (all), 0.855911 (pos), 0.845908 (neg)
data reader: epoch = 0, batch = 1871 / 4040
iter = 1871, cls_loss (cur) = 0.351606, cls_loss (avg) = 0.336005, lr = 0.010000
iter = 1871, accuracy (cur) = 0.840000 (all), 0.923077 (pos), 0.750000 (neg)
iter = 1871, accuracy (avg) = 0.850630 (all), 0.856582 (pos), 0.844949 (neg)
data reader: epoch = 0, batch = 1872 / 4040
iter = 1872, cls_loss (cur) = 0.268630, cls_loss (avg) = 0.335331, lr = 0.010000
iter = 1872, accuracy (cur) = 0.900000 (all), 0.909091 (pos), 0.892857 (neg)
iter = 1872, accuracy (avg) = 0.851124 (all), 0.857107 (pos), 0.845428 (neg)
data reader: epoch = 0, batch = 1873 / 4040
iter = 1873, cls_loss (cur) = 0.372128, cls_loss (avg) = 0.335699, lr = 0.010000
iter = 1873, accuracy (cur) = 0.840000 (all), 0.862069 (pos), 0.809524 (neg)
iter = 1873, accuracy (avg) = 0.851013 (all), 0.857157 (pos), 0.845069 (neg)
data reader: epoch = 0, batch = 1874 / 4040
iter = 1874, cls_loss (cur) = 0.240169, cls_loss (avg) = 0.334744, lr = 0.010000
iter = 1874, accuracy (cur) = 0.880000 (all), 0.913043 (pos), 0.851852 (neg)
iter = 1874, accuracy (avg) = 0.851303 (all), 0.857716 (pos), 0.845137 (neg)
data reader: epoch = 0, batch = 1875 / 4040
iter = 1875, cls_loss (cur) = 0.260457, cls_loss (avg) = 0.334001, lr = 0.010000
iter = 1875, accuracy (cur) = 0.940000 (all), 0.909091 (pos), 0.964286 (neg)
iter = 1875, accuracy (avg) = 0.852190 (all), 0.858230 (pos), 0.846328 (neg)
data reader: epoch = 0, batch = 1876 / 4040
iter = 1876, cls_loss (cur) = 0.310550, cls_loss (avg) = 0.333766, lr = 0.010000
iter = 1876, accuracy (cur) = 0.840000 (all), 0.750000 (pos), 0.923077 (neg)
iter = 1876, accuracy (avg) = 0.852068 (all), 0.857147 (pos), 0.847096 (neg)
data reader: epoch = 0, batch = 1877 / 4040
iter = 1877, cls_loss (cur) = 0.364296, cls_loss (avg) = 0.334072, lr = 0.010000
iter = 1877, accuracy (cur) = 0.800000 (all), 0.842105 (pos), 0.774194 (neg)
iter = 1877, accuracy (avg) = 0.851547 (all), 0.856997 (pos), 0.846367 (neg)
data reader: epoch = 0, batch = 1878 / 4040
iter = 1878, cls_loss (cur) = 0.313946, cls_loss (avg) = 0.333870, lr = 0.010000
iter = 1878, accuracy (cur) = 0.840000 (all), 0.720000 (pos), 0.960000 (neg)
iter = 1878, accuracy (avg) = 0.851432 (all), 0.855627 (pos), 0.847503 (neg)
data reader: epoch = 0, batch = 1879 / 4040
iter = 1879, cls_loss (cur) = 0.259938, cls_loss (avg) = 0.333131, lr = 0.010000
iter = 1879, accuracy (cur) = 0.880000 (all), 0.880000 (pos), 0.880000 (neg)
iter = 1879, accuracy (avg) = 0.851717 (all), 0.855871 (pos), 0.847828 (neg)
data reader: epoch = 0, batch = 1880 / 4040
iter = 1880, cls_loss (cur) = 0.320805, cls_loss (avg) = 0.333008, lr = 0.010000
iter = 1880, accuracy (cur) = 0.860000 (all), 0.863636 (pos), 0.857143 (neg)
iter = 1880, accuracy (avg) = 0.851800 (all), 0.855948 (pos), 0.847921 (neg)
data reader: epoch = 0, batch = 1881 / 4040
iter = 1881, cls_loss (cur) = 0.347020, cls_loss (avg) = 0.333148, lr = 0.010000
iter = 1881, accuracy (cur) = 0.860000 (all), 0.861111 (pos), 0.857143 (neg)
iter = 1881, accuracy (avg) = 0.851882 (all), 0.856000 (pos), 0.848013 (neg)
data reader: epoch = 0, batch = 1882 / 4040
iter = 1882, cls_loss (cur) = 0.232086, cls_loss (avg) = 0.332137, lr = 0.010000
iter = 1882, accuracy (cur) = 0.900000 (all), 0.958333 (pos), 0.846154 (neg)
iter = 1882, accuracy (avg) = 0.852363 (all), 0.857023 (pos), 0.847995 (neg)
data reader: epoch = 0, batch = 1883 / 4040
iter = 1883, cls_loss (cur) = 0.504738, cls_loss (avg) = 0.333863, lr = 0.010000
iter = 1883, accuracy (cur) = 0.740000 (all), 0.884615 (pos), 0.583333 (neg)
iter = 1883, accuracy (avg) = 0.851240 (all), 0.857299 (pos), 0.845348 (neg)
data reader: epoch = 0, batch = 1884 / 4040
iter = 1884, cls_loss (cur) = 0.450758, cls_loss (avg) = 0.335032, lr = 0.010000
iter = 1884, accuracy (cur) = 0.780000 (all), 0.678571 (pos), 0.909091 (neg)
iter = 1884, accuracy (avg) = 0.850527 (all), 0.855512 (pos), 0.845985 (neg)
data reader: epoch = 0, batch = 1885 / 4040
iter = 1885, cls_loss (cur) = 0.272947, cls_loss (avg) = 0.334411, lr = 0.010000
iter = 1885, accuracy (cur) = 0.880000 (all), 0.920000 (pos), 0.840000 (neg)
iter = 1885, accuracy (avg) = 0.850822 (all), 0.856157 (pos), 0.845926 (neg)
data reader: epoch = 0, batch = 1886 / 4040
iter = 1886, cls_loss (cur) = 0.335606, cls_loss (avg) = 0.334423, lr = 0.010000
iter = 1886, accuracy (cur) = 0.820000 (all), 0.814815 (pos), 0.826087 (neg)
iter = 1886, accuracy (avg) = 0.850514 (all), 0.855743 (pos), 0.845727 (neg)
data reader: epoch = 0, batch = 1887 / 4040
iter = 1887, cls_loss (cur) = 0.385464, cls_loss (avg) = 0.334934, lr = 0.010000
iter = 1887, accuracy (cur) = 0.820000 (all), 0.833333 (pos), 0.807692 (neg)
iter = 1887, accuracy (avg) = 0.850209 (all), 0.855519 (pos), 0.845347 (neg)
data reader: epoch = 0, batch = 1888 / 4040
iter = 1888, cls_loss (cur) = 0.205293, cls_loss (avg) = 0.333637, lr = 0.010000
iter = 1888, accuracy (cur) = 0.940000 (all), 0.923077 (pos), 0.958333 (neg)
iter = 1888, accuracy (avg) = 0.851107 (all), 0.856195 (pos), 0.846477 (neg)
data reader: epoch = 0, batch = 1889 / 4040
iter = 1889, cls_loss (cur) = 0.215096, cls_loss (avg) = 0.332452, lr = 0.010000
iter = 1889, accuracy (cur) = 0.900000 (all), 0.960000 (pos), 0.840000 (neg)
iter = 1889, accuracy (avg) = 0.851596 (all), 0.857233 (pos), 0.846412 (neg)
data reader: epoch = 0, batch = 1890 / 4040
iter = 1890, cls_loss (cur) = 0.337914, cls_loss (avg) = 0.332507, lr = 0.010000
iter = 1890, accuracy (cur) = 0.780000 (all), 0.750000 (pos), 0.818182 (neg)
iter = 1890, accuracy (avg) = 0.850880 (all), 0.856161 (pos), 0.846130 (neg)
data reader: epoch = 0, batch = 1891 / 4040
iter = 1891, cls_loss (cur) = 0.381017, cls_loss (avg) = 0.332992, lr = 0.010000
iter = 1891, accuracy (cur) = 0.780000 (all), 0.923077 (pos), 0.625000 (neg)
iter = 1891, accuracy (avg) = 0.850171 (all), 0.856830 (pos), 0.843918 (neg)
data reader: epoch = 0, batch = 1892 / 4040
iter = 1892, cls_loss (cur) = 0.329655, cls_loss (avg) = 0.332958, lr = 0.010000
iter = 1892, accuracy (cur) = 0.840000 (all), 0.952381 (pos), 0.758621 (neg)
iter = 1892, accuracy (avg) = 0.850069 (all), 0.857785 (pos), 0.843065 (neg)
data reader: epoch = 0, batch = 1893 / 4040
iter = 1893, cls_loss (cur) = 0.303322, cls_loss (avg) = 0.332662, lr = 0.010000
iter = 1893, accuracy (cur) = 0.880000 (all), 0.880000 (pos), 0.880000 (neg)
iter = 1893, accuracy (avg) = 0.850368 (all), 0.858007 (pos), 0.843435 (neg)
data reader: epoch = 0, batch = 1894 / 4040
iter = 1894, cls_loss (cur) = 0.321258, cls_loss (avg) = 0.332548, lr = 0.010000
iter = 1894, accuracy (cur) = 0.820000 (all), 0.826087 (pos), 0.814815 (neg)
iter = 1894, accuracy (avg) = 0.850065 (all), 0.857688 (pos), 0.843149 (neg)
data reader: epoch = 0, batch = 1895 / 4040
iter = 1895, cls_loss (cur) = 0.272410, cls_loss (avg) = 0.331946, lr = 0.010000
iter = 1895, accuracy (cur) = 0.900000 (all), 0.903226 (pos), 0.894737 (neg)
iter = 1895, accuracy (avg) = 0.850564 (all), 0.858144 (pos), 0.843664 (neg)
data reader: epoch = 0, batch = 1896 / 4040
iter = 1896, cls_loss (cur) = 0.277241, cls_loss (avg) = 0.331399, lr = 0.010000
iter = 1896, accuracy (cur) = 0.840000 (all), 0.722222 (pos), 0.906250 (neg)
iter = 1896, accuracy (avg) = 0.850458 (all), 0.856784 (pos), 0.844290 (neg)
data reader: epoch = 0, batch = 1897 / 4040
iter = 1897, cls_loss (cur) = 0.344863, cls_loss (avg) = 0.331534, lr = 0.010000
iter = 1897, accuracy (cur) = 0.820000 (all), 0.689655 (pos), 1.000000 (neg)
iter = 1897, accuracy (avg) = 0.850154 (all), 0.855113 (pos), 0.845847 (neg)
data reader: epoch = 0, batch = 1898 / 4040
iter = 1898, cls_loss (cur) = 0.469095, cls_loss (avg) = 0.332910, lr = 0.010000
iter = 1898, accuracy (cur) = 0.740000 (all), 0.772727 (pos), 0.714286 (neg)
iter = 1898, accuracy (avg) = 0.849052 (all), 0.854289 (pos), 0.844532 (neg)
data reader: epoch = 0, batch = 1899 / 4040
iter = 1899, cls_loss (cur) = 0.222970, cls_loss (avg) = 0.331810, lr = 0.010000
iter = 1899, accuracy (cur) = 0.880000 (all), 0.769231 (pos), 1.000000 (neg)
iter = 1899, accuracy (avg) = 0.849362 (all), 0.853439 (pos), 0.846086 (neg)
data reader: epoch = 0, batch = 1900 / 4040
iter = 1900, cls_loss (cur) = 0.391058, cls_loss (avg) = 0.332403, lr = 0.010000
iter = 1900, accuracy (cur) = 0.820000 (all), 0.750000 (pos), 0.909091 (neg)
iter = 1900, accuracy (avg) = 0.849068 (all), 0.852404 (pos), 0.846716 (neg)
data reader: epoch = 0, batch = 1901 / 4040
iter = 1901, cls_loss (cur) = 0.421172, cls_loss (avg) = 0.333290, lr = 0.010000
iter = 1901, accuracy (cur) = 0.780000 (all), 0.800000 (pos), 0.760000 (neg)
iter = 1901, accuracy (avg) = 0.848378 (all), 0.851880 (pos), 0.845849 (neg)
data reader: epoch = 0, batch = 1902 / 4040
iter = 1902, cls_loss (cur) = 0.336415, cls_loss (avg) = 0.333322, lr = 0.010000
iter = 1902, accuracy (cur) = 0.840000 (all), 0.903226 (pos), 0.736842 (neg)
iter = 1902, accuracy (avg) = 0.848294 (all), 0.852394 (pos), 0.844759 (neg)
data reader: epoch = 0, batch = 1903 / 4040
iter = 1903, cls_loss (cur) = 0.294483, cls_loss (avg) = 0.332933, lr = 0.010000
iter = 1903, accuracy (cur) = 0.860000 (all), 0.846154 (pos), 0.875000 (neg)
iter = 1903, accuracy (avg) = 0.848411 (all), 0.852331 (pos), 0.845062 (neg)
data reader: epoch = 0, batch = 1904 / 4040
iter = 1904, cls_loss (cur) = 0.301381, cls_loss (avg) = 0.332618, lr = 0.010000
iter = 1904, accuracy (cur) = 0.860000 (all), 0.851852 (pos), 0.869565 (neg)
iter = 1904, accuracy (avg) = 0.848527 (all), 0.852327 (pos), 0.845307 (neg)
data reader: epoch = 0, batch = 1905 / 4040
iter = 1905, cls_loss (cur) = 0.458195, cls_loss (avg) = 0.333874, lr = 0.010000
iter = 1905, accuracy (cur) = 0.720000 (all), 0.800000 (pos), 0.600000 (neg)
iter = 1905, accuracy (avg) = 0.847241 (all), 0.851803 (pos), 0.842854 (neg)
data reader: epoch = 0, batch = 1906 / 4040
iter = 1906, cls_loss (cur) = 0.242007, cls_loss (avg) = 0.332955, lr = 0.010000
iter = 1906, accuracy (cur) = 0.920000 (all), 0.961538 (pos), 0.875000 (neg)
iter = 1906, accuracy (avg) = 0.847969 (all), 0.852901 (pos), 0.843175 (neg)
data reader: epoch = 0, batch = 1907 / 4040
iter = 1907, cls_loss (cur) = 0.259414, cls_loss (avg) = 0.332219, lr = 0.010000
iter = 1907, accuracy (cur) = 0.920000 (all), 0.900000 (pos), 0.933333 (neg)
iter = 1907, accuracy (avg) = 0.848689 (all), 0.853372 (pos), 0.844077 (neg)
data reader: epoch = 0, batch = 1908 / 4040
iter = 1908, cls_loss (cur) = 0.321231, cls_loss (avg) = 0.332110, lr = 0.010000
iter = 1908, accuracy (cur) = 0.820000 (all), 0.928571 (pos), 0.681818 (neg)
iter = 1908, accuracy (avg) = 0.848402 (all), 0.854124 (pos), 0.842454 (neg)
data reader: epoch = 0, batch = 1909 / 4040
iter = 1909, cls_loss (cur) = 0.342893, cls_loss (avg) = 0.332217, lr = 0.010000
iter = 1909, accuracy (cur) = 0.820000 (all), 0.714286 (pos), 0.954545 (neg)
iter = 1909, accuracy (avg) = 0.848118 (all), 0.852725 (pos), 0.843575 (neg)
data reader: epoch = 0, batch = 1910 / 4040
iter = 1910, cls_loss (cur) = 0.444068, cls_loss (avg) = 0.333336, lr = 0.010000
iter = 1910, accuracy (cur) = 0.720000 (all), 0.818182 (pos), 0.642857 (neg)
iter = 1910, accuracy (avg) = 0.846837 (all), 0.852380 (pos), 0.841568 (neg)
data reader: epoch = 0, batch = 1911 / 4040
iter = 1911, cls_loss (cur) = 0.340471, cls_loss (avg) = 0.333407, lr = 0.010000
iter = 1911, accuracy (cur) = 0.820000 (all), 0.909091 (pos), 0.750000 (neg)
iter = 1911, accuracy (avg) = 0.846569 (all), 0.852947 (pos), 0.840652 (neg)
data reader: epoch = 0, batch = 1912 / 4040
iter = 1912, cls_loss (cur) = 0.495784, cls_loss (avg) = 0.335031, lr = 0.010000
iter = 1912, accuracy (cur) = 0.780000 (all), 0.724138 (pos), 0.857143 (neg)
iter = 1912, accuracy (avg) = 0.845903 (all), 0.851659 (pos), 0.840817 (neg)
data reader: epoch = 0, batch = 1913 / 4040
iter = 1913, cls_loss (cur) = 0.190095, cls_loss (avg) = 0.333582, lr = 0.010000
iter = 1913, accuracy (cur) = 0.980000 (all), 0.968750 (pos), 1.000000 (neg)
iter = 1913, accuracy (avg) = 0.847244 (all), 0.852830 (pos), 0.842409 (neg)
data reader: epoch = 0, batch = 1914 / 4040
iter = 1914, cls_loss (cur) = 0.308035, cls_loss (avg) = 0.333326, lr = 0.010000
iter = 1914, accuracy (cur) = 0.880000 (all), 0.826087 (pos), 0.925926 (neg)
iter = 1914, accuracy (avg) = 0.847572 (all), 0.852562 (pos), 0.843244 (neg)
data reader: epoch = 0, batch = 1915 / 4040
iter = 1915, cls_loss (cur) = 0.261956, cls_loss (avg) = 0.332613, lr = 0.010000
iter = 1915, accuracy (cur) = 0.900000 (all), 0.846154 (pos), 0.958333 (neg)
iter = 1915, accuracy (avg) = 0.848096 (all), 0.852498 (pos), 0.844395 (neg)
data reader: epoch = 0, batch = 1916 / 4040
iter = 1916, cls_loss (cur) = 0.349052, cls_loss (avg) = 0.332777, lr = 0.010000
iter = 1916, accuracy (cur) = 0.780000 (all), 0.739130 (pos), 0.814815 (neg)
iter = 1916, accuracy (avg) = 0.847415 (all), 0.851365 (pos), 0.844099 (neg)
data reader: epoch = 0, batch = 1917 / 4040
iter = 1917, cls_loss (cur) = 0.334561, cls_loss (avg) = 0.332795, lr = 0.010000
iter = 1917, accuracy (cur) = 0.820000 (all), 0.875000 (pos), 0.722222 (neg)
iter = 1917, accuracy (avg) = 0.847141 (all), 0.851601 (pos), 0.842880 (neg)
data reader: epoch = 0, batch = 1918 / 4040
iter = 1918, cls_loss (cur) = 0.332080, cls_loss (avg) = 0.332788, lr = 0.010000
iter = 1918, accuracy (cur) = 0.860000 (all), 0.869565 (pos), 0.851852 (neg)
iter = 1918, accuracy (avg) = 0.847269 (all), 0.851781 (pos), 0.842970 (neg)
data reader: epoch = 0, batch = 1919 / 4040
iter = 1919, cls_loss (cur) = 0.273750, cls_loss (avg) = 0.332197, lr = 0.010000
iter = 1919, accuracy (cur) = 0.880000 (all), 0.960000 (pos), 0.800000 (neg)
iter = 1919, accuracy (avg) = 0.847597 (all), 0.852863 (pos), 0.842540 (neg)
data reader: epoch = 0, batch = 1920 / 4040
iter = 1920, cls_loss (cur) = 0.329416, cls_loss (avg) = 0.332169, lr = 0.010000
iter = 1920, accuracy (cur) = 0.860000 (all), 0.952381 (pos), 0.793103 (neg)
iter = 1920, accuracy (avg) = 0.847721 (all), 0.853858 (pos), 0.842046 (neg)
data reader: epoch = 0, batch = 1921 / 4040
iter = 1921, cls_loss (cur) = 0.225468, cls_loss (avg) = 0.331102, lr = 0.010000
iter = 1921, accuracy (cur) = 0.900000 (all), 0.900000 (pos), 0.900000 (neg)
iter = 1921, accuracy (avg) = 0.848244 (all), 0.854319 (pos), 0.842626 (neg)
data reader: epoch = 0, batch = 1922 / 4040
iter = 1922, cls_loss (cur) = 0.337830, cls_loss (avg) = 0.331170, lr = 0.010000
iter = 1922, accuracy (cur) = 0.820000 (all), 0.833333 (pos), 0.807692 (neg)
iter = 1922, accuracy (avg) = 0.847961 (all), 0.854109 (pos), 0.842276 (neg)
data reader: epoch = 0, batch = 1923 / 4040
iter = 1923, cls_loss (cur) = 0.299893, cls_loss (avg) = 0.330857, lr = 0.010000
iter = 1923, accuracy (cur) = 0.840000 (all), 0.789474 (pos), 0.870968 (neg)
iter = 1923, accuracy (avg) = 0.847882 (all), 0.853463 (pos), 0.842563 (neg)
data reader: epoch = 0, batch = 1924 / 4040
iter = 1924, cls_loss (cur) = 0.346626, cls_loss (avg) = 0.331015, lr = 0.010000
iter = 1924, accuracy (cur) = 0.800000 (all), 0.880000 (pos), 0.720000 (neg)
iter = 1924, accuracy (avg) = 0.847403 (all), 0.853728 (pos), 0.841338 (neg)
data reader: epoch = 0, batch = 1925 / 4040
iter = 1925, cls_loss (cur) = 0.303790, cls_loss (avg) = 0.330742, lr = 0.010000
iter = 1925, accuracy (cur) = 0.840000 (all), 0.846154 (pos), 0.833333 (neg)
iter = 1925, accuracy (avg) = 0.847329 (all), 0.853653 (pos), 0.841257 (neg)
data reader: epoch = 0, batch = 1926 / 4040
iter = 1926, cls_loss (cur) = 0.251358, cls_loss (avg) = 0.329949, lr = 0.010000
iter = 1926, accuracy (cur) = 0.900000 (all), 0.928571 (pos), 0.863636 (neg)
iter = 1926, accuracy (avg) = 0.847855 (all), 0.854402 (pos), 0.841481 (neg)
data reader: epoch = 0, batch = 1927 / 4040
iter = 1927, cls_loss (cur) = 0.328944, cls_loss (avg) = 0.329938, lr = 0.010000
iter = 1927, accuracy (cur) = 0.900000 (all), 0.920000 (pos), 0.880000 (neg)
iter = 1927, accuracy (avg) = 0.848377 (all), 0.855058 (pos), 0.841866 (neg)
data reader: epoch = 0, batch = 1928 / 4040
iter = 1928, cls_loss (cur) = 0.333224, cls_loss (avg) = 0.329971, lr = 0.010000
iter = 1928, accuracy (cur) = 0.840000 (all), 0.866667 (pos), 0.800000 (neg)
iter = 1928, accuracy (avg) = 0.848293 (all), 0.855174 (pos), 0.841448 (neg)
data reader: epoch = 0, batch = 1929 / 4040
iter = 1929, cls_loss (cur) = 0.298651, cls_loss (avg) = 0.329658, lr = 0.010000
iter = 1929, accuracy (cur) = 0.860000 (all), 0.850000 (pos), 0.866667 (neg)
iter = 1929, accuracy (avg) = 0.848410 (all), 0.855122 (pos), 0.841700 (neg)
data reader: epoch = 0, batch = 1930 / 4040
iter = 1930, cls_loss (cur) = 0.416041, cls_loss (avg) = 0.330522, lr = 0.010000
iter = 1930, accuracy (cur) = 0.800000 (all), 0.708333 (pos), 0.884615 (neg)
iter = 1930, accuracy (avg) = 0.847926 (all), 0.853654 (pos), 0.842129 (neg)
data reader: epoch = 0, batch = 1931 / 4040
iter = 1931, cls_loss (cur) = 0.353727, cls_loss (avg) = 0.330754, lr = 0.010000
iter = 1931, accuracy (cur) = 0.860000 (all), 0.857143 (pos), 0.862069 (neg)
iter = 1931, accuracy (avg) = 0.848047 (all), 0.853689 (pos), 0.842329 (neg)
data reader: epoch = 0, batch = 1932 / 4040
iter = 1932, cls_loss (cur) = 0.341242, cls_loss (avg) = 0.330859, lr = 0.010000
iter = 1932, accuracy (cur) = 0.800000 (all), 0.727273 (pos), 0.857143 (neg)
iter = 1932, accuracy (avg) = 0.847566 (all), 0.852425 (pos), 0.842477 (neg)
data reader: epoch = 0, batch = 1933 / 4040
iter = 1933, cls_loss (cur) = 0.332815, cls_loss (avg) = 0.330878, lr = 0.010000
iter = 1933, accuracy (cur) = 0.820000 (all), 0.850000 (pos), 0.800000 (neg)
iter = 1933, accuracy (avg) = 0.847291 (all), 0.852401 (pos), 0.842052 (neg)
data reader: epoch = 0, batch = 1934 / 4040
iter = 1934, cls_loss (cur) = 0.316925, cls_loss (avg) = 0.330739, lr = 0.010000
iter = 1934, accuracy (cur) = 0.820000 (all), 0.782609 (pos), 0.851852 (neg)
iter = 1934, accuracy (avg) = 0.847018 (all), 0.851703 (pos), 0.842150 (neg)
data reader: epoch = 0, batch = 1935 / 4040
iter = 1935, cls_loss (cur) = 0.274743, cls_loss (avg) = 0.330179, lr = 0.010000
iter = 1935, accuracy (cur) = 0.900000 (all), 0.920000 (pos), 0.880000 (neg)
iter = 1935, accuracy (avg) = 0.847548 (all), 0.852386 (pos), 0.842528 (neg)
data reader: epoch = 0, batch = 1936 / 4040
iter = 1936, cls_loss (cur) = 0.221551, cls_loss (avg) = 0.329093, lr = 0.010000
iter = 1936, accuracy (cur) = 0.980000 (all), 0.965517 (pos), 1.000000 (neg)
iter = 1936, accuracy (avg) = 0.848872 (all), 0.853517 (pos), 0.844103 (neg)
data reader: epoch = 0, batch = 1937 / 4040
iter = 1937, cls_loss (cur) = 0.342255, cls_loss (avg) = 0.329224, lr = 0.010000
iter = 1937, accuracy (cur) = 0.860000 (all), 0.821429 (pos), 0.909091 (neg)
iter = 1937, accuracy (avg) = 0.848983 (all), 0.853196 (pos), 0.844753 (neg)
data reader: epoch = 0, batch = 1938 / 4040
iter = 1938, cls_loss (cur) = 0.287237, cls_loss (avg) = 0.328804, lr = 0.010000
iter = 1938, accuracy (cur) = 0.880000 (all), 0.916667 (pos), 0.846154 (neg)
iter = 1938, accuracy (avg) = 0.849294 (all), 0.853831 (pos), 0.844767 (neg)
data reader: epoch = 0, batch = 1939 / 4040
iter = 1939, cls_loss (cur) = 0.336858, cls_loss (avg) = 0.328885, lr = 0.010000
iter = 1939, accuracy (cur) = 0.880000 (all), 0.782609 (pos), 0.962963 (neg)
iter = 1939, accuracy (avg) = 0.849601 (all), 0.853119 (pos), 0.845949 (neg)
data reader: epoch = 0, batch = 1940 / 4040
iter = 1940, cls_loss (cur) = 0.265895, cls_loss (avg) = 0.328255, lr = 0.010000
iter = 1940, accuracy (cur) = 0.900000 (all), 0.857143 (pos), 0.931034 (neg)
iter = 1940, accuracy (avg) = 0.850105 (all), 0.853159 (pos), 0.846800 (neg)
data reader: epoch = 0, batch = 1941 / 4040
iter = 1941, cls_loss (cur) = 0.334588, cls_loss (avg) = 0.328318, lr = 0.010000
iter = 1941, accuracy (cur) = 0.840000 (all), 0.807692 (pos), 0.875000 (neg)
iter = 1941, accuracy (avg) = 0.850004 (all), 0.852704 (pos), 0.847082 (neg)
data reader: epoch = 0, batch = 1942 / 4040
iter = 1942, cls_loss (cur) = 0.294548, cls_loss (avg) = 0.327981, lr = 0.010000
iter = 1942, accuracy (cur) = 0.780000 (all), 0.720000 (pos), 0.840000 (neg)
iter = 1942, accuracy (avg) = 0.849304 (all), 0.851377 (pos), 0.847011 (neg)
data reader: epoch = 0, batch = 1943 / 4040
iter = 1943, cls_loss (cur) = 0.265238, cls_loss (avg) = 0.327353, lr = 0.010000
iter = 1943, accuracy (cur) = 0.920000 (all), 0.956522 (pos), 0.888889 (neg)
iter = 1943, accuracy (avg) = 0.850010 (all), 0.852429 (pos), 0.847430 (neg)
data reader: epoch = 0, batch = 1944 / 4040
iter = 1944, cls_loss (cur) = 0.320180, cls_loss (avg) = 0.327282, lr = 0.010000
iter = 1944, accuracy (cur) = 0.860000 (all), 0.862069 (pos), 0.857143 (neg)
iter = 1944, accuracy (avg) = 0.850110 (all), 0.852525 (pos), 0.847527 (neg)
data reader: epoch = 0, batch = 1945 / 4040
iter = 1945, cls_loss (cur) = 0.296154, cls_loss (avg) = 0.326970, lr = 0.010000
iter = 1945, accuracy (cur) = 0.880000 (all), 0.870968 (pos), 0.894737 (neg)
iter = 1945, accuracy (avg) = 0.850409 (all), 0.852710 (pos), 0.847999 (neg)
data reader: epoch = 0, batch = 1946 / 4040
iter = 1946, cls_loss (cur) = 0.299013, cls_loss (avg) = 0.326691, lr = 0.010000
iter = 1946, accuracy (cur) = 0.900000 (all), 0.892857 (pos), 0.909091 (neg)
iter = 1946, accuracy (avg) = 0.850905 (all), 0.853111 (pos), 0.848610 (neg)
data reader: epoch = 0, batch = 1947 / 4040
iter = 1947, cls_loss (cur) = 0.378301, cls_loss (avg) = 0.327207, lr = 0.010000
iter = 1947, accuracy (cur) = 0.860000 (all), 0.954545 (pos), 0.785714 (neg)
iter = 1947, accuracy (avg) = 0.850996 (all), 0.854125 (pos), 0.847981 (neg)
data reader: epoch = 0, batch = 1948 / 4040
iter = 1948, cls_loss (cur) = 0.295026, cls_loss (avg) = 0.326885, lr = 0.010000
iter = 1948, accuracy (cur) = 0.860000 (all), 0.866667 (pos), 0.850000 (neg)
iter = 1948, accuracy (avg) = 0.851086 (all), 0.854251 (pos), 0.848001 (neg)
data reader: epoch = 0, batch = 1949 / 4040
iter = 1949, cls_loss (cur) = 0.384900, cls_loss (avg) = 0.327465, lr = 0.010000
iter = 1949, accuracy (cur) = 0.800000 (all), 0.826087 (pos), 0.777778 (neg)
iter = 1949, accuracy (avg) = 0.850575 (all), 0.853969 (pos), 0.847299 (neg)
data reader: epoch = 0, batch = 1950 / 4040
iter = 1950, cls_loss (cur) = 0.377926, cls_loss (avg) = 0.327970, lr = 0.010000
iter = 1950, accuracy (cur) = 0.820000 (all), 0.851852 (pos), 0.782609 (neg)
iter = 1950, accuracy (avg) = 0.850270 (all), 0.853948 (pos), 0.846652 (neg)
data reader: epoch = 0, batch = 1951 / 4040
iter = 1951, cls_loss (cur) = 0.257170, cls_loss (avg) = 0.327262, lr = 0.010000
iter = 1951, accuracy (cur) = 0.880000 (all), 0.863636 (pos), 0.892857 (neg)
iter = 1951, accuracy (avg) = 0.850567 (all), 0.854045 (pos), 0.847114 (neg)
data reader: epoch = 0, batch = 1952 / 4040
iter = 1952, cls_loss (cur) = 0.306118, cls_loss (avg) = 0.327050, lr = 0.010000
iter = 1952, accuracy (cur) = 0.880000 (all), 0.826087 (pos), 0.925926 (neg)
iter = 1952, accuracy (avg) = 0.850861 (all), 0.853765 (pos), 0.847902 (neg)
data reader: epoch = 0, batch = 1953 / 4040
iter = 1953, cls_loss (cur) = 0.296592, cls_loss (avg) = 0.326746, lr = 0.010000
iter = 1953, accuracy (cur) = 0.860000 (all), 0.952381 (pos), 0.793103 (neg)
iter = 1953, accuracy (avg) = 0.850953 (all), 0.854751 (pos), 0.847354 (neg)
data reader: epoch = 0, batch = 1954 / 4040
iter = 1954, cls_loss (cur) = 0.299411, cls_loss (avg) = 0.326472, lr = 0.010000
iter = 1954, accuracy (cur) = 0.940000 (all), 0.925926 (pos), 0.956522 (neg)
iter = 1954, accuracy (avg) = 0.851843 (all), 0.855463 (pos), 0.848446 (neg)
data reader: epoch = 0, batch = 1955 / 4040
iter = 1955, cls_loss (cur) = 0.422396, cls_loss (avg) = 0.327432, lr = 0.010000
iter = 1955, accuracy (cur) = 0.780000 (all), 0.793103 (pos), 0.761905 (neg)
iter = 1955, accuracy (avg) = 0.851125 (all), 0.854840 (pos), 0.847580 (neg)
data reader: epoch = 0, batch = 1956 / 4040
iter = 1956, cls_loss (cur) = 0.300638, cls_loss (avg) = 0.327164, lr = 0.010000
iter = 1956, accuracy (cur) = 0.880000 (all), 0.888889 (pos), 0.869565 (neg)
iter = 1956, accuracy (avg) = 0.851413 (all), 0.855180 (pos), 0.847800 (neg)
data reader: epoch = 0, batch = 1957 / 4040
iter = 1957, cls_loss (cur) = 0.386916, cls_loss (avg) = 0.327761, lr = 0.010000
iter = 1957, accuracy (cur) = 0.800000 (all), 0.851852 (pos), 0.739130 (neg)
iter = 1957, accuracy (avg) = 0.850899 (all), 0.855147 (pos), 0.846714 (neg)
data reader: epoch = 0, batch = 1958 / 4040
iter = 1958, cls_loss (cur) = 0.299161, cls_loss (avg) = 0.327475, lr = 0.010000
iter = 1958, accuracy (cur) = 0.880000 (all), 0.931034 (pos), 0.809524 (neg)
iter = 1958, accuracy (avg) = 0.851190 (all), 0.855906 (pos), 0.846342 (neg)
data reader: epoch = 0, batch = 1959 / 4040
iter = 1959, cls_loss (cur) = 0.219881, cls_loss (avg) = 0.326399, lr = 0.010000
iter = 1959, accuracy (cur) = 0.900000 (all), 0.840000 (pos), 0.960000 (neg)
iter = 1959, accuracy (avg) = 0.851678 (all), 0.855747 (pos), 0.847478 (neg)
data reader: epoch = 0, batch = 1960 / 4040
iter = 1960, cls_loss (cur) = 0.287320, cls_loss (avg) = 0.326008, lr = 0.010000
iter = 1960, accuracy (cur) = 0.860000 (all), 0.920000 (pos), 0.800000 (neg)
iter = 1960, accuracy (avg) = 0.851762 (all), 0.856389 (pos), 0.847004 (neg)
data reader: epoch = 0, batch = 1961 / 4040
iter = 1961, cls_loss (cur) = 0.322086, cls_loss (avg) = 0.325969, lr = 0.010000
iter = 1961, accuracy (cur) = 0.900000 (all), 0.888889 (pos), 0.913043 (neg)
iter = 1961, accuracy (avg) = 0.852244 (all), 0.856714 (pos), 0.847664 (neg)
data reader: epoch = 0, batch = 1962 / 4040
iter = 1962, cls_loss (cur) = 0.220334, cls_loss (avg) = 0.324913, lr = 0.010000
iter = 1962, accuracy (cur) = 0.900000 (all), 0.916667 (pos), 0.884615 (neg)
iter = 1962, accuracy (avg) = 0.852722 (all), 0.857314 (pos), 0.848033 (neg)
data reader: epoch = 0, batch = 1963 / 4040
iter = 1963, cls_loss (cur) = 0.266660, cls_loss (avg) = 0.324330, lr = 0.010000
iter = 1963, accuracy (cur) = 0.860000 (all), 0.880000 (pos), 0.840000 (neg)
iter = 1963, accuracy (avg) = 0.852794 (all), 0.857541 (pos), 0.847953 (neg)
data reader: epoch = 0, batch = 1964 / 4040
iter = 1964, cls_loss (cur) = 0.262681, cls_loss (avg) = 0.323714, lr = 0.010000
iter = 1964, accuracy (cur) = 0.880000 (all), 0.880000 (pos), 0.880000 (neg)
iter = 1964, accuracy (avg) = 0.853066 (all), 0.857765 (pos), 0.848274 (neg)
data reader: epoch = 0, batch = 1965 / 4040
iter = 1965, cls_loss (cur) = 0.316228, cls_loss (avg) = 0.323639, lr = 0.010000
iter = 1965, accuracy (cur) = 0.860000 (all), 0.875000 (pos), 0.846154 (neg)
iter = 1965, accuracy (avg) = 0.853136 (all), 0.857938 (pos), 0.848252 (neg)
data reader: epoch = 0, batch = 1966 / 4040
iter = 1966, cls_loss (cur) = 0.406168, cls_loss (avg) = 0.324464, lr = 0.010000
iter = 1966, accuracy (cur) = 0.780000 (all), 0.840000 (pos), 0.720000 (neg)
iter = 1966, accuracy (avg) = 0.852404 (all), 0.857758 (pos), 0.846970 (neg)
data reader: epoch = 0, batch = 1967 / 4040
iter = 1967, cls_loss (cur) = 0.327130, cls_loss (avg) = 0.324491, lr = 0.010000
iter = 1967, accuracy (cur) = 0.860000 (all), 0.904762 (pos), 0.827586 (neg)
iter = 1967, accuracy (avg) = 0.852480 (all), 0.858228 (pos), 0.846776 (neg)
data reader: epoch = 0, batch = 1968 / 4040
iter = 1968, cls_loss (cur) = 0.262524, cls_loss (avg) = 0.323871, lr = 0.010000
iter = 1968, accuracy (cur) = 0.880000 (all), 0.818182 (pos), 0.928571 (neg)
iter = 1968, accuracy (avg) = 0.852755 (all), 0.857828 (pos), 0.847594 (neg)
data reader: epoch = 0, batch = 1969 / 4040
iter = 1969, cls_loss (cur) = 0.412000, cls_loss (avg) = 0.324753, lr = 0.010000
iter = 1969, accuracy (cur) = 0.740000 (all), 0.730769 (pos), 0.750000 (neg)
iter = 1969, accuracy (avg) = 0.851628 (all), 0.856557 (pos), 0.846618 (neg)
data reader: epoch = 0, batch = 1970 / 4040
iter = 1970, cls_loss (cur) = 0.344075, cls_loss (avg) = 0.324946, lr = 0.010000
iter = 1970, accuracy (cur) = 0.820000 (all), 0.740741 (pos), 0.913043 (neg)
iter = 1970, accuracy (avg) = 0.851312 (all), 0.855399 (pos), 0.847282 (neg)
data reader: epoch = 0, batch = 1971 / 4040
iter = 1971, cls_loss (cur) = 0.359273, cls_loss (avg) = 0.325289, lr = 0.010000
iter = 1971, accuracy (cur) = 0.860000 (all), 0.913043 (pos), 0.814815 (neg)
iter = 1971, accuracy (avg) = 0.851399 (all), 0.855975 (pos), 0.846958 (neg)
data reader: epoch = 0, batch = 1972 / 4040
iter = 1972, cls_loss (cur) = 0.309116, cls_loss (avg) = 0.325127, lr = 0.010000
iter = 1972, accuracy (cur) = 0.840000 (all), 0.900000 (pos), 0.750000 (neg)
iter = 1972, accuracy (avg) = 0.851285 (all), 0.856416 (pos), 0.845988 (neg)
data reader: epoch = 0, batch = 1973 / 4040
iter = 1973, cls_loss (cur) = 0.293461, cls_loss (avg) = 0.324811, lr = 0.010000
iter = 1973, accuracy (cur) = 0.860000 (all), 0.884615 (pos), 0.833333 (neg)
iter = 1973, accuracy (avg) = 0.851372 (all), 0.856698 (pos), 0.845861 (neg)
data reader: epoch = 0, batch = 1974 / 4040
iter = 1974, cls_loss (cur) = 0.378831, cls_loss (avg) = 0.325351, lr = 0.010000
iter = 1974, accuracy (cur) = 0.880000 (all), 0.750000 (pos), 0.966667 (neg)
iter = 1974, accuracy (avg) = 0.851658 (all), 0.855631 (pos), 0.847070 (neg)
data reader: epoch = 0, batch = 1975 / 4040
iter = 1975, cls_loss (cur) = 0.276647, cls_loss (avg) = 0.324864, lr = 0.010000
iter = 1975, accuracy (cur) = 0.880000 (all), 0.916667 (pos), 0.846154 (neg)
iter = 1975, accuracy (avg) = 0.851941 (all), 0.856241 (pos), 0.847060 (neg)
data reader: epoch = 0, batch = 1976 / 4040
iter = 1976, cls_loss (cur) = 0.243259, cls_loss (avg) = 0.324048, lr = 0.010000
iter = 1976, accuracy (cur) = 0.900000 (all), 0.846154 (pos), 0.958333 (neg)
iter = 1976, accuracy (avg) = 0.852422 (all), 0.856140 (pos), 0.848173 (neg)
data reader: epoch = 0, batch = 1977 / 4040
iter = 1977, cls_loss (cur) = 0.335181, cls_loss (avg) = 0.324159, lr = 0.010000
iter = 1977, accuracy (cur) = 0.820000 (all), 0.826087 (pos), 0.814815 (neg)
iter = 1977, accuracy (avg) = 0.852098 (all), 0.855840 (pos), 0.847840 (neg)
data reader: epoch = 0, batch = 1978 / 4040
iter = 1978, cls_loss (cur) = 0.188665, cls_loss (avg) = 0.322804, lr = 0.010000
iter = 1978, accuracy (cur) = 0.920000 (all), 0.913043 (pos), 0.925926 (neg)
iter = 1978, accuracy (avg) = 0.852777 (all), 0.856412 (pos), 0.848620 (neg)
data reader: epoch = 0, batch = 1979 / 4040
iter = 1979, cls_loss (cur) = 0.290257, cls_loss (avg) = 0.322479, lr = 0.010000
iter = 1979, accuracy (cur) = 0.840000 (all), 0.769231 (pos), 0.916667 (neg)
iter = 1979, accuracy (avg) = 0.852649 (all), 0.855540 (pos), 0.849301 (neg)
data reader: epoch = 0, batch = 1980 / 4040
iter = 1980, cls_loss (cur) = 0.324812, cls_loss (avg) = 0.322502, lr = 0.010000
iter = 1980, accuracy (cur) = 0.900000 (all), 0.916667 (pos), 0.884615 (neg)
iter = 1980, accuracy (avg) = 0.853123 (all), 0.856151 (pos), 0.849654 (neg)
data reader: epoch = 0, batch = 1981 / 4040
iter = 1981, cls_loss (cur) = 0.204011, cls_loss (avg) = 0.321317, lr = 0.010000
iter = 1981, accuracy (cur) = 0.920000 (all), 0.920000 (pos), 0.920000 (neg)
iter = 1981, accuracy (avg) = 0.853791 (all), 0.856790 (pos), 0.850357 (neg)
data reader: epoch = 0, batch = 1982 / 4040
iter = 1982, cls_loss (cur) = 0.273058, cls_loss (avg) = 0.320835, lr = 0.010000
iter = 1982, accuracy (cur) = 0.860000 (all), 0.806452 (pos), 0.947368 (neg)
iter = 1982, accuracy (avg) = 0.853853 (all), 0.856286 (pos), 0.851328 (neg)
data reader: epoch = 0, batch = 1983 / 4040
iter = 1983, cls_loss (cur) = 0.350125, cls_loss (avg) = 0.321127, lr = 0.010000
iter = 1983, accuracy (cur) = 0.860000 (all), 0.857143 (pos), 0.863636 (neg)
iter = 1983, accuracy (avg) = 0.853915 (all), 0.856295 (pos), 0.851451 (neg)
data reader: epoch = 0, batch = 1984 / 4040
iter = 1984, cls_loss (cur) = 0.238223, cls_loss (avg) = 0.320298, lr = 0.010000
iter = 1984, accuracy (cur) = 0.920000 (all), 0.965517 (pos), 0.857143 (neg)
iter = 1984, accuracy (avg) = 0.854576 (all), 0.857387 (pos), 0.851508 (neg)
data reader: epoch = 0, batch = 1985 / 4040
iter = 1985, cls_loss (cur) = 0.294555, cls_loss (avg) = 0.320041, lr = 0.010000
iter = 1985, accuracy (cur) = 0.880000 (all), 0.909091 (pos), 0.857143 (neg)
iter = 1985, accuracy (avg) = 0.854830 (all), 0.857904 (pos), 0.851564 (neg)
data reader: epoch = 0, batch = 1986 / 4040
iter = 1986, cls_loss (cur) = 0.440249, cls_loss (avg) = 0.321243, lr = 0.010000
iter = 1986, accuracy (cur) = 0.760000 (all), 0.846154 (pos), 0.666667 (neg)
iter = 1986, accuracy (avg) = 0.853882 (all), 0.857787 (pos), 0.849715 (neg)
data reader: epoch = 0, batch = 1987 / 4040
iter = 1987, cls_loss (cur) = 0.265695, cls_loss (avg) = 0.320688, lr = 0.010000
iter = 1987, accuracy (cur) = 0.860000 (all), 0.862069 (pos), 0.857143 (neg)
iter = 1987, accuracy (avg) = 0.853943 (all), 0.857829 (pos), 0.849789 (neg)
data reader: epoch = 0, batch = 1988 / 4040
iter = 1988, cls_loss (cur) = 0.302597, cls_loss (avg) = 0.320507, lr = 0.010000
iter = 1988, accuracy (cur) = 0.880000 (all), 0.916667 (pos), 0.846154 (neg)
iter = 1988, accuracy (avg) = 0.854203 (all), 0.858418 (pos), 0.849753 (neg)
data reader: epoch = 0, batch = 1989 / 4040
iter = 1989, cls_loss (cur) = 0.319604, cls_loss (avg) = 0.320498, lr = 0.010000
iter = 1989, accuracy (cur) = 0.840000 (all), 1.000000 (pos), 0.750000 (neg)
iter = 1989, accuracy (avg) = 0.854061 (all), 0.859834 (pos), 0.848755 (neg)
data reader: epoch = 0, batch = 1990 / 4040
iter = 1990, cls_loss (cur) = 0.333630, cls_loss (avg) = 0.320629, lr = 0.010000
iter = 1990, accuracy (cur) = 0.860000 (all), 0.896552 (pos), 0.809524 (neg)
iter = 1990, accuracy (avg) = 0.854121 (all), 0.860201 (pos), 0.848363 (neg)
data reader: epoch = 0, batch = 1991 / 4040
iter = 1991, cls_loss (cur) = 0.297386, cls_loss (avg) = 0.320397, lr = 0.010000
iter = 1991, accuracy (cur) = 0.840000 (all), 0.875000 (pos), 0.807692 (neg)
iter = 1991, accuracy (avg) = 0.853980 (all), 0.860349 (pos), 0.847956 (neg)
data reader: epoch = 0, batch = 1992 / 4040
iter = 1992, cls_loss (cur) = 0.500581, cls_loss (avg) = 0.322198, lr = 0.010000
iter = 1992, accuracy (cur) = 0.760000 (all), 0.708333 (pos), 0.807692 (neg)
iter = 1992, accuracy (avg) = 0.853040 (all), 0.858829 (pos), 0.847554 (neg)
data reader: epoch = 0, batch = 1993 / 4040
iter = 1993, cls_loss (cur) = 0.394990, cls_loss (avg) = 0.322926, lr = 0.010000
iter = 1993, accuracy (cur) = 0.800000 (all), 0.760000 (pos), 0.840000 (neg)
iter = 1993, accuracy (avg) = 0.852509 (all), 0.857840 (pos), 0.847478 (neg)
data reader: epoch = 0, batch = 1994 / 4040
iter = 1994, cls_loss (cur) = 0.377794, cls_loss (avg) = 0.323475, lr = 0.010000
iter = 1994, accuracy (cur) = 0.800000 (all), 0.772727 (pos), 0.821429 (neg)
iter = 1994, accuracy (avg) = 0.851984 (all), 0.856989 (pos), 0.847218 (neg)
data reader: epoch = 0, batch = 1995 / 4040
iter = 1995, cls_loss (cur) = 0.296417, cls_loss (avg) = 0.323204, lr = 0.010000
iter = 1995, accuracy (cur) = 0.880000 (all), 0.862069 (pos), 0.904762 (neg)
iter = 1995, accuracy (avg) = 0.852264 (all), 0.857040 (pos), 0.847793 (neg)
data reader: epoch = 0, batch = 1996 / 4040
iter = 1996, cls_loss (cur) = 0.366743, cls_loss (avg) = 0.323640, lr = 0.010000
iter = 1996, accuracy (cur) = 0.820000 (all), 0.680000 (pos), 0.960000 (neg)
iter = 1996, accuracy (avg) = 0.851942 (all), 0.855270 (pos), 0.848915 (neg)
data reader: epoch = 0, batch = 1997 / 4040
iter = 1997, cls_loss (cur) = 0.227361, cls_loss (avg) = 0.322677, lr = 0.010000
iter = 1997, accuracy (cur) = 0.920000 (all), 0.916667 (pos), 0.923077 (neg)
iter = 1997, accuracy (avg) = 0.852622 (all), 0.855884 (pos), 0.849657 (neg)
data reader: epoch = 0, batch = 1998 / 4040
iter = 1998, cls_loss (cur) = 0.278539, cls_loss (avg) = 0.322236, lr = 0.010000
iter = 1998, accuracy (cur) = 0.860000 (all), 0.863636 (pos), 0.857143 (neg)
iter = 1998, accuracy (avg) = 0.852696 (all), 0.855961 (pos), 0.849732 (neg)
data reader: epoch = 0, batch = 1999 / 4040
iter = 1999, cls_loss (cur) = 0.282609, cls_loss (avg) = 0.321839, lr = 0.010000
iter = 1999, accuracy (cur) = 0.920000 (all), 0.920000 (pos), 0.920000 (neg)
iter = 1999, accuracy (avg) = 0.853369 (all), 0.856601 (pos), 0.850434 (neg)
data reader: epoch = 0, batch = 2000 / 4040
iter = 2000, cls_loss (cur) = 0.362248, cls_loss (avg) = 0.322243, lr = 0.010000
iter = 2000, accuracy (cur) = 0.880000 (all), 0.892857 (pos), 0.863636 (neg)
iter = 2000, accuracy (avg) = 0.853635 (all), 0.856964 (pos), 0.850566 (neg)
data reader: epoch = 0, batch = 2001 / 4040
iter = 2001, cls_loss (cur) = 0.405868, cls_loss (avg) = 0.323080, lr = 0.010000
iter = 2001, accuracy (cur) = 0.800000 (all), 0.800000 (pos), 0.800000 (neg)
iter = 2001, accuracy (avg) = 0.853099 (all), 0.856394 (pos), 0.850061 (neg)
data reader: epoch = 0, batch = 2002 / 4040
iter = 2002, cls_loss (cur) = 0.436995, cls_loss (avg) = 0.324219, lr = 0.010000
iter = 2002, accuracy (cur) = 0.800000 (all), 0.807692 (pos), 0.791667 (neg)
iter = 2002, accuracy (avg) = 0.852568 (all), 0.855907 (pos), 0.849477 (neg)
data reader: epoch = 0, batch = 2003 / 4040
iter = 2003, cls_loss (cur) = 0.309666, cls_loss (avg) = 0.324073, lr = 0.010000
iter = 2003, accuracy (cur) = 0.900000 (all), 0.920000 (pos), 0.880000 (neg)
iter = 2003, accuracy (avg) = 0.853042 (all), 0.856548 (pos), 0.849782 (neg)
data reader: epoch = 0, batch = 2004 / 4040
iter = 2004, cls_loss (cur) = 0.294611, cls_loss (avg) = 0.323779, lr = 0.010000
iter = 2004, accuracy (cur) = 0.860000 (all), 0.956522 (pos), 0.777778 (neg)
iter = 2004, accuracy (avg) = 0.853112 (all), 0.857548 (pos), 0.849062 (neg)
data reader: epoch = 0, batch = 2005 / 4040
iter = 2005, cls_loss (cur) = 0.370384, cls_loss (avg) = 0.324245, lr = 0.010000
iter = 2005, accuracy (cur) = 0.840000 (all), 0.791667 (pos), 0.884615 (neg)
iter = 2005, accuracy (avg) = 0.852981 (all), 0.856889 (pos), 0.849417 (neg)
data reader: epoch = 0, batch = 2006 / 4040
iter = 2006, cls_loss (cur) = 0.193707, cls_loss (avg) = 0.322939, lr = 0.010000
iter = 2006, accuracy (cur) = 0.960000 (all), 1.000000 (pos), 0.916667 (neg)
iter = 2006, accuracy (avg) = 0.854051 (all), 0.858320 (pos), 0.850090 (neg)
data reader: epoch = 0, batch = 2007 / 4040
iter = 2007, cls_loss (cur) = 0.383270, cls_loss (avg) = 0.323543, lr = 0.010000
iter = 2007, accuracy (cur) = 0.820000 (all), 0.821429 (pos), 0.818182 (neg)
iter = 2007, accuracy (avg) = 0.853711 (all), 0.857951 (pos), 0.849771 (neg)
data reader: epoch = 0, batch = 2008 / 4040
iter = 2008, cls_loss (cur) = 0.201879, cls_loss (avg) = 0.322326, lr = 0.010000
iter = 2008, accuracy (cur) = 0.980000 (all), 0.972222 (pos), 1.000000 (neg)
iter = 2008, accuracy (avg) = 0.854973 (all), 0.859094 (pos), 0.851273 (neg)
data reader: epoch = 0, batch = 2009 / 4040
iter = 2009, cls_loss (cur) = 0.277093, cls_loss (avg) = 0.321874, lr = 0.010000
iter = 2009, accuracy (cur) = 0.880000 (all), 0.956522 (pos), 0.814815 (neg)
iter = 2009, accuracy (avg) = 0.855224 (all), 0.860068 (pos), 0.850909 (neg)
data reader: epoch = 0, batch = 2010 / 4040
iter = 2010, cls_loss (cur) = 0.370649, cls_loss (avg) = 0.322361, lr = 0.010000
iter = 2010, accuracy (cur) = 0.880000 (all), 0.952381 (pos), 0.827586 (neg)
iter = 2010, accuracy (avg) = 0.855472 (all), 0.860992 (pos), 0.850675 (neg)
data reader: epoch = 0, batch = 2011 / 4040
iter = 2011, cls_loss (cur) = 0.352886, cls_loss (avg) = 0.322667, lr = 0.010000
iter = 2011, accuracy (cur) = 0.860000 (all), 0.857143 (pos), 0.862069 (neg)
iter = 2011, accuracy (avg) = 0.855517 (all), 0.860953 (pos), 0.850789 (neg)
data reader: epoch = 0, batch = 2012 / 4040
iter = 2012, cls_loss (cur) = 0.273491, cls_loss (avg) = 0.322175, lr = 0.010000
iter = 2012, accuracy (cur) = 0.840000 (all), 0.863636 (pos), 0.821429 (neg)
iter = 2012, accuracy (avg) = 0.855362 (all), 0.860980 (pos), 0.850496 (neg)
data reader: epoch = 0, batch = 2013 / 4040
iter = 2013, cls_loss (cur) = 0.321299, cls_loss (avg) = 0.322166, lr = 0.010000
iter = 2013, accuracy (cur) = 0.820000 (all), 0.846154 (pos), 0.791667 (neg)
iter = 2013, accuracy (avg) = 0.855008 (all), 0.860832 (pos), 0.849907 (neg)
data reader: epoch = 0, batch = 2014 / 4040
iter = 2014, cls_loss (cur) = 0.249656, cls_loss (avg) = 0.321441, lr = 0.010000
iter = 2014, accuracy (cur) = 0.860000 (all), 0.909091 (pos), 0.821429 (neg)
iter = 2014, accuracy (avg) = 0.855058 (all), 0.861314 (pos), 0.849623 (neg)
data reader: epoch = 0, batch = 2015 / 4040
iter = 2015, cls_loss (cur) = 0.322102, cls_loss (avg) = 0.321448, lr = 0.010000
iter = 2015, accuracy (cur) = 0.860000 (all), 0.851852 (pos), 0.869565 (neg)
iter = 2015, accuracy (avg) = 0.855107 (all), 0.861220 (pos), 0.849822 (neg)
data reader: epoch = 0, batch = 2016 / 4040
iter = 2016, cls_loss (cur) = 0.260175, cls_loss (avg) = 0.320835, lr = 0.010000
iter = 2016, accuracy (cur) = 0.920000 (all), 0.947368 (pos), 0.903226 (neg)
iter = 2016, accuracy (avg) = 0.855756 (all), 0.862081 (pos), 0.850356 (neg)
data reader: epoch = 0, batch = 2017 / 4040
iter = 2017, cls_loss (cur) = 0.297379, cls_loss (avg) = 0.320600, lr = 0.010000
iter = 2017, accuracy (cur) = 0.860000 (all), 0.894737 (pos), 0.838710 (neg)
iter = 2017, accuracy (avg) = 0.855799 (all), 0.862408 (pos), 0.850240 (neg)
data reader: epoch = 0, batch = 2018 / 4040
iter = 2018, cls_loss (cur) = 0.307946, cls_loss (avg) = 0.320474, lr = 0.010000
iter = 2018, accuracy (cur) = 0.900000 (all), 0.909091 (pos), 0.892857 (neg)
iter = 2018, accuracy (avg) = 0.856241 (all), 0.862874 (pos), 0.850666 (neg)
data reader: epoch = 0, batch = 2019 / 4040
iter = 2019, cls_loss (cur) = 0.287479, cls_loss (avg) = 0.320144, lr = 0.010000
iter = 2019, accuracy (cur) = 0.840000 (all), 0.761905 (pos), 0.896552 (neg)
iter = 2019, accuracy (avg) = 0.856078 (all), 0.861865 (pos), 0.851125 (neg)
data reader: epoch = 0, batch = 2020 / 4040
iter = 2020, cls_loss (cur) = 0.320158, cls_loss (avg) = 0.320144, lr = 0.010000
iter = 2020, accuracy (cur) = 0.860000 (all), 0.916667 (pos), 0.807692 (neg)
iter = 2020, accuracy (avg) = 0.856118 (all), 0.862413 (pos), 0.850690 (neg)
data reader: epoch = 0, batch = 2021 / 4040
iter = 2021, cls_loss (cur) = 0.273307, cls_loss (avg) = 0.319676, lr = 0.010000
iter = 2021, accuracy (cur) = 0.900000 (all), 0.904762 (pos), 0.896552 (neg)
iter = 2021, accuracy (avg) = 0.856556 (all), 0.862836 (pos), 0.851149 (neg)
data reader: epoch = 0, batch = 2022 / 4040
iter = 2022, cls_loss (cur) = 0.245135, cls_loss (avg) = 0.318930, lr = 0.010000
iter = 2022, accuracy (cur) = 0.900000 (all), 0.791667 (pos), 1.000000 (neg)
iter = 2022, accuracy (avg) = 0.856991 (all), 0.862125 (pos), 0.852637 (neg)
data reader: epoch = 0, batch = 2023 / 4040
iter = 2023, cls_loss (cur) = 0.276663, cls_loss (avg) = 0.318508, lr = 0.010000
iter = 2023, accuracy (cur) = 0.880000 (all), 0.807692 (pos), 0.958333 (neg)
iter = 2023, accuracy (avg) = 0.857221 (all), 0.861580 (pos), 0.853694 (neg)
data reader: epoch = 0, batch = 2024 / 4040
iter = 2024, cls_loss (cur) = 0.251945, cls_loss (avg) = 0.317842, lr = 0.010000
iter = 2024, accuracy (cur) = 0.840000 (all), 0.793103 (pos), 0.904762 (neg)
iter = 2024, accuracy (avg) = 0.857049 (all), 0.860895 (pos), 0.854205 (neg)
data reader: epoch = 0, batch = 2025 / 4040
iter = 2025, cls_loss (cur) = 0.321780, cls_loss (avg) = 0.317881, lr = 0.010000
iter = 2025, accuracy (cur) = 0.860000 (all), 0.846154 (pos), 0.875000 (neg)
iter = 2025, accuracy (avg) = 0.857078 (all), 0.860748 (pos), 0.854413 (neg)
data reader: epoch = 0, batch = 2026 / 4040
iter = 2026, cls_loss (cur) = 0.290611, cls_loss (avg) = 0.317609, lr = 0.010000
iter = 2026, accuracy (cur) = 0.880000 (all), 0.809524 (pos), 0.931034 (neg)
iter = 2026, accuracy (avg) = 0.857307 (all), 0.860236 (pos), 0.855179 (neg)
data reader: epoch = 0, batch = 2027 / 4040
iter = 2027, cls_loss (cur) = 0.271428, cls_loss (avg) = 0.317147, lr = 0.010000
iter = 2027, accuracy (cur) = 0.960000 (all), 0.960000 (pos), 0.960000 (neg)
iter = 2027, accuracy (avg) = 0.858334 (all), 0.861233 (pos), 0.856227 (neg)
data reader: epoch = 0, batch = 2028 / 4040
iter = 2028, cls_loss (cur) = 0.368470, cls_loss (avg) = 0.317660, lr = 0.010000
iter = 2028, accuracy (cur) = 0.800000 (all), 0.920000 (pos), 0.680000 (neg)
iter = 2028, accuracy (avg) = 0.857751 (all), 0.861821 (pos), 0.854465 (neg)
data reader: epoch = 0, batch = 2029 / 4040
iter = 2029, cls_loss (cur) = 0.280911, cls_loss (avg) = 0.317293, lr = 0.010000
iter = 2029, accuracy (cur) = 0.900000 (all), 0.904762 (pos), 0.896552 (neg)
iter = 2029, accuracy (avg) = 0.858173 (all), 0.862251 (pos), 0.854886 (neg)
data reader: epoch = 0, batch = 2030 / 4040
iter = 2030, cls_loss (cur) = 0.342872, cls_loss (avg) = 0.317548, lr = 0.010000
iter = 2030, accuracy (cur) = 0.860000 (all), 0.846154 (pos), 0.875000 (neg)
iter = 2030, accuracy (avg) = 0.858192 (all), 0.862090 (pos), 0.855087 (neg)
data reader: epoch = 0, batch = 2031 / 4040
iter = 2031, cls_loss (cur) = 0.244735, cls_loss (avg) = 0.316820, lr = 0.010000
iter = 2031, accuracy (cur) = 0.920000 (all), 0.909091 (pos), 0.928571 (neg)
iter = 2031, accuracy (avg) = 0.858810 (all), 0.862560 (pos), 0.855822 (neg)
data reader: epoch = 0, batch = 2032 / 4040
iter = 2032, cls_loss (cur) = 0.301899, cls_loss (avg) = 0.316671, lr = 0.010000
iter = 2032, accuracy (cur) = 0.840000 (all), 0.880000 (pos), 0.800000 (neg)
iter = 2032, accuracy (avg) = 0.858622 (all), 0.862734 (pos), 0.855264 (neg)
data reader: epoch = 0, batch = 2033 / 4040
iter = 2033, cls_loss (cur) = 0.265132, cls_loss (avg) = 0.316156, lr = 0.010000
iter = 2033, accuracy (cur) = 0.920000 (all), 0.826087 (pos), 1.000000 (neg)
iter = 2033, accuracy (avg) = 0.859236 (all), 0.862368 (pos), 0.856711 (neg)
data reader: epoch = 0, batch = 2034 / 4040
iter = 2034, cls_loss (cur) = 0.257116, cls_loss (avg) = 0.315565, lr = 0.010000
iter = 2034, accuracy (cur) = 0.940000 (all), 0.928571 (pos), 0.954545 (neg)
iter = 2034, accuracy (avg) = 0.860043 (all), 0.863030 (pos), 0.857690 (neg)
data reader: epoch = 0, batch = 2035 / 4040
iter = 2035, cls_loss (cur) = 0.308709, cls_loss (avg) = 0.315497, lr = 0.010000
iter = 2035, accuracy (cur) = 0.840000 (all), 0.800000 (pos), 0.866667 (neg)
iter = 2035, accuracy (avg) = 0.859843 (all), 0.862399 (pos), 0.857779 (neg)
data reader: epoch = 0, batch = 2036 / 4040
iter = 2036, cls_loss (cur) = 0.245389, cls_loss (avg) = 0.314796, lr = 0.010000
iter = 2036, accuracy (cur) = 0.940000 (all), 0.916667 (pos), 0.961538 (neg)
iter = 2036, accuracy (avg) = 0.860644 (all), 0.862942 (pos), 0.858817 (neg)
data reader: epoch = 0, batch = 2037 / 4040
iter = 2037, cls_loss (cur) = 0.309828, cls_loss (avg) = 0.314746, lr = 0.010000
iter = 2037, accuracy (cur) = 0.840000 (all), 0.833333 (pos), 0.846154 (neg)
iter = 2037, accuracy (avg) = 0.860438 (all), 0.862646 (pos), 0.858690 (neg)
data reader: epoch = 0, batch = 2038 / 4040
iter = 2038, cls_loss (cur) = 0.264776, cls_loss (avg) = 0.314246, lr = 0.010000
iter = 2038, accuracy (cur) = 0.880000 (all), 0.884615 (pos), 0.875000 (neg)
iter = 2038, accuracy (avg) = 0.860633 (all), 0.862866 (pos), 0.858853 (neg)
data reader: epoch = 0, batch = 2039 / 4040
iter = 2039, cls_loss (cur) = 0.397029, cls_loss (avg) = 0.315074, lr = 0.010000
iter = 2039, accuracy (cur) = 0.800000 (all), 0.809524 (pos), 0.793103 (neg)
iter = 2039, accuracy (avg) = 0.860027 (all), 0.862332 (pos), 0.858196 (neg)
data reader: epoch = 0, batch = 2040 / 4040
iter = 2040, cls_loss (cur) = 0.243218, cls_loss (avg) = 0.314356, lr = 0.010000
iter = 2040, accuracy (cur) = 0.920000 (all), 0.964286 (pos), 0.863636 (neg)
iter = 2040, accuracy (avg) = 0.860627 (all), 0.863352 (pos), 0.858250 (neg)
data reader: epoch = 0, batch = 2041 / 4040
iter = 2041, cls_loss (cur) = 0.309760, cls_loss (avg) = 0.314310, lr = 0.010000
iter = 2041, accuracy (cur) = 0.920000 (all), 0.869565 (pos), 0.962963 (neg)
iter = 2041, accuracy (avg) = 0.861221 (all), 0.863414 (pos), 0.859297 (neg)
data reader: epoch = 0, batch = 2042 / 4040
iter = 2042, cls_loss (cur) = 0.237734, cls_loss (avg) = 0.313544, lr = 0.010000
iter = 2042, accuracy (cur) = 0.900000 (all), 0.909091 (pos), 0.892857 (neg)
iter = 2042, accuracy (avg) = 0.861608 (all), 0.863871 (pos), 0.859633 (neg)
data reader: epoch = 0, batch = 2043 / 4040
iter = 2043, cls_loss (cur) = 0.225537, cls_loss (avg) = 0.312664, lr = 0.010000
iter = 2043, accuracy (cur) = 0.940000 (all), 0.935484 (pos), 0.947368 (neg)
iter = 2043, accuracy (avg) = 0.862392 (all), 0.864587 (pos), 0.860510 (neg)
data reader: epoch = 0, batch = 2044 / 4040
iter = 2044, cls_loss (cur) = 0.243436, cls_loss (avg) = 0.311971, lr = 0.010000
iter = 2044, accuracy (cur) = 0.880000 (all), 0.909091 (pos), 0.823529 (neg)
iter = 2044, accuracy (avg) = 0.862568 (all), 0.865032 (pos), 0.860141 (neg)
data reader: epoch = 0, batch = 2045 / 4040
iter = 2045, cls_loss (cur) = 0.370541, cls_loss (avg) = 0.312557, lr = 0.010000
iter = 2045, accuracy (cur) = 0.800000 (all), 0.793103 (pos), 0.809524 (neg)
iter = 2045, accuracy (avg) = 0.861943 (all), 0.864312 (pos), 0.859634 (neg)
data reader: epoch = 0, batch = 2046 / 4040
iter = 2046, cls_loss (cur) = 0.294327, cls_loss (avg) = 0.312375, lr = 0.010000
iter = 2046, accuracy (cur) = 0.880000 (all), 0.826087 (pos), 0.925926 (neg)
iter = 2046, accuracy (avg) = 0.862123 (all), 0.863930 (pos), 0.860297 (neg)
data reader: epoch = 0, batch = 2047 / 4040
iter = 2047, cls_loss (cur) = 0.340413, cls_loss (avg) = 0.312655, lr = 0.010000
iter = 2047, accuracy (cur) = 0.820000 (all), 0.848485 (pos), 0.764706 (neg)
iter = 2047, accuracy (avg) = 0.861702 (all), 0.863776 (pos), 0.859341 (neg)
data reader: epoch = 0, batch = 2048 / 4040
iter = 2048, cls_loss (cur) = 0.225200, cls_loss (avg) = 0.311781, lr = 0.010000
iter = 2048, accuracy (cur) = 0.900000 (all), 0.956522 (pos), 0.851852 (neg)
iter = 2048, accuracy (avg) = 0.862085 (all), 0.864703 (pos), 0.859266 (neg)
data reader: epoch = 0, batch = 2049 / 4040
iter = 2049, cls_loss (cur) = 0.370737, cls_loss (avg) = 0.312370, lr = 0.010000
iter = 2049, accuracy (cur) = 0.820000 (all), 0.821429 (pos), 0.818182 (neg)
iter = 2049, accuracy (avg) = 0.861664 (all), 0.864270 (pos), 0.858856 (neg)
data reader: epoch = 0, batch = 2050 / 4040
iter = 2050, cls_loss (cur) = 0.227825, cls_loss (avg) = 0.311525, lr = 0.010000
iter = 2050, accuracy (cur) = 0.940000 (all), 0.968750 (pos), 0.888889 (neg)
iter = 2050, accuracy (avg) = 0.862448 (all), 0.865315 (pos), 0.859156 (neg)
data reader: epoch = 0, batch = 2051 / 4040
iter = 2051, cls_loss (cur) = 0.353947, cls_loss (avg) = 0.311949, lr = 0.010000
iter = 2051, accuracy (cur) = 0.840000 (all), 0.916667 (pos), 0.769231 (neg)
iter = 2051, accuracy (avg) = 0.862223 (all), 0.865829 (pos), 0.858257 (neg)
data reader: epoch = 0, batch = 2052 / 4040
iter = 2052, cls_loss (cur) = 0.354370, cls_loss (avg) = 0.312373, lr = 0.010000
iter = 2052, accuracy (cur) = 0.820000 (all), 0.785714 (pos), 0.863636 (neg)
iter = 2052, accuracy (avg) = 0.861801 (all), 0.865028 (pos), 0.858310 (neg)
data reader: epoch = 0, batch = 2053 / 4040
iter = 2053, cls_loss (cur) = 0.265898, cls_loss (avg) = 0.311908, lr = 0.010000
iter = 2053, accuracy (cur) = 0.920000 (all), 0.923077 (pos), 0.916667 (neg)
iter = 2053, accuracy (avg) = 0.862383 (all), 0.865608 (pos), 0.858894 (neg)
data reader: epoch = 0, batch = 2054 / 4040
iter = 2054, cls_loss (cur) = 0.373173, cls_loss (avg) = 0.312521, lr = 0.010000
iter = 2054, accuracy (cur) = 0.820000 (all), 0.952381 (pos), 0.724138 (neg)
iter = 2054, accuracy (avg) = 0.861959 (all), 0.866476 (pos), 0.857546 (neg)
data reader: epoch = 0, batch = 2055 / 4040
iter = 2055, cls_loss (cur) = 0.258569, cls_loss (avg) = 0.311982, lr = 0.010000
iter = 2055, accuracy (cur) = 0.940000 (all), 0.961538 (pos), 0.916667 (neg)
iter = 2055, accuracy (avg) = 0.862739 (all), 0.867426 (pos), 0.858138 (neg)
data reader: epoch = 0, batch = 2056 / 4040
iter = 2056, cls_loss (cur) = 0.479681, cls_loss (avg) = 0.313659, lr = 0.010000
iter = 2056, accuracy (cur) = 0.800000 (all), 0.684211 (pos), 0.870968 (neg)
iter = 2056, accuracy (avg) = 0.862112 (all), 0.865594 (pos), 0.858266 (neg)
data reader: epoch = 0, batch = 2057 / 4040
iter = 2057, cls_loss (cur) = 0.320898, cls_loss (avg) = 0.313731, lr = 0.010000
iter = 2057, accuracy (cur) = 0.800000 (all), 0.793103 (pos), 0.809524 (neg)
iter = 2057, accuracy (avg) = 0.861491 (all), 0.864869 (pos), 0.857779 (neg)
data reader: epoch = 0, batch = 2058 / 4040
iter = 2058, cls_loss (cur) = 0.257382, cls_loss (avg) = 0.313167, lr = 0.010000
iter = 2058, accuracy (cur) = 0.940000 (all), 0.925926 (pos), 0.956522 (neg)
iter = 2058, accuracy (avg) = 0.862276 (all), 0.865480 (pos), 0.858766 (neg)
data reader: epoch = 0, batch = 2059 / 4040
iter = 2059, cls_loss (cur) = 0.268467, cls_loss (avg) = 0.312720, lr = 0.010000
iter = 2059, accuracy (cur) = 0.920000 (all), 0.956522 (pos), 0.888889 (neg)
iter = 2059, accuracy (avg) = 0.862853 (all), 0.866390 (pos), 0.859067 (neg)
data reader: epoch = 0, batch = 2060 / 4040
iter = 2060, cls_loss (cur) = 0.311633, cls_loss (avg) = 0.312710, lr = 0.010000
iter = 2060, accuracy (cur) = 0.840000 (all), 0.826087 (pos), 0.851852 (neg)
iter = 2060, accuracy (avg) = 0.862625 (all), 0.865987 (pos), 0.858995 (neg)
data reader: epoch = 0, batch = 2061 / 4040
iter = 2061, cls_loss (cur) = 0.290919, cls_loss (avg) = 0.312492, lr = 0.010000
iter = 2061, accuracy (cur) = 0.860000 (all), 0.851852 (pos), 0.869565 (neg)
iter = 2061, accuracy (avg) = 0.862598 (all), 0.865846 (pos), 0.859101 (neg)
data reader: epoch = 0, batch = 2062 / 4040
iter = 2062, cls_loss (cur) = 0.409591, cls_loss (avg) = 0.313463, lr = 0.010000
iter = 2062, accuracy (cur) = 0.820000 (all), 0.840000 (pos), 0.800000 (neg)
iter = 2062, accuracy (avg) = 0.862172 (all), 0.865588 (pos), 0.858510 (neg)
data reader: epoch = 0, batch = 2063 / 4040
iter = 2063, cls_loss (cur) = 0.257829, cls_loss (avg) = 0.312906, lr = 0.010000
iter = 2063, accuracy (cur) = 0.960000 (all), 1.000000 (pos), 0.942857 (neg)
iter = 2063, accuracy (avg) = 0.863151 (all), 0.866932 (pos), 0.859353 (neg)
data reader: epoch = 0, batch = 2064 / 4040
iter = 2064, cls_loss (cur) = 0.273287, cls_loss (avg) = 0.312510, lr = 0.010000
iter = 2064, accuracy (cur) = 0.880000 (all), 0.950000 (pos), 0.833333 (neg)
iter = 2064, accuracy (avg) = 0.863319 (all), 0.867762 (pos), 0.859093 (neg)
data reader: epoch = 0, batch = 2065 / 4040
iter = 2065, cls_loss (cur) = 0.214862, cls_loss (avg) = 0.311534, lr = 0.010000
iter = 2065, accuracy (cur) = 0.940000 (all), 0.900000 (pos), 0.966667 (neg)
iter = 2065, accuracy (avg) = 0.864086 (all), 0.868085 (pos), 0.860169 (neg)
data reader: epoch = 0, batch = 2066 / 4040
iter = 2066, cls_loss (cur) = 0.284958, cls_loss (avg) = 0.311268, lr = 0.010000
iter = 2066, accuracy (cur) = 0.900000 (all), 0.800000 (pos), 0.966667 (neg)
iter = 2066, accuracy (avg) = 0.864445 (all), 0.867404 (pos), 0.861234 (neg)
data reader: epoch = 0, batch = 2067 / 4040
iter = 2067, cls_loss (cur) = 0.456154, cls_loss (avg) = 0.312717, lr = 0.010000
iter = 2067, accuracy (cur) = 0.820000 (all), 0.782609 (pos), 0.851852 (neg)
iter = 2067, accuracy (avg) = 0.864001 (all), 0.866556 (pos), 0.861140 (neg)
data reader: epoch = 0, batch = 2068 / 4040
iter = 2068, cls_loss (cur) = 0.309916, cls_loss (avg) = 0.312689, lr = 0.010000
iter = 2068, accuracy (cur) = 0.860000 (all), 0.846154 (pos), 0.875000 (neg)
iter = 2068, accuracy (avg) = 0.863961 (all), 0.866352 (pos), 0.861279 (neg)
data reader: epoch = 0, batch = 2069 / 4040
iter = 2069, cls_loss (cur) = 0.248041, cls_loss (avg) = 0.312042, lr = 0.010000
iter = 2069, accuracy (cur) = 0.940000 (all), 1.000000 (pos), 0.892857 (neg)
iter = 2069, accuracy (avg) = 0.864721 (all), 0.867688 (pos), 0.861594 (neg)
data reader: epoch = 0, batch = 2070 / 4040
iter = 2070, cls_loss (cur) = 0.305951, cls_loss (avg) = 0.311981, lr = 0.010000
iter = 2070, accuracy (cur) = 0.840000 (all), 0.875000 (pos), 0.807692 (neg)
iter = 2070, accuracy (avg) = 0.864474 (all), 0.867762 (pos), 0.861055 (neg)
data reader: epoch = 0, batch = 2071 / 4040
iter = 2071, cls_loss (cur) = 0.276958, cls_loss (avg) = 0.311631, lr = 0.010000
iter = 2071, accuracy (cur) = 0.880000 (all), 0.925926 (pos), 0.826087 (neg)
iter = 2071, accuracy (avg) = 0.864629 (all), 0.868343 (pos), 0.860706 (neg)
data reader: epoch = 0, batch = 2072 / 4040
iter = 2072, cls_loss (cur) = 0.253749, cls_loss (avg) = 0.311052, lr = 0.010000
iter = 2072, accuracy (cur) = 0.880000 (all), 0.851852 (pos), 0.913043 (neg)
iter = 2072, accuracy (avg) = 0.864783 (all), 0.868178 (pos), 0.861229 (neg)
data reader: epoch = 0, batch = 2073 / 4040
iter = 2073, cls_loss (cur) = 0.319218, cls_loss (avg) = 0.311134, lr = 0.010000
iter = 2073, accuracy (cur) = 0.920000 (all), 0.970588 (pos), 0.812500 (neg)
iter = 2073, accuracy (avg) = 0.865335 (all), 0.869202 (pos), 0.860742 (neg)
data reader: epoch = 0, batch = 2074 / 4040
iter = 2074, cls_loss (cur) = 0.262532, cls_loss (avg) = 0.310648, lr = 0.010000
iter = 2074, accuracy (cur) = 0.900000 (all), 0.896552 (pos), 0.904762 (neg)
iter = 2074, accuracy (avg) = 0.865682 (all), 0.869476 (pos), 0.861182 (neg)
data reader: epoch = 0, batch = 2075 / 4040
iter = 2075, cls_loss (cur) = 0.218014, cls_loss (avg) = 0.309722, lr = 0.010000
iter = 2075, accuracy (cur) = 0.920000 (all), 1.000000 (pos), 0.840000 (neg)
iter = 2075, accuracy (avg) = 0.866225 (all), 0.870781 (pos), 0.860970 (neg)
data reader: epoch = 0, batch = 2076 / 4040
iter = 2076, cls_loss (cur) = 0.265889, cls_loss (avg) = 0.309283, lr = 0.010000
iter = 2076, accuracy (cur) = 0.940000 (all), 0.956522 (pos), 0.925926 (neg)
iter = 2076, accuracy (avg) = 0.866963 (all), 0.871638 (pos), 0.861620 (neg)
data reader: epoch = 0, batch = 2077 / 4040
iter = 2077, cls_loss (cur) = 0.238278, cls_loss (avg) = 0.308573, lr = 0.010000
iter = 2077, accuracy (cur) = 0.900000 (all), 0.857143 (pos), 0.954545 (neg)
iter = 2077, accuracy (avg) = 0.867293 (all), 0.871494 (pos), 0.862549 (neg)
data reader: epoch = 0, batch = 2078 / 4040
iter = 2078, cls_loss (cur) = 0.272776, cls_loss (avg) = 0.308215, lr = 0.010000
iter = 2078, accuracy (cur) = 0.880000 (all), 0.962963 (pos), 0.782609 (neg)
iter = 2078, accuracy (avg) = 0.867420 (all), 0.872408 (pos), 0.861750 (neg)
data reader: epoch = 0, batch = 2079 / 4040
iter = 2079, cls_loss (cur) = 0.351406, cls_loss (avg) = 0.308647, lr = 0.010000
iter = 2079, accuracy (cur) = 0.840000 (all), 0.806452 (pos), 0.894737 (neg)
iter = 2079, accuracy (avg) = 0.867146 (all), 0.871749 (pos), 0.862079 (neg)
data reader: epoch = 0, batch = 2080 / 4040
iter = 2080, cls_loss (cur) = 0.409968, cls_loss (avg) = 0.309660, lr = 0.010000
iter = 2080, accuracy (cur) = 0.760000 (all), 0.781250 (pos), 0.722222 (neg)
iter = 2080, accuracy (avg) = 0.866074 (all), 0.870844 (pos), 0.860681 (neg)
data reader: epoch = 0, batch = 2081 / 4040
iter = 2081, cls_loss (cur) = 0.428026, cls_loss (avg) = 0.310844, lr = 0.010000
iter = 2081, accuracy (cur) = 0.760000 (all), 0.904762 (pos), 0.655172 (neg)
iter = 2081, accuracy (avg) = 0.865014 (all), 0.871183 (pos), 0.858626 (neg)
data reader: epoch = 0, batch = 2082 / 4040
iter = 2082, cls_loss (cur) = 0.306379, cls_loss (avg) = 0.310799, lr = 0.010000
iter = 2082, accuracy (cur) = 0.860000 (all), 0.875000 (pos), 0.846154 (neg)
iter = 2082, accuracy (avg) = 0.864964 (all), 0.871221 (pos), 0.858501 (neg)
data reader: epoch = 0, batch = 2083 / 4040
iter = 2083, cls_loss (cur) = 0.207917, cls_loss (avg) = 0.309771, lr = 0.010000
iter = 2083, accuracy (cur) = 0.920000 (all), 0.892857 (pos), 0.954545 (neg)
iter = 2083, accuracy (avg) = 0.865514 (all), 0.871437 (pos), 0.859461 (neg)
data reader: epoch = 0, batch = 2084 / 4040
iter = 2084, cls_loss (cur) = 0.295551, cls_loss (avg) = 0.309628, lr = 0.010000
iter = 2084, accuracy (cur) = 0.860000 (all), 0.807692 (pos), 0.916667 (neg)
iter = 2084, accuracy (avg) = 0.865459 (all), 0.870800 (pos), 0.860034 (neg)
data reader: epoch = 0, batch = 2085 / 4040
iter = 2085, cls_loss (cur) = 0.345029, cls_loss (avg) = 0.309982, lr = 0.010000
iter = 2085, accuracy (cur) = 0.860000 (all), 0.772727 (pos), 0.928571 (neg)
iter = 2085, accuracy (avg) = 0.865404 (all), 0.869819 (pos), 0.860719 (neg)
data reader: epoch = 0, batch = 2086 / 4040
iter = 2086, cls_loss (cur) = 0.508695, cls_loss (avg) = 0.311969, lr = 0.010000
iter = 2086, accuracy (cur) = 0.760000 (all), 0.807692 (pos), 0.708333 (neg)
iter = 2086, accuracy (avg) = 0.864350 (all), 0.869198 (pos), 0.859195 (neg)
data reader: epoch = 0, batch = 2087 / 4040
iter = 2087, cls_loss (cur) = 0.232353, cls_loss (avg) = 0.311173, lr = 0.010000
iter = 2087, accuracy (cur) = 0.900000 (all), 0.920000 (pos), 0.880000 (neg)
iter = 2087, accuracy (avg) = 0.864707 (all), 0.869706 (pos), 0.859403 (neg)
data reader: epoch = 0, batch = 2088 / 4040
iter = 2088, cls_loss (cur) = 0.283879, cls_loss (avg) = 0.310900, lr = 0.010000
iter = 2088, accuracy (cur) = 0.920000 (all), 0.900000 (pos), 0.950000 (neg)
iter = 2088, accuracy (avg) = 0.865260 (all), 0.870009 (pos), 0.860309 (neg)
data reader: epoch = 0, batch = 2089 / 4040
iter = 2089, cls_loss (cur) = 0.253704, cls_loss (avg) = 0.310328, lr = 0.010000
iter = 2089, accuracy (cur) = 0.900000 (all), 0.958333 (pos), 0.846154 (neg)
iter = 2089, accuracy (avg) = 0.865607 (all), 0.870892 (pos), 0.860167 (neg)
data reader: epoch = 0, batch = 2090 / 4040
iter = 2090, cls_loss (cur) = 0.249638, cls_loss (avg) = 0.309722, lr = 0.010000
iter = 2090, accuracy (cur) = 0.920000 (all), 0.954545 (pos), 0.892857 (neg)
iter = 2090, accuracy (avg) = 0.866151 (all), 0.871729 (pos), 0.860494 (neg)
data reader: epoch = 0, batch = 2091 / 4040
iter = 2091, cls_loss (cur) = 0.282405, cls_loss (avg) = 0.309448, lr = 0.010000
iter = 2091, accuracy (cur) = 0.900000 (all), 0.950000 (pos), 0.866667 (neg)
iter = 2091, accuracy (avg) = 0.866489 (all), 0.872511 (pos), 0.860556 (neg)
data reader: epoch = 0, batch = 2092 / 4040
iter = 2092, cls_loss (cur) = 0.281217, cls_loss (avg) = 0.309166, lr = 0.010000
iter = 2092, accuracy (cur) = 0.900000 (all), 0.884615 (pos), 0.916667 (neg)
iter = 2092, accuracy (avg) = 0.866824 (all), 0.872632 (pos), 0.861117 (neg)
data reader: epoch = 0, batch = 2093 / 4040
iter = 2093, cls_loss (cur) = 0.218530, cls_loss (avg) = 0.308260, lr = 0.010000
iter = 2093, accuracy (cur) = 0.900000 (all), 0.882353 (pos), 0.909091 (neg)
iter = 2093, accuracy (avg) = 0.867156 (all), 0.872730 (pos), 0.861597 (neg)
data reader: epoch = 0, batch = 2094 / 4040
iter = 2094, cls_loss (cur) = 0.335745, cls_loss (avg) = 0.308535, lr = 0.010000
iter = 2094, accuracy (cur) = 0.860000 (all), 0.851852 (pos), 0.869565 (neg)
iter = 2094, accuracy (avg) = 0.867085 (all), 0.872521 (pos), 0.861677 (neg)
data reader: epoch = 0, batch = 2095 / 4040
iter = 2095, cls_loss (cur) = 0.312170, cls_loss (avg) = 0.308571, lr = 0.010000
iter = 2095, accuracy (cur) = 0.900000 (all), 0.913043 (pos), 0.888889 (neg)
iter = 2095, accuracy (avg) = 0.867414 (all), 0.872926 (pos), 0.861949 (neg)
data reader: epoch = 0, batch = 2096 / 4040
iter = 2096, cls_loss (cur) = 0.274064, cls_loss (avg) = 0.308226, lr = 0.010000
iter = 2096, accuracy (cur) = 0.920000 (all), 0.933333 (pos), 0.914286 (neg)
iter = 2096, accuracy (avg) = 0.867940 (all), 0.873530 (pos), 0.862472 (neg)
data reader: epoch = 0, batch = 2097 / 4040
iter = 2097, cls_loss (cur) = 0.332793, cls_loss (avg) = 0.308471, lr = 0.010000
iter = 2097, accuracy (cur) = 0.820000 (all), 0.750000 (pos), 0.909091 (neg)
iter = 2097, accuracy (avg) = 0.867460 (all), 0.872295 (pos), 0.862938 (neg)
data reader: epoch = 0, batch = 2098 / 4040
iter = 2098, cls_loss (cur) = 0.276552, cls_loss (avg) = 0.308152, lr = 0.010000
iter = 2098, accuracy (cur) = 0.880000 (all), 0.923077 (pos), 0.833333 (neg)
iter = 2098, accuracy (avg) = 0.867586 (all), 0.872803 (pos), 0.862642 (neg)
data reader: epoch = 0, batch = 2099 / 4040
iter = 2099, cls_loss (cur) = 0.321009, cls_loss (avg) = 0.308281, lr = 0.010000
iter = 2099, accuracy (cur) = 0.920000 (all), 0.900000 (pos), 0.950000 (neg)
iter = 2099, accuracy (avg) = 0.868110 (all), 0.873075 (pos), 0.863516 (neg)
data reader: epoch = 0, batch = 2100 / 4040
iter = 2100, cls_loss (cur) = 0.273779, cls_loss (avg) = 0.307936, lr = 0.010000
iter = 2100, accuracy (cur) = 0.900000 (all), 0.916667 (pos), 0.884615 (neg)
iter = 2100, accuracy (avg) = 0.868429 (all), 0.873511 (pos), 0.863727 (neg)
data reader: epoch = 0, batch = 2101 / 4040
iter = 2101, cls_loss (cur) = 0.226612, cls_loss (avg) = 0.307123, lr = 0.010000
iter = 2101, accuracy (cur) = 0.900000 (all), 0.875000 (pos), 0.923077 (neg)
iter = 2101, accuracy (avg) = 0.868744 (all), 0.873525 (pos), 0.864320 (neg)
data reader: epoch = 0, batch = 2102 / 4040
iter = 2102, cls_loss (cur) = 0.256021, cls_loss (avg) = 0.306612, lr = 0.010000
iter = 2102, accuracy (cur) = 0.920000 (all), 0.928571 (pos), 0.909091 (neg)
iter = 2102, accuracy (avg) = 0.869257 (all), 0.874076 (pos), 0.864768 (neg)
data reader: epoch = 0, batch = 2103 / 4040
iter = 2103, cls_loss (cur) = 0.407146, cls_loss (avg) = 0.307617, lr = 0.010000
iter = 2103, accuracy (cur) = 0.880000 (all), 0.857143 (pos), 0.896552 (neg)
iter = 2103, accuracy (avg) = 0.869364 (all), 0.873907 (pos), 0.865086 (neg)
data reader: epoch = 0, batch = 2104 / 4040
iter = 2104, cls_loss (cur) = 0.383184, cls_loss (avg) = 0.308373, lr = 0.010000
iter = 2104, accuracy (cur) = 0.840000 (all), 0.833333 (pos), 0.850000 (neg)
iter = 2104, accuracy (avg) = 0.869071 (all), 0.873501 (pos), 0.864935 (neg)
data reader: epoch = 0, batch = 2105 / 4040
iter = 2105, cls_loss (cur) = 0.314336, cls_loss (avg) = 0.308432, lr = 0.010000
iter = 2105, accuracy (cur) = 0.840000 (all), 0.892857 (pos), 0.772727 (neg)
iter = 2105, accuracy (avg) = 0.868780 (all), 0.873694 (pos), 0.864013 (neg)
data reader: epoch = 0, batch = 2106 / 4040
iter = 2106, cls_loss (cur) = 0.271295, cls_loss (avg) = 0.308061, lr = 0.010000
iter = 2106, accuracy (cur) = 0.860000 (all), 0.892857 (pos), 0.818182 (neg)
iter = 2106, accuracy (avg) = 0.868692 (all), 0.873886 (pos), 0.863555 (neg)
data reader: epoch = 0, batch = 2107 / 4040
iter = 2107, cls_loss (cur) = 0.209904, cls_loss (avg) = 0.307079, lr = 0.010000
iter = 2107, accuracy (cur) = 0.920000 (all), 0.954545 (pos), 0.892857 (neg)
iter = 2107, accuracy (avg) = 0.869205 (all), 0.874693 (pos), 0.863848 (neg)
data reader: epoch = 0, batch = 2108 / 4040
iter = 2108, cls_loss (cur) = 0.381868, cls_loss (avg) = 0.307827, lr = 0.010000
iter = 2108, accuracy (cur) = 0.840000 (all), 0.966667 (pos), 0.650000 (neg)
iter = 2108, accuracy (avg) = 0.868913 (all), 0.875612 (pos), 0.861709 (neg)
data reader: epoch = 0, batch = 2109 / 4040
iter = 2109, cls_loss (cur) = 0.286851, cls_loss (avg) = 0.307617, lr = 0.010000
iter = 2109, accuracy (cur) = 0.880000 (all), 1.000000 (pos), 0.800000 (neg)
iter = 2109, accuracy (avg) = 0.869024 (all), 0.876856 (pos), 0.861092 (neg)
data reader: epoch = 0, batch = 2110 / 4040
iter = 2110, cls_loss (cur) = 0.300785, cls_loss (avg) = 0.307549, lr = 0.010000
iter = 2110, accuracy (cur) = 0.880000 (all), 0.923077 (pos), 0.833333 (neg)
iter = 2110, accuracy (avg) = 0.869134 (all), 0.877318 (pos), 0.860815 (neg)
data reader: epoch = 0, batch = 2111 / 4040
iter = 2111, cls_loss (cur) = 0.249993, cls_loss (avg) = 0.306974, lr = 0.010000
iter = 2111, accuracy (cur) = 0.920000 (all), 0.900000 (pos), 0.950000 (neg)
iter = 2111, accuracy (avg) = 0.869643 (all), 0.877545 (pos), 0.861706 (neg)
data reader: epoch = 0, batch = 2112 / 4040
iter = 2112, cls_loss (cur) = 0.219893, cls_loss (avg) = 0.306103, lr = 0.010000
iter = 2112, accuracy (cur) = 0.920000 (all), 0.961538 (pos), 0.875000 (neg)
iter = 2112, accuracy (avg) = 0.870146 (all), 0.878385 (pos), 0.861839 (neg)
data reader: epoch = 0, batch = 2113 / 4040
iter = 2113, cls_loss (cur) = 0.231616, cls_loss (avg) = 0.305358, lr = 0.010000
iter = 2113, accuracy (cur) = 0.880000 (all), 0.818182 (pos), 0.928571 (neg)
iter = 2113, accuracy (avg) = 0.870245 (all), 0.877783 (pos), 0.862507 (neg)
data reader: epoch = 0, batch = 2114 / 4040
iter = 2114, cls_loss (cur) = 0.247837, cls_loss (avg) = 0.304783, lr = 0.010000
iter = 2114, accuracy (cur) = 0.920000 (all), 0.952381 (pos), 0.896552 (neg)
iter = 2114, accuracy (avg) = 0.870742 (all), 0.878529 (pos), 0.862847 (neg)
data reader: epoch = 0, batch = 2115 / 4040
iter = 2115, cls_loss (cur) = 0.343601, cls_loss (avg) = 0.305171, lr = 0.010000
iter = 2115, accuracy (cur) = 0.880000 (all), 0.950000 (pos), 0.833333 (neg)
iter = 2115, accuracy (avg) = 0.870835 (all), 0.879244 (pos), 0.862552 (neg)
data reader: epoch = 0, batch = 2116 / 4040
iter = 2116, cls_loss (cur) = 0.284418, cls_loss (avg) = 0.304963, lr = 0.010000
iter = 2116, accuracy (cur) = 0.920000 (all), 0.875000 (pos), 0.961538 (neg)
iter = 2116, accuracy (avg) = 0.871326 (all), 0.879201 (pos), 0.863542 (neg)
data reader: epoch = 0, batch = 2117 / 4040
iter = 2117, cls_loss (cur) = 0.221632, cls_loss (avg) = 0.304130, lr = 0.010000
iter = 2117, accuracy (cur) = 0.900000 (all), 0.875000 (pos), 0.923077 (neg)
iter = 2117, accuracy (avg) = 0.871613 (all), 0.879159 (pos), 0.864137 (neg)
data reader: epoch = 0, batch = 2118 / 4040
iter = 2118, cls_loss (cur) = 0.454006, cls_loss (avg) = 0.305629, lr = 0.010000
iter = 2118, accuracy (cur) = 0.800000 (all), 0.884615 (pos), 0.708333 (neg)
iter = 2118, accuracy (avg) = 0.870897 (all), 0.879214 (pos), 0.862579 (neg)
data reader: epoch = 0, batch = 2119 / 4040
iter = 2119, cls_loss (cur) = 0.343930, cls_loss (avg) = 0.306012, lr = 0.010000
iter = 2119, accuracy (cur) = 0.860000 (all), 0.870968 (pos), 0.842105 (neg)
iter = 2119, accuracy (avg) = 0.870788 (all), 0.879132 (pos), 0.862374 (neg)
data reader: epoch = 0, batch = 2120 / 4040
iter = 2120, cls_loss (cur) = 0.456833, cls_loss (avg) = 0.307520, lr = 0.010000
iter = 2120, accuracy (cur) = 0.780000 (all), 0.740741 (pos), 0.826087 (neg)
iter = 2120, accuracy (avg) = 0.869880 (all), 0.877748 (pos), 0.862012 (neg)
data reader: epoch = 0, batch = 2121 / 4040
iter = 2121, cls_loss (cur) = 0.298526, cls_loss (avg) = 0.307430, lr = 0.010000
iter = 2121, accuracy (cur) = 0.880000 (all), 0.800000 (pos), 1.000000 (neg)
iter = 2121, accuracy (avg) = 0.869981 (all), 0.876970 (pos), 0.863391 (neg)
data reader: epoch = 0, batch = 2122 / 4040
iter = 2122, cls_loss (cur) = 0.238339, cls_loss (avg) = 0.306739, lr = 0.010000
iter = 2122, accuracy (cur) = 0.920000 (all), 0.906250 (pos), 0.944444 (neg)
iter = 2122, accuracy (avg) = 0.870482 (all), 0.877263 (pos), 0.864202 (neg)
data reader: epoch = 0, batch = 2123 / 4040
iter = 2123, cls_loss (cur) = 0.357838, cls_loss (avg) = 0.307250, lr = 0.010000
iter = 2123, accuracy (cur) = 0.820000 (all), 0.909091 (pos), 0.750000 (neg)
iter = 2123, accuracy (avg) = 0.869977 (all), 0.877581 (pos), 0.863060 (neg)
data reader: epoch = 0, batch = 2124 / 4040
iter = 2124, cls_loss (cur) = 0.319458, cls_loss (avg) = 0.307372, lr = 0.010000
iter = 2124, accuracy (cur) = 0.820000 (all), 0.769231 (pos), 0.875000 (neg)
iter = 2124, accuracy (avg) = 0.869477 (all), 0.876498 (pos), 0.863179 (neg)
data reader: epoch = 0, batch = 2125 / 4040
iter = 2125, cls_loss (cur) = 0.289637, cls_loss (avg) = 0.307195, lr = 0.010000
iter = 2125, accuracy (cur) = 0.840000 (all), 0.826087 (pos), 0.851852 (neg)
iter = 2125, accuracy (avg) = 0.869182 (all), 0.875994 (pos), 0.863066 (neg)
data reader: epoch = 0, batch = 2126 / 4040
iter = 2126, cls_loss (cur) = 0.599965, cls_loss (avg) = 0.310123, lr = 0.010000
iter = 2126, accuracy (cur) = 0.660000 (all), 0.724138 (pos), 0.571429 (neg)
iter = 2126, accuracy (avg) = 0.867090 (all), 0.874475 (pos), 0.860150 (neg)
data reader: epoch = 0, batch = 2127 / 4040
iter = 2127, cls_loss (cur) = 0.210138, cls_loss (avg) = 0.309123, lr = 0.010000
iter = 2127, accuracy (cur) = 0.920000 (all), 0.950000 (pos), 0.900000 (neg)
iter = 2127, accuracy (avg) = 0.867620 (all), 0.875230 (pos), 0.860548 (neg)
data reader: epoch = 0, batch = 2128 / 4040
iter = 2128, cls_loss (cur) = 0.350451, cls_loss (avg) = 0.309536, lr = 0.010000
iter = 2128, accuracy (cur) = 0.860000 (all), 0.862069 (pos), 0.857143 (neg)
iter = 2128, accuracy (avg) = 0.867543 (all), 0.875099 (pos), 0.860514 (neg)
data reader: epoch = 0, batch = 2129 / 4040
iter = 2129, cls_loss (cur) = 0.251876, cls_loss (avg) = 0.308959, lr = 0.010000
iter = 2129, accuracy (cur) = 0.920000 (all), 0.961538 (pos), 0.875000 (neg)
iter = 2129, accuracy (avg) = 0.868068 (all), 0.875963 (pos), 0.860659 (neg)
data reader: epoch = 0, batch = 2130 / 4040
iter = 2130, cls_loss (cur) = 0.298729, cls_loss (avg) = 0.308857, lr = 0.010000
iter = 2130, accuracy (cur) = 0.880000 (all), 0.913043 (pos), 0.851852 (neg)
iter = 2130, accuracy (avg) = 0.868187 (all), 0.876334 (pos), 0.860571 (neg)
data reader: epoch = 0, batch = 2131 / 4040
iter = 2131, cls_loss (cur) = 0.318574, cls_loss (avg) = 0.308954, lr = 0.010000
iter = 2131, accuracy (cur) = 0.840000 (all), 0.791667 (pos), 0.884615 (neg)
iter = 2131, accuracy (avg) = 0.867905 (all), 0.875487 (pos), 0.860811 (neg)
data reader: epoch = 0, batch = 2132 / 4040
iter = 2132, cls_loss (cur) = 0.223217, cls_loss (avg) = 0.308097, lr = 0.010000
iter = 2132, accuracy (cur) = 0.900000 (all), 0.900000 (pos), 0.900000 (neg)
iter = 2132, accuracy (avg) = 0.868226 (all), 0.875732 (pos), 0.861203 (neg)
data reader: epoch = 0, batch = 2133 / 4040
iter = 2133, cls_loss (cur) = 0.267096, cls_loss (avg) = 0.307687, lr = 0.010000
iter = 2133, accuracy (cur) = 0.880000 (all), 0.888889 (pos), 0.869565 (neg)
iter = 2133, accuracy (avg) = 0.868344 (all), 0.875864 (pos), 0.861287 (neg)
data reader: epoch = 0, batch = 2134 / 4040
iter = 2134, cls_loss (cur) = 0.380059, cls_loss (avg) = 0.308411, lr = 0.010000
iter = 2134, accuracy (cur) = 0.800000 (all), 0.695652 (pos), 0.888889 (neg)
iter = 2134, accuracy (avg) = 0.867661 (all), 0.874062 (pos), 0.861563 (neg)
data reader: epoch = 0, batch = 2135 / 4040
iter = 2135, cls_loss (cur) = 0.402656, cls_loss (avg) = 0.309353, lr = 0.010000
iter = 2135, accuracy (cur) = 0.840000 (all), 0.909091 (pos), 0.785714 (neg)
iter = 2135, accuracy (avg) = 0.867384 (all), 0.874412 (pos), 0.860804 (neg)
data reader: epoch = 0, batch = 2136 / 4040
iter = 2136, cls_loss (cur) = 0.345347, cls_loss (avg) = 0.309713, lr = 0.010000
iter = 2136, accuracy (cur) = 0.800000 (all), 0.851852 (pos), 0.739130 (neg)
iter = 2136, accuracy (avg) = 0.866710 (all), 0.874186 (pos), 0.859588 (neg)
data reader: epoch = 0, batch = 2137 / 4040
iter = 2137, cls_loss (cur) = 0.367871, cls_loss (avg) = 0.310295, lr = 0.010000
iter = 2137, accuracy (cur) = 0.800000 (all), 0.821429 (pos), 0.772727 (neg)
iter = 2137, accuracy (avg) = 0.866043 (all), 0.873659 (pos), 0.858719 (neg)
data reader: epoch = 0, batch = 2138 / 4040
iter = 2138, cls_loss (cur) = 0.273213, cls_loss (avg) = 0.309924, lr = 0.010000
iter = 2138, accuracy (cur) = 0.880000 (all), 0.772727 (pos), 0.964286 (neg)
iter = 2138, accuracy (avg) = 0.866183 (all), 0.872650 (pos), 0.859775 (neg)
data reader: epoch = 0, batch = 2139 / 4040
iter = 2139, cls_loss (cur) = 0.286248, cls_loss (avg) = 0.309687, lr = 0.010000
iter = 2139, accuracy (cur) = 0.880000 (all), 0.947368 (pos), 0.838710 (neg)
iter = 2139, accuracy (avg) = 0.866321 (all), 0.873397 (pos), 0.859564 (neg)
data reader: epoch = 0, batch = 2140 / 4040
iter = 2140, cls_loss (cur) = 0.320818, cls_loss (avg) = 0.309798, lr = 0.010000
iter = 2140, accuracy (cur) = 0.840000 (all), 0.793103 (pos), 0.904762 (neg)
iter = 2140, accuracy (avg) = 0.866058 (all), 0.872594 (pos), 0.860016 (neg)
data reader: epoch = 0, batch = 2141 / 4040
iter = 2141, cls_loss (cur) = 0.314818, cls_loss (avg) = 0.309849, lr = 0.010000
iter = 2141, accuracy (cur) = 0.900000 (all), 0.888889 (pos), 0.913043 (neg)
iter = 2141, accuracy (avg) = 0.866397 (all), 0.872757 (pos), 0.860546 (neg)
data reader: epoch = 0, batch = 2142 / 4040
iter = 2142, cls_loss (cur) = 0.254038, cls_loss (avg) = 0.309290, lr = 0.010000
iter = 2142, accuracy (cur) = 0.880000 (all), 0.857143 (pos), 0.933333 (neg)
iter = 2142, accuracy (avg) = 0.866533 (all), 0.872601 (pos), 0.861274 (neg)
data reader: epoch = 0, batch = 2143 / 4040
iter = 2143, cls_loss (cur) = 0.274886, cls_loss (avg) = 0.308946, lr = 0.010000
iter = 2143, accuracy (cur) = 0.920000 (all), 1.000000 (pos), 0.833333 (neg)
iter = 2143, accuracy (avg) = 0.867068 (all), 0.873875 (pos), 0.860995 (neg)
data reader: epoch = 0, batch = 2144 / 4040
iter = 2144, cls_loss (cur) = 0.249978, cls_loss (avg) = 0.308357, lr = 0.010000
iter = 2144, accuracy (cur) = 0.900000 (all), 0.884615 (pos), 0.916667 (neg)
iter = 2144, accuracy (avg) = 0.867397 (all), 0.873982 (pos), 0.861551 (neg)
data reader: epoch = 0, batch = 2145 / 4040
iter = 2145, cls_loss (cur) = 0.310980, cls_loss (avg) = 0.308383, lr = 0.010000
iter = 2145, accuracy (cur) = 0.840000 (all), 0.884615 (pos), 0.791667 (neg)
iter = 2145, accuracy (avg) = 0.867123 (all), 0.874088 (pos), 0.860853 (neg)
data reader: epoch = 0, batch = 2146 / 4040
iter = 2146, cls_loss (cur) = 0.266874, cls_loss (avg) = 0.307968, lr = 0.010000
iter = 2146, accuracy (cur) = 0.900000 (all), 0.863636 (pos), 0.928571 (neg)
iter = 2146, accuracy (avg) = 0.867452 (all), 0.873984 (pos), 0.861530 (neg)
data reader: epoch = 0, batch = 2147 / 4040
iter = 2147, cls_loss (cur) = 0.334042, cls_loss (avg) = 0.308229, lr = 0.010000
iter = 2147, accuracy (cur) = 0.840000 (all), 1.000000 (pos), 0.714286 (neg)
iter = 2147, accuracy (avg) = 0.867177 (all), 0.875244 (pos), 0.860057 (neg)
data reader: epoch = 0, batch = 2148 / 4040
iter = 2148, cls_loss (cur) = 0.351944, cls_loss (avg) = 0.308666, lr = 0.010000
iter = 2148, accuracy (cur) = 0.800000 (all), 0.913043 (pos), 0.703704 (neg)
iter = 2148, accuracy (avg) = 0.866506 (all), 0.875622 (pos), 0.858494 (neg)
data reader: epoch = 0, batch = 2149 / 4040
iter = 2149, cls_loss (cur) = 0.301115, cls_loss (avg) = 0.308590, lr = 0.010000
iter = 2149, accuracy (cur) = 0.880000 (all), 0.923077 (pos), 0.833333 (neg)
iter = 2149, accuracy (avg) = 0.866640 (all), 0.876097 (pos), 0.858242 (neg)
data reader: epoch = 0, batch = 2150 / 4040
iter = 2150, cls_loss (cur) = 0.219294, cls_loss (avg) = 0.307697, lr = 0.010000
iter = 2150, accuracy (cur) = 0.940000 (all), 0.935484 (pos), 0.947368 (neg)
iter = 2150, accuracy (avg) = 0.867374 (all), 0.876690 (pos), 0.859134 (neg)
data reader: epoch = 0, batch = 2151 / 4040
iter = 2151, cls_loss (cur) = 0.255200, cls_loss (avg) = 0.307172, lr = 0.010000
iter = 2151, accuracy (cur) = 0.940000 (all), 0.962963 (pos), 0.913043 (neg)
iter = 2151, accuracy (avg) = 0.868100 (all), 0.877553 (pos), 0.859673 (neg)
data reader: epoch = 0, batch = 2152 / 4040
iter = 2152, cls_loss (cur) = 0.315195, cls_loss (avg) = 0.307253, lr = 0.010000
iter = 2152, accuracy (cur) = 0.860000 (all), 0.789474 (pos), 0.903226 (neg)
iter = 2152, accuracy (avg) = 0.868019 (all), 0.876672 (pos), 0.860108 (neg)
data reader: epoch = 0, batch = 2153 / 4040
iter = 2153, cls_loss (cur) = 0.306098, cls_loss (avg) = 0.307241, lr = 0.010000
iter = 2153, accuracy (cur) = 0.840000 (all), 0.880000 (pos), 0.800000 (neg)
iter = 2153, accuracy (avg) = 0.867739 (all), 0.876706 (pos), 0.859507 (neg)
data reader: epoch = 0, batch = 2154 / 4040
iter = 2154, cls_loss (cur) = 0.391581, cls_loss (avg) = 0.308084, lr = 0.010000
iter = 2154, accuracy (cur) = 0.820000 (all), 0.772727 (pos), 0.857143 (neg)
iter = 2154, accuracy (avg) = 0.867262 (all), 0.875666 (pos), 0.859483 (neg)
data reader: epoch = 0, batch = 2155 / 4040
iter = 2155, cls_loss (cur) = 0.194811, cls_loss (avg) = 0.306952, lr = 0.010000
iter = 2155, accuracy (cur) = 0.980000 (all), 0.960000 (pos), 1.000000 (neg)
iter = 2155, accuracy (avg) = 0.868389 (all), 0.876509 (pos), 0.860889 (neg)
data reader: epoch = 0, batch = 2156 / 4040
iter = 2156, cls_loss (cur) = 0.203237, cls_loss (avg) = 0.305914, lr = 0.010000
iter = 2156, accuracy (cur) = 0.920000 (all), 0.958333 (pos), 0.884615 (neg)
iter = 2156, accuracy (avg) = 0.868905 (all), 0.877327 (pos), 0.861126 (neg)
data reader: epoch = 0, batch = 2157 / 4040
iter = 2157, cls_loss (cur) = 0.254307, cls_loss (avg) = 0.305398, lr = 0.010000
iter = 2157, accuracy (cur) = 0.860000 (all), 0.827586 (pos), 0.904762 (neg)
iter = 2157, accuracy (avg) = 0.868816 (all), 0.876830 (pos), 0.861562 (neg)
data reader: epoch = 0, batch = 2158 / 4040
iter = 2158, cls_loss (cur) = 0.304690, cls_loss (avg) = 0.305391, lr = 0.010000
iter = 2158, accuracy (cur) = 0.880000 (all), 0.826087 (pos), 0.925926 (neg)
iter = 2158, accuracy (avg) = 0.868928 (all), 0.876323 (pos), 0.862206 (neg)
data reader: epoch = 0, batch = 2159 / 4040
iter = 2159, cls_loss (cur) = 0.327302, cls_loss (avg) = 0.305610, lr = 0.010000
iter = 2159, accuracy (cur) = 0.820000 (all), 0.750000 (pos), 0.909091 (neg)
iter = 2159, accuracy (avg) = 0.868439 (all), 0.875059 (pos), 0.862675 (neg)
data reader: epoch = 0, batch = 2160 / 4040
iter = 2160, cls_loss (cur) = 0.373437, cls_loss (avg) = 0.306289, lr = 0.010000
iter = 2160, accuracy (cur) = 0.800000 (all), 0.761905 (pos), 0.827586 (neg)
iter = 2160, accuracy (avg) = 0.867754 (all), 0.873928 (pos), 0.862324 (neg)
data reader: epoch = 0, batch = 2161 / 4040
iter = 2161, cls_loss (cur) = 0.318712, cls_loss (avg) = 0.306413, lr = 0.010000
iter = 2161, accuracy (cur) = 0.860000 (all), 0.857143 (pos), 0.863636 (neg)
iter = 2161, accuracy (avg) = 0.867677 (all), 0.873760 (pos), 0.862337 (neg)
data reader: epoch = 0, batch = 2162 / 4040
iter = 2162, cls_loss (cur) = 0.256957, cls_loss (avg) = 0.305918, lr = 0.010000
iter = 2162, accuracy (cur) = 0.920000 (all), 0.965517 (pos), 0.857143 (neg)
iter = 2162, accuracy (avg) = 0.868200 (all), 0.874678 (pos), 0.862285 (neg)
data reader: epoch = 0, batch = 2163 / 4040
iter = 2163, cls_loss (cur) = 0.428808, cls_loss (avg) = 0.307147, lr = 0.010000
iter = 2163, accuracy (cur) = 0.760000 (all), 0.863636 (pos), 0.678571 (neg)
iter = 2163, accuracy (avg) = 0.867118 (all), 0.874567 (pos), 0.860448 (neg)
data reader: epoch = 0, batch = 2164 / 4040
iter = 2164, cls_loss (cur) = 0.281676, cls_loss (avg) = 0.306893, lr = 0.010000
iter = 2164, accuracy (cur) = 0.840000 (all), 0.857143 (pos), 0.818182 (neg)
iter = 2164, accuracy (avg) = 0.866847 (all), 0.874393 (pos), 0.860025 (neg)
data reader: epoch = 0, batch = 2165 / 4040
iter = 2165, cls_loss (cur) = 0.284822, cls_loss (avg) = 0.306672, lr = 0.010000
iter = 2165, accuracy (cur) = 0.900000 (all), 0.896552 (pos), 0.904762 (neg)
iter = 2165, accuracy (avg) = 0.867178 (all), 0.874614 (pos), 0.860473 (neg)
data reader: epoch = 0, batch = 2166 / 4040
iter = 2166, cls_loss (cur) = 0.272074, cls_loss (avg) = 0.306326, lr = 0.010000
iter = 2166, accuracy (cur) = 0.860000 (all), 0.892857 (pos), 0.818182 (neg)
iter = 2166, accuracy (avg) = 0.867107 (all), 0.874797 (pos), 0.860050 (neg)
data reader: epoch = 0, batch = 2167 / 4040
iter = 2167, cls_loss (cur) = 0.279346, cls_loss (avg) = 0.306056, lr = 0.010000
iter = 2167, accuracy (cur) = 0.900000 (all), 0.931034 (pos), 0.857143 (neg)
iter = 2167, accuracy (avg) = 0.867436 (all), 0.875359 (pos), 0.860021 (neg)
data reader: epoch = 0, batch = 2168 / 4040
iter = 2168, cls_loss (cur) = 0.289709, cls_loss (avg) = 0.305893, lr = 0.010000
iter = 2168, accuracy (cur) = 0.860000 (all), 0.923077 (pos), 0.791667 (neg)
iter = 2168, accuracy (avg) = 0.867361 (all), 0.875836 (pos), 0.859337 (neg)
data reader: epoch = 0, batch = 2169 / 4040
iter = 2169, cls_loss (cur) = 0.263824, cls_loss (avg) = 0.305472, lr = 0.010000
iter = 2169, accuracy (cur) = 0.880000 (all), 0.925926 (pos), 0.826087 (neg)
iter = 2169, accuracy (avg) = 0.867488 (all), 0.876337 (pos), 0.859005 (neg)
data reader: epoch = 0, batch = 2170 / 4040
iter = 2170, cls_loss (cur) = 0.292456, cls_loss (avg) = 0.305342, lr = 0.010000
iter = 2170, accuracy (cur) = 0.860000 (all), 0.851852 (pos), 0.869565 (neg)
iter = 2170, accuracy (avg) = 0.867413 (all), 0.876092 (pos), 0.859110 (neg)
data reader: epoch = 0, batch = 2171 / 4040
iter = 2171, cls_loss (cur) = 0.311291, cls_loss (avg) = 0.305401, lr = 0.010000
iter = 2171, accuracy (cur) = 0.820000 (all), 0.857143 (pos), 0.793103 (neg)
iter = 2171, accuracy (avg) = 0.866939 (all), 0.875903 (pos), 0.858450 (neg)
data reader: epoch = 0, batch = 2172 / 4040
iter = 2172, cls_loss (cur) = 0.240137, cls_loss (avg) = 0.304749, lr = 0.010000
iter = 2172, accuracy (cur) = 0.840000 (all), 0.884615 (pos), 0.791667 (neg)
iter = 2172, accuracy (avg) = 0.866669 (all), 0.875990 (pos), 0.857782 (neg)
data reader: epoch = 0, batch = 2173 / 4040
iter = 2173, cls_loss (cur) = 0.371517, cls_loss (avg) = 0.305416, lr = 0.010000
iter = 2173, accuracy (cur) = 0.820000 (all), 0.760000 (pos), 0.880000 (neg)
iter = 2173, accuracy (avg) = 0.866203 (all), 0.874830 (pos), 0.858004 (neg)
data reader: epoch = 0, batch = 2174 / 4040
iter = 2174, cls_loss (cur) = 0.291973, cls_loss (avg) = 0.305282, lr = 0.010000
iter = 2174, accuracy (cur) = 0.880000 (all), 0.846154 (pos), 0.916667 (neg)
iter = 2174, accuracy (avg) = 0.866340 (all), 0.874543 (pos), 0.858591 (neg)
data reader: epoch = 0, batch = 2175 / 4040
iter = 2175, cls_loss (cur) = 0.347896, cls_loss (avg) = 0.305708, lr = 0.010000
iter = 2175, accuracy (cur) = 0.880000 (all), 0.950000 (pos), 0.833333 (neg)
iter = 2175, accuracy (avg) = 0.866477 (all), 0.875298 (pos), 0.858338 (neg)
data reader: epoch = 0, batch = 2176 / 4040
iter = 2176, cls_loss (cur) = 0.222059, cls_loss (avg) = 0.304872, lr = 0.010000
iter = 2176, accuracy (cur) = 0.940000 (all), 0.916667 (pos), 0.961538 (neg)
iter = 2176, accuracy (avg) = 0.867212 (all), 0.875712 (pos), 0.859370 (neg)
data reader: epoch = 0, batch = 2177 / 4040
iter = 2177, cls_loss (cur) = 0.223573, cls_loss (avg) = 0.304059, lr = 0.010000
iter = 2177, accuracy (cur) = 0.900000 (all), 0.884615 (pos), 0.916667 (neg)
iter = 2177, accuracy (avg) = 0.867540 (all), 0.875801 (pos), 0.859943 (neg)
data reader: epoch = 0, batch = 2178 / 4040
iter = 2178, cls_loss (cur) = 0.295304, cls_loss (avg) = 0.303971, lr = 0.010000
iter = 2178, accuracy (cur) = 0.900000 (all), 0.920000 (pos), 0.880000 (neg)
iter = 2178, accuracy (avg) = 0.867865 (all), 0.876243 (pos), 0.860144 (neg)
data reader: epoch = 0, batch = 2179 / 4040
iter = 2179, cls_loss (cur) = 0.316195, cls_loss (avg) = 0.304093, lr = 0.010000
iter = 2179, accuracy (cur) = 0.880000 (all), 0.911765 (pos), 0.812500 (neg)
iter = 2179, accuracy (avg) = 0.867986 (all), 0.876598 (pos), 0.859668 (neg)
data reader: epoch = 0, batch = 2180 / 4040
iter = 2180, cls_loss (cur) = 0.353315, cls_loss (avg) = 0.304585, lr = 0.010000
iter = 2180, accuracy (cur) = 0.820000 (all), 0.888889 (pos), 0.739130 (neg)
iter = 2180, accuracy (avg) = 0.867506 (all), 0.876721 (pos), 0.858462 (neg)
data reader: epoch = 0, batch = 2181 / 4040
iter = 2181, cls_loss (cur) = 0.212542, cls_loss (avg) = 0.303665, lr = 0.010000
iter = 2181, accuracy (cur) = 0.960000 (all), 1.000000 (pos), 0.909091 (neg)
iter = 2181, accuracy (avg) = 0.868431 (all), 0.877954 (pos), 0.858968 (neg)
data reader: epoch = 0, batch = 2182 / 4040
iter = 2182, cls_loss (cur) = 0.316935, cls_loss (avg) = 0.303798, lr = 0.010000
iter = 2182, accuracy (cur) = 0.920000 (all), 0.909091 (pos), 0.941176 (neg)
iter = 2182, accuracy (avg) = 0.868947 (all), 0.878265 (pos), 0.859791 (neg)
data reader: epoch = 0, batch = 2183 / 4040
iter = 2183, cls_loss (cur) = 0.385256, cls_loss (avg) = 0.304612, lr = 0.010000
iter = 2183, accuracy (cur) = 0.840000 (all), 0.785714 (pos), 0.909091 (neg)
iter = 2183, accuracy (avg) = 0.868657 (all), 0.877340 (pos), 0.860284 (neg)
data reader: epoch = 0, batch = 2184 / 4040
iter = 2184, cls_loss (cur) = 0.334952, cls_loss (avg) = 0.304916, lr = 0.010000
iter = 2184, accuracy (cur) = 0.840000 (all), 0.840000 (pos), 0.840000 (neg)
iter = 2184, accuracy (avg) = 0.868371 (all), 0.876966 (pos), 0.860081 (neg)
data reader: epoch = 0, batch = 2185 / 4040
iter = 2185, cls_loss (cur) = 0.251452, cls_loss (avg) = 0.304381, lr = 0.010000
iter = 2185, accuracy (cur) = 0.900000 (all), 0.880000 (pos), 0.920000 (neg)
iter = 2185, accuracy (avg) = 0.868687 (all), 0.876996 (pos), 0.860680 (neg)
data reader: epoch = 0, batch = 2186 / 4040
iter = 2186, cls_loss (cur) = 0.252523, cls_loss (avg) = 0.303862, lr = 0.010000
iter = 2186, accuracy (cur) = 0.920000 (all), 0.869565 (pos), 0.962963 (neg)
iter = 2186, accuracy (avg) = 0.869200 (all), 0.876922 (pos), 0.861703 (neg)
data reader: epoch = 0, batch = 2187 / 4040
iter = 2187, cls_loss (cur) = 0.385091, cls_loss (avg) = 0.304675, lr = 0.010000
iter = 2187, accuracy (cur) = 0.840000 (all), 0.956522 (pos), 0.740741 (neg)
iter = 2187, accuracy (avg) = 0.868908 (all), 0.877718 (pos), 0.860493 (neg)
data reader: epoch = 0, batch = 2188 / 4040
iter = 2188, cls_loss (cur) = 0.381160, cls_loss (avg) = 0.305440, lr = 0.010000
iter = 2188, accuracy (cur) = 0.800000 (all), 0.869565 (pos), 0.740741 (neg)
iter = 2188, accuracy (avg) = 0.868219 (all), 0.877637 (pos), 0.859296 (neg)
data reader: epoch = 0, batch = 2189 / 4040
iter = 2189, cls_loss (cur) = 0.345640, cls_loss (avg) = 0.305842, lr = 0.010000
iter = 2189, accuracy (cur) = 0.800000 (all), 0.772727 (pos), 0.821429 (neg)
iter = 2189, accuracy (avg) = 0.867537 (all), 0.876588 (pos), 0.858917 (neg)
data reader: epoch = 0, batch = 2190 / 4040
iter = 2190, cls_loss (cur) = 0.254389, cls_loss (avg) = 0.305327, lr = 0.010000
iter = 2190, accuracy (cur) = 0.920000 (all), 0.958333 (pos), 0.884615 (neg)
iter = 2190, accuracy (avg) = 0.868062 (all), 0.877405 (pos), 0.859174 (neg)
data reader: epoch = 0, batch = 2191 / 4040
iter = 2191, cls_loss (cur) = 0.313760, cls_loss (avg) = 0.305411, lr = 0.010000
iter = 2191, accuracy (cur) = 0.820000 (all), 0.909091 (pos), 0.750000 (neg)
iter = 2191, accuracy (avg) = 0.867581 (all), 0.877722 (pos), 0.858082 (neg)
data reader: epoch = 0, batch = 2192 / 4040
iter = 2192, cls_loss (cur) = 0.305654, cls_loss (avg) = 0.305414, lr = 0.010000
iter = 2192, accuracy (cur) = 0.880000 (all), 0.761905 (pos), 0.965517 (neg)
iter = 2192, accuracy (avg) = 0.867705 (all), 0.876564 (pos), 0.859157 (neg)
data reader: epoch = 0, batch = 2193 / 4040
iter = 2193, cls_loss (cur) = 0.358752, cls_loss (avg) = 0.305947, lr = 0.010000
iter = 2193, accuracy (cur) = 0.840000 (all), 0.750000 (pos), 0.923077 (neg)
iter = 2193, accuracy (avg) = 0.867428 (all), 0.875298 (pos), 0.859796 (neg)
data reader: epoch = 0, batch = 2194 / 4040
iter = 2194, cls_loss (cur) = 0.261786, cls_loss (avg) = 0.305506, lr = 0.010000
iter = 2194, accuracy (cur) = 0.920000 (all), 0.956522 (pos), 0.888889 (neg)
iter = 2194, accuracy (avg) = 0.867954 (all), 0.876110 (pos), 0.860087 (neg)
data reader: epoch = 0, batch = 2195 / 4040
iter = 2195, cls_loss (cur) = 0.259846, cls_loss (avg) = 0.305049, lr = 0.010000
iter = 2195, accuracy (cur) = 0.940000 (all), 0.954545 (pos), 0.928571 (neg)
iter = 2195, accuracy (avg) = 0.868674 (all), 0.876895 (pos), 0.860772 (neg)
data reader: epoch = 0, batch = 2196 / 4040
iter = 2196, cls_loss (cur) = 0.319650, cls_loss (avg) = 0.305195, lr = 0.010000
iter = 2196, accuracy (cur) = 0.860000 (all), 0.681818 (pos), 1.000000 (neg)
iter = 2196, accuracy (avg) = 0.868588 (all), 0.874944 (pos), 0.862164 (neg)
data reader: epoch = 0, batch = 2197 / 4040
iter = 2197, cls_loss (cur) = 0.314361, cls_loss (avg) = 0.305287, lr = 0.010000
iter = 2197, accuracy (cur) = 0.840000 (all), 0.761905 (pos), 0.896552 (neg)
iter = 2197, accuracy (avg) = 0.868302 (all), 0.873813 (pos), 0.862508 (neg)
data reader: epoch = 0, batch = 2198 / 4040
iter = 2198, cls_loss (cur) = 0.279075, cls_loss (avg) = 0.305025, lr = 0.010000
iter = 2198, accuracy (cur) = 0.900000 (all), 0.866667 (pos), 0.950000 (neg)
iter = 2198, accuracy (avg) = 0.868619 (all), 0.873742 (pos), 0.863383 (neg)
data reader: epoch = 0, batch = 2199 / 4040
iter = 2199, cls_loss (cur) = 0.354961, cls_loss (avg) = 0.305524, lr = 0.010000
iter = 2199, accuracy (cur) = 0.820000 (all), 0.793103 (pos), 0.857143 (neg)
iter = 2199, accuracy (avg) = 0.868133 (all), 0.872936 (pos), 0.863320 (neg)
data reader: epoch = 0, batch = 2200 / 4040
iter = 2200, cls_loss (cur) = 0.406565, cls_loss (avg) = 0.306534, lr = 0.010000
iter = 2200, accuracy (cur) = 0.840000 (all), 0.840000 (pos), 0.840000 (neg)
iter = 2200, accuracy (avg) = 0.867851 (all), 0.872606 (pos), 0.863087 (neg)
data reader: epoch = 0, batch = 2201 / 4040
iter = 2201, cls_loss (cur) = 0.211363, cls_loss (avg) = 0.305583, lr = 0.010000
iter = 2201, accuracy (cur) = 0.940000 (all), 0.958333 (pos), 0.923077 (neg)
iter = 2201, accuracy (avg) = 0.868573 (all), 0.873464 (pos), 0.863687 (neg)
data reader: epoch = 0, batch = 2202 / 4040
iter = 2202, cls_loss (cur) = 0.233706, cls_loss (avg) = 0.304864, lr = 0.010000
iter = 2202, accuracy (cur) = 0.940000 (all), 0.956522 (pos), 0.925926 (neg)
iter = 2202, accuracy (avg) = 0.869287 (all), 0.874294 (pos), 0.864309 (neg)
data reader: epoch = 0, batch = 2203 / 4040
iter = 2203, cls_loss (cur) = 0.284807, cls_loss (avg) = 0.304663, lr = 0.010000
iter = 2203, accuracy (cur) = 0.900000 (all), 0.900000 (pos), 0.900000 (neg)
iter = 2203, accuracy (avg) = 0.869594 (all), 0.874551 (pos), 0.864666 (neg)
data reader: epoch = 0, batch = 2204 / 4040
iter = 2204, cls_loss (cur) = 0.204106, cls_loss (avg) = 0.303658, lr = 0.010000
iter = 2204, accuracy (cur) = 0.940000 (all), 0.960000 (pos), 0.920000 (neg)
iter = 2204, accuracy (avg) = 0.870298 (all), 0.875406 (pos), 0.865220 (neg)
data reader: epoch = 0, batch = 2205 / 4040
iter = 2205, cls_loss (cur) = 0.291898, cls_loss (avg) = 0.303540, lr = 0.010000
iter = 2205, accuracy (cur) = 0.860000 (all), 0.925926 (pos), 0.782609 (neg)
iter = 2205, accuracy (avg) = 0.870195 (all), 0.875911 (pos), 0.864393 (neg)
data reader: epoch = 0, batch = 2206 / 4040
iter = 2206, cls_loss (cur) = 0.495485, cls_loss (avg) = 0.305460, lr = 0.010000
iter = 2206, accuracy (cur) = 0.820000 (all), 0.900000 (pos), 0.766667 (neg)
iter = 2206, accuracy (avg) = 0.869693 (all), 0.876152 (pos), 0.863416 (neg)
data reader: epoch = 0, batch = 2207 / 4040
iter = 2207, cls_loss (cur) = 0.323375, cls_loss (avg) = 0.305639, lr = 0.010000
iter = 2207, accuracy (cur) = 0.860000 (all), 0.950000 (pos), 0.800000 (neg)
iter = 2207, accuracy (avg) = 0.869596 (all), 0.876890 (pos), 0.862782 (neg)
data reader: epoch = 0, batch = 2208 / 4040
iter = 2208, cls_loss (cur) = 0.393243, cls_loss (avg) = 0.306515, lr = 0.010000
iter = 2208, accuracy (cur) = 0.880000 (all), 0.960000 (pos), 0.800000 (neg)
iter = 2208, accuracy (avg) = 0.869700 (all), 0.877721 (pos), 0.862154 (neg)
data reader: epoch = 0, batch = 2209 / 4040
iter = 2209, cls_loss (cur) = 0.241684, cls_loss (avg) = 0.305866, lr = 0.010000
iter = 2209, accuracy (cur) = 0.920000 (all), 0.931034 (pos), 0.904762 (neg)
iter = 2209, accuracy (avg) = 0.870203 (all), 0.878254 (pos), 0.862580 (neg)
data reader: epoch = 0, batch = 2210 / 4040
iter = 2210, cls_loss (cur) = 0.208975, cls_loss (avg) = 0.304898, lr = 0.010000
iter = 2210, accuracy (cur) = 0.920000 (all), 0.892857 (pos), 0.954545 (neg)
iter = 2210, accuracy (avg) = 0.870701 (all), 0.878400 (pos), 0.863500 (neg)
data reader: epoch = 0, batch = 2211 / 4040
iter = 2211, cls_loss (cur) = 0.317319, cls_loss (avg) = 0.305022, lr = 0.010000
iter = 2211, accuracy (cur) = 0.860000 (all), 0.827586 (pos), 0.904762 (neg)
iter = 2211, accuracy (avg) = 0.870594 (all), 0.877892 (pos), 0.863913 (neg)
data reader: epoch = 0, batch = 2212 / 4040
iter = 2212, cls_loss (cur) = 0.423110, cls_loss (avg) = 0.306203, lr = 0.010000
iter = 2212, accuracy (cur) = 0.840000 (all), 0.791667 (pos), 0.884615 (neg)
iter = 2212, accuracy (avg) = 0.870288 (all), 0.877030 (pos), 0.864120 (neg)
data reader: epoch = 0, batch = 2213 / 4040
iter = 2213, cls_loss (cur) = 0.258215, cls_loss (avg) = 0.305723, lr = 0.010000
iter = 2213, accuracy (cur) = 0.840000 (all), 0.909091 (pos), 0.785714 (neg)
iter = 2213, accuracy (avg) = 0.869985 (all), 0.877351 (pos), 0.863336 (neg)
data reader: epoch = 0, batch = 2214 / 4040
iter = 2214, cls_loss (cur) = 0.271259, cls_loss (avg) = 0.305378, lr = 0.010000
iter = 2214, accuracy (cur) = 0.900000 (all), 0.857143 (pos), 0.954545 (neg)
iter = 2214, accuracy (avg) = 0.870286 (all), 0.877149 (pos), 0.864248 (neg)
data reader: epoch = 0, batch = 2215 / 4040
iter = 2215, cls_loss (cur) = 0.340938, cls_loss (avg) = 0.305734, lr = 0.010000
iter = 2215, accuracy (cur) = 0.840000 (all), 0.870968 (pos), 0.789474 (neg)
iter = 2215, accuracy (avg) = 0.869983 (all), 0.877087 (pos), 0.863500 (neg)
data reader: epoch = 0, batch = 2216 / 4040
iter = 2216, cls_loss (cur) = 0.390705, cls_loss (avg) = 0.306583, lr = 0.010000
iter = 2216, accuracy (cur) = 0.780000 (all), 0.777778 (pos), 0.782609 (neg)
iter = 2216, accuracy (avg) = 0.869083 (all), 0.876094 (pos), 0.862691 (neg)
data reader: epoch = 0, batch = 2217 / 4040
iter = 2217, cls_loss (cur) = 0.385910, cls_loss (avg) = 0.307377, lr = 0.010000
iter = 2217, accuracy (cur) = 0.860000 (all), 0.964286 (pos), 0.727273 (neg)
iter = 2217, accuracy (avg) = 0.868992 (all), 0.876976 (pos), 0.861337 (neg)
data reader: epoch = 0, batch = 2218 / 4040
iter = 2218, cls_loss (cur) = 0.310093, cls_loss (avg) = 0.307404, lr = 0.010000
iter = 2218, accuracy (cur) = 0.820000 (all), 0.956522 (pos), 0.703704 (neg)
iter = 2218, accuracy (avg) = 0.868502 (all), 0.877771 (pos), 0.859760 (neg)
data reader: epoch = 0, batch = 2219 / 4040
iter = 2219, cls_loss (cur) = 0.296799, cls_loss (avg) = 0.307298, lr = 0.010000
iter = 2219, accuracy (cur) = 0.900000 (all), 0.965517 (pos), 0.809524 (neg)
iter = 2219, accuracy (avg) = 0.868817 (all), 0.878649 (pos), 0.859258 (neg)
data reader: epoch = 0, batch = 2220 / 4040
iter = 2220, cls_loss (cur) = 0.230705, cls_loss (avg) = 0.306532, lr = 0.010000
iter = 2220, accuracy (cur) = 0.920000 (all), 0.958333 (pos), 0.884615 (neg)
iter = 2220, accuracy (avg) = 0.869329 (all), 0.879445 (pos), 0.859512 (neg)
data reader: epoch = 0, batch = 2221 / 4040
iter = 2221, cls_loss (cur) = 0.358889, cls_loss (avg) = 0.307055, lr = 0.010000
iter = 2221, accuracy (cur) = 0.820000 (all), 0.818182 (pos), 0.821429 (neg)
iter = 2221, accuracy (avg) = 0.868836 (all), 0.878833 (pos), 0.859131 (neg)
data reader: epoch = 0, batch = 2222 / 4040
iter = 2222, cls_loss (cur) = 0.315970, cls_loss (avg) = 0.307145, lr = 0.010000
iter = 2222, accuracy (cur) = 0.840000 (all), 0.842105 (pos), 0.838710 (neg)
iter = 2222, accuracy (avg) = 0.868547 (all), 0.878466 (pos), 0.858927 (neg)
data reader: epoch = 0, batch = 2223 / 4040
iter = 2223, cls_loss (cur) = 0.283718, cls_loss (avg) = 0.306910, lr = 0.010000
iter = 2223, accuracy (cur) = 0.920000 (all), 0.925926 (pos), 0.913043 (neg)
iter = 2223, accuracy (avg) = 0.869062 (all), 0.878940 (pos), 0.859468 (neg)
data reader: epoch = 0, batch = 2224 / 4040
iter = 2224, cls_loss (cur) = 0.282519, cls_loss (avg) = 0.306666, lr = 0.010000
iter = 2224, accuracy (cur) = 0.900000 (all), 0.904762 (pos), 0.896552 (neg)
iter = 2224, accuracy (avg) = 0.869371 (all), 0.879198 (pos), 0.859839 (neg)
data reader: epoch = 0, batch = 2225 / 4040
iter = 2225, cls_loss (cur) = 0.300465, cls_loss (avg) = 0.306604, lr = 0.010000
iter = 2225, accuracy (cur) = 0.880000 (all), 0.791667 (pos), 0.961538 (neg)
iter = 2225, accuracy (avg) = 0.869477 (all), 0.878323 (pos), 0.860856 (neg)
data reader: epoch = 0, batch = 2226 / 4040
iter = 2226, cls_loss (cur) = 0.224339, cls_loss (avg) = 0.305782, lr = 0.010000
iter = 2226, accuracy (cur) = 0.960000 (all), 0.958333 (pos), 0.961538 (neg)
iter = 2226, accuracy (avg) = 0.870383 (all), 0.879123 (pos), 0.861862 (neg)
data reader: epoch = 0, batch = 2227 / 4040
iter = 2227, cls_loss (cur) = 0.207494, cls_loss (avg) = 0.304799, lr = 0.010000
iter = 2227, accuracy (cur) = 0.900000 (all), 0.900000 (pos), 0.900000 (neg)
iter = 2227, accuracy (avg) = 0.870679 (all), 0.879332 (pos), 0.862244 (neg)
data reader: epoch = 0, batch = 2228 / 4040
iter = 2228, cls_loss (cur) = 0.394657, cls_loss (avg) = 0.305697, lr = 0.010000
iter = 2228, accuracy (cur) = 0.820000 (all), 0.791667 (pos), 0.846154 (neg)
iter = 2228, accuracy (avg) = 0.870172 (all), 0.878455 (pos), 0.862083 (neg)
data reader: epoch = 0, batch = 2229 / 4040
iter = 2229, cls_loss (cur) = 0.308154, cls_loss (avg) = 0.305722, lr = 0.010000
iter = 2229, accuracy (cur) = 0.900000 (all), 0.878788 (pos), 0.941176 (neg)
iter = 2229, accuracy (avg) = 0.870470 (all), 0.878459 (pos), 0.862874 (neg)
data reader: epoch = 0, batch = 2230 / 4040
iter = 2230, cls_loss (cur) = 0.290761, cls_loss (avg) = 0.305572, lr = 0.010000
iter = 2230, accuracy (cur) = 0.880000 (all), 0.809524 (pos), 0.931034 (neg)
iter = 2230, accuracy (avg) = 0.870566 (all), 0.877769 (pos), 0.863555 (neg)
data reader: epoch = 0, batch = 2231 / 4040
iter = 2231, cls_loss (cur) = 0.494246, cls_loss (avg) = 0.307459, lr = 0.010000
iter = 2231, accuracy (cur) = 0.760000 (all), 0.645161 (pos), 0.947368 (neg)
iter = 2231, accuracy (avg) = 0.869460 (all), 0.875443 (pos), 0.864394 (neg)
data reader: epoch = 0, batch = 2232 / 4040
iter = 2232, cls_loss (cur) = 0.193422, cls_loss (avg) = 0.306319, lr = 0.010000
iter = 2232, accuracy (cur) = 0.900000 (all), 0.846154 (pos), 0.958333 (neg)
iter = 2232, accuracy (avg) = 0.869765 (all), 0.875150 (pos), 0.865333 (neg)
data reader: epoch = 0, batch = 2233 / 4040
iter = 2233, cls_loss (cur) = 0.294553, cls_loss (avg) = 0.306201, lr = 0.010000
iter = 2233, accuracy (cur) = 0.880000 (all), 0.952381 (pos), 0.827586 (neg)
iter = 2233, accuracy (avg) = 0.869868 (all), 0.875923 (pos), 0.864956 (neg)
data reader: epoch = 0, batch = 2234 / 4040
iter = 2234, cls_loss (cur) = 0.231972, cls_loss (avg) = 0.305459, lr = 0.010000
iter = 2234, accuracy (cur) = 0.900000 (all), 0.923077 (pos), 0.875000 (neg)
iter = 2234, accuracy (avg) = 0.870169 (all), 0.876394 (pos), 0.865056 (neg)
data reader: epoch = 0, batch = 2235 / 4040
iter = 2235, cls_loss (cur) = 0.434336, cls_loss (avg) = 0.306748, lr = 0.010000
iter = 2235, accuracy (cur) = 0.860000 (all), 0.920000 (pos), 0.800000 (neg)
iter = 2235, accuracy (avg) = 0.870067 (all), 0.876830 (pos), 0.864405 (neg)
data reader: epoch = 0, batch = 2236 / 4040
iter = 2236, cls_loss (cur) = 0.327522, cls_loss (avg) = 0.306955, lr = 0.010000
iter = 2236, accuracy (cur) = 0.900000 (all), 0.961538 (pos), 0.833333 (neg)
iter = 2236, accuracy (avg) = 0.870367 (all), 0.877677 (pos), 0.864095 (neg)
data reader: epoch = 0, batch = 2237 / 4040
iter = 2237, cls_loss (cur) = 0.402938, cls_loss (avg) = 0.307915, lr = 0.010000
iter = 2237, accuracy (cur) = 0.820000 (all), 0.916667 (pos), 0.730769 (neg)
iter = 2237, accuracy (avg) = 0.869863 (all), 0.878067 (pos), 0.862761 (neg)
data reader: epoch = 0, batch = 2238 / 4040
iter = 2238, cls_loss (cur) = 0.167301, cls_loss (avg) = 0.306509, lr = 0.010000
iter = 2238, accuracy (cur) = 0.960000 (all), 0.956522 (pos), 0.962963 (neg)
iter = 2238, accuracy (avg) = 0.870764 (all), 0.878852 (pos), 0.863763 (neg)
data reader: epoch = 0, batch = 2239 / 4040
iter = 2239, cls_loss (cur) = 0.299525, cls_loss (avg) = 0.306439, lr = 0.010000
iter = 2239, accuracy (cur) = 0.860000 (all), 0.857143 (pos), 0.862069 (neg)
iter = 2239, accuracy (avg) = 0.870657 (all), 0.878635 (pos), 0.863746 (neg)
data reader: epoch = 0, batch = 2240 / 4040
iter = 2240, cls_loss (cur) = 0.247045, cls_loss (avg) = 0.305845, lr = 0.010000
iter = 2240, accuracy (cur) = 0.900000 (all), 0.846154 (pos), 0.958333 (neg)
iter = 2240, accuracy (avg) = 0.870950 (all), 0.878310 (pos), 0.864692 (neg)
data reader: epoch = 0, batch = 2241 / 4040
iter = 2241, cls_loss (cur) = 0.273490, cls_loss (avg) = 0.305522, lr = 0.010000
iter = 2241, accuracy (cur) = 0.860000 (all), 0.851852 (pos), 0.869565 (neg)
iter = 2241, accuracy (avg) = 0.870841 (all), 0.878045 (pos), 0.864741 (neg)
data reader: epoch = 0, batch = 2242 / 4040
iter = 2242, cls_loss (cur) = 0.230957, cls_loss (avg) = 0.304776, lr = 0.010000
iter = 2242, accuracy (cur) = 0.900000 (all), 0.875000 (pos), 0.923077 (neg)
iter = 2242, accuracy (avg) = 0.871132 (all), 0.878015 (pos), 0.865324 (neg)
data reader: epoch = 0, batch = 2243 / 4040
iter = 2243, cls_loss (cur) = 0.293703, cls_loss (avg) = 0.304665, lr = 0.010000
iter = 2243, accuracy (cur) = 0.900000 (all), 0.906250 (pos), 0.888889 (neg)
iter = 2243, accuracy (avg) = 0.871421 (all), 0.878297 (pos), 0.865560 (neg)
data reader: epoch = 0, batch = 2244 / 4040
iter = 2244, cls_loss (cur) = 0.371398, cls_loss (avg) = 0.305333, lr = 0.010000
iter = 2244, accuracy (cur) = 0.820000 (all), 0.833333 (pos), 0.807692 (neg)
iter = 2244, accuracy (avg) = 0.870907 (all), 0.877847 (pos), 0.864981 (neg)
data reader: epoch = 0, batch = 2245 / 4040
iter = 2245, cls_loss (cur) = 0.257541, cls_loss (avg) = 0.304855, lr = 0.010000
iter = 2245, accuracy (cur) = 0.900000 (all), 0.928571 (pos), 0.863636 (neg)
iter = 2245, accuracy (avg) = 0.871198 (all), 0.878355 (pos), 0.864968 (neg)
data reader: epoch = 0, batch = 2246 / 4040
iter = 2246, cls_loss (cur) = 0.223194, cls_loss (avg) = 0.304038, lr = 0.010000
iter = 2246, accuracy (cur) = 0.940000 (all), 0.939394 (pos), 0.941176 (neg)
iter = 2246, accuracy (avg) = 0.871886 (all), 0.878965 (pos), 0.865730 (neg)
data reader: epoch = 0, batch = 2247 / 4040
iter = 2247, cls_loss (cur) = 0.295162, cls_loss (avg) = 0.303949, lr = 0.010000
iter = 2247, accuracy (cur) = 0.880000 (all), 0.840000 (pos), 0.920000 (neg)
iter = 2247, accuracy (avg) = 0.871967 (all), 0.878575 (pos), 0.866273 (neg)
data reader: epoch = 0, batch = 2248 / 4040
iter = 2248, cls_loss (cur) = 0.270611, cls_loss (avg) = 0.303616, lr = 0.010000
iter = 2248, accuracy (cur) = 0.840000 (all), 0.875000 (pos), 0.807692 (neg)
iter = 2248, accuracy (avg) = 0.871647 (all), 0.878540 (pos), 0.865687 (neg)
data reader: epoch = 0, batch = 2249 / 4040
iter = 2249, cls_loss (cur) = 0.312473, cls_loss (avg) = 0.303705, lr = 0.010000
iter = 2249, accuracy (cur) = 0.860000 (all), 0.823529 (pos), 0.937500 (neg)
iter = 2249, accuracy (avg) = 0.871531 (all), 0.877990 (pos), 0.866405 (neg)
data reader: epoch = 0, batch = 2250 / 4040
iter = 2250, cls_loss (cur) = 0.376012, cls_loss (avg) = 0.304428, lr = 0.010000
iter = 2250, accuracy (cur) = 0.820000 (all), 0.913043 (pos), 0.740741 (neg)
iter = 2250, accuracy (avg) = 0.871015 (all), 0.878340 (pos), 0.865148 (neg)
data reader: epoch = 0, batch = 2251 / 4040
iter = 2251, cls_loss (cur) = 0.321720, cls_loss (avg) = 0.304601, lr = 0.010000
iter = 2251, accuracy (cur) = 0.820000 (all), 0.920000 (pos), 0.720000 (neg)
iter = 2251, accuracy (avg) = 0.870505 (all), 0.878757 (pos), 0.863697 (neg)
data reader: epoch = 0, batch = 2252 / 4040
iter = 2252, cls_loss (cur) = 0.325670, cls_loss (avg) = 0.304811, lr = 0.010000
iter = 2252, accuracy (cur) = 0.860000 (all), 0.880000 (pos), 0.840000 (neg)
iter = 2252, accuracy (avg) = 0.870400 (all), 0.878769 (pos), 0.863460 (neg)
data reader: epoch = 0, batch = 2253 / 4040
iter = 2253, cls_loss (cur) = 0.358893, cls_loss (avg) = 0.305352, lr = 0.010000
iter = 2253, accuracy (cur) = 0.840000 (all), 0.935484 (pos), 0.684211 (neg)
iter = 2253, accuracy (avg) = 0.870096 (all), 0.879336 (pos), 0.861667 (neg)
data reader: epoch = 0, batch = 2254 / 4040
iter = 2254, cls_loss (cur) = 0.186048, cls_loss (avg) = 0.304159, lr = 0.010000
iter = 2254, accuracy (cur) = 0.960000 (all), 1.000000 (pos), 0.923077 (neg)
iter = 2254, accuracy (avg) = 0.870995 (all), 0.880543 (pos), 0.862282 (neg)
data reader: epoch = 0, batch = 2255 / 4040
iter = 2255, cls_loss (cur) = 0.292618, cls_loss (avg) = 0.304044, lr = 0.010000
iter = 2255, accuracy (cur) = 0.840000 (all), 0.851852 (pos), 0.826087 (neg)
iter = 2255, accuracy (avg) = 0.870685 (all), 0.880256 (pos), 0.861920 (neg)
data reader: epoch = 0, batch = 2256 / 4040
iter = 2256, cls_loss (cur) = 0.311797, cls_loss (avg) = 0.304121, lr = 0.010000
iter = 2256, accuracy (cur) = 0.840000 (all), 0.833333 (pos), 0.846154 (neg)
iter = 2256, accuracy (avg) = 0.870378 (all), 0.879787 (pos), 0.861762 (neg)
data reader: epoch = 0, batch = 2257 / 4040
iter = 2257, cls_loss (cur) = 0.379422, cls_loss (avg) = 0.304874, lr = 0.010000
iter = 2257, accuracy (cur) = 0.840000 (all), 0.809524 (pos), 0.862069 (neg)
iter = 2257, accuracy (avg) = 0.870075 (all), 0.879084 (pos), 0.861765 (neg)
data reader: epoch = 0, batch = 2258 / 4040
iter = 2258, cls_loss (cur) = 0.253371, cls_loss (avg) = 0.304359, lr = 0.010000
iter = 2258, accuracy (cur) = 0.940000 (all), 0.916667 (pos), 0.961538 (neg)
iter = 2258, accuracy (avg) = 0.870774 (all), 0.879460 (pos), 0.862763 (neg)
data reader: epoch = 0, batch = 2259 / 4040
iter = 2259, cls_loss (cur) = 0.242629, cls_loss (avg) = 0.303742, lr = 0.010000
iter = 2259, accuracy (cur) = 0.880000 (all), 0.866667 (pos), 0.900000 (neg)
iter = 2259, accuracy (avg) = 0.870866 (all), 0.879332 (pos), 0.863135 (neg)
data reader: epoch = 0, batch = 2260 / 4040
iter = 2260, cls_loss (cur) = 0.265997, cls_loss (avg) = 0.303364, lr = 0.010000
iter = 2260, accuracy (cur) = 0.900000 (all), 0.960000 (pos), 0.840000 (neg)
iter = 2260, accuracy (avg) = 0.871158 (all), 0.880139 (pos), 0.862904 (neg)
data reader: epoch = 0, batch = 2261 / 4040
iter = 2261, cls_loss (cur) = 0.301454, cls_loss (avg) = 0.303345, lr = 0.010000
iter = 2261, accuracy (cur) = 0.880000 (all), 0.857143 (pos), 0.909091 (neg)
iter = 2261, accuracy (avg) = 0.871246 (all), 0.879909 (pos), 0.863366 (neg)
data reader: epoch = 0, batch = 2262 / 4040
iter = 2262, cls_loss (cur) = 0.267162, cls_loss (avg) = 0.302983, lr = 0.010000
iter = 2262, accuracy (cur) = 0.900000 (all), 0.869565 (pos), 0.925926 (neg)
iter = 2262, accuracy (avg) = 0.871533 (all), 0.879805 (pos), 0.863991 (neg)
data reader: epoch = 0, batch = 2263 / 4040
iter = 2263, cls_loss (cur) = 0.258174, cls_loss (avg) = 0.302535, lr = 0.010000
iter = 2263, accuracy (cur) = 0.920000 (all), 0.880000 (pos), 0.960000 (neg)
iter = 2263, accuracy (avg) = 0.872018 (all), 0.879807 (pos), 0.864951 (neg)
data reader: epoch = 0, batch = 2264 / 4040
iter = 2264, cls_loss (cur) = 0.225176, cls_loss (avg) = 0.301762, lr = 0.010000
iter = 2264, accuracy (cur) = 0.920000 (all), 0.884615 (pos), 0.958333 (neg)
iter = 2264, accuracy (avg) = 0.872498 (all), 0.879855 (pos), 0.865885 (neg)
data reader: epoch = 0, batch = 2265 / 4040
iter = 2265, cls_loss (cur) = 0.342526, cls_loss (avg) = 0.302169, lr = 0.010000
iter = 2265, accuracy (cur) = 0.820000 (all), 0.806452 (pos), 0.842105 (neg)
iter = 2265, accuracy (avg) = 0.871973 (all), 0.879121 (pos), 0.865647 (neg)
data reader: epoch = 0, batch = 2266 / 4040
iter = 2266, cls_loss (cur) = 0.247153, cls_loss (avg) = 0.301619, lr = 0.010000
iter = 2266, accuracy (cur) = 0.880000 (all), 0.846154 (pos), 0.916667 (neg)
iter = 2266, accuracy (avg) = 0.872053 (all), 0.878792 (pos), 0.866158 (neg)
data reader: epoch = 0, batch = 2267 / 4040
iter = 2267, cls_loss (cur) = 0.243277, cls_loss (avg) = 0.301036, lr = 0.010000
iter = 2267, accuracy (cur) = 0.920000 (all), 0.967742 (pos), 0.842105 (neg)
iter = 2267, accuracy (avg) = 0.872533 (all), 0.879681 (pos), 0.865917 (neg)
data reader: epoch = 0, batch = 2268 / 4040
iter = 2268, cls_loss (cur) = 0.275567, cls_loss (avg) = 0.300781, lr = 0.010000
iter = 2268, accuracy (cur) = 0.860000 (all), 0.826087 (pos), 0.888889 (neg)
iter = 2268, accuracy (avg) = 0.872407 (all), 0.879145 (pos), 0.866147 (neg)
data reader: epoch = 0, batch = 2269 / 4040
iter = 2269, cls_loss (cur) = 0.333556, cls_loss (avg) = 0.301109, lr = 0.010000
iter = 2269, accuracy (cur) = 0.860000 (all), 0.960000 (pos), 0.760000 (neg)
iter = 2269, accuracy (avg) = 0.872283 (all), 0.879954 (pos), 0.865085 (neg)
data reader: epoch = 0, batch = 2270 / 4040
iter = 2270, cls_loss (cur) = 0.511016, cls_loss (avg) = 0.303208, lr = 0.010000
iter = 2270, accuracy (cur) = 0.740000 (all), 0.950000 (pos), 0.600000 (neg)
iter = 2270, accuracy (avg) = 0.870960 (all), 0.880654 (pos), 0.862434 (neg)
data reader: epoch = 0, batch = 2271 / 4040
iter = 2271, cls_loss (cur) = 0.464434, cls_loss (avg) = 0.304820, lr = 0.010000
iter = 2271, accuracy (cur) = 0.760000 (all), 0.740741 (pos), 0.782609 (neg)
iter = 2271, accuracy (avg) = 0.869851 (all), 0.879255 (pos), 0.861636 (neg)
data reader: epoch = 0, batch = 2272 / 4040
iter = 2272, cls_loss (cur) = 0.346236, cls_loss (avg) = 0.305234, lr = 0.010000
iter = 2272, accuracy (cur) = 0.800000 (all), 0.884615 (pos), 0.708333 (neg)
iter = 2272, accuracy (avg) = 0.869152 (all), 0.879309 (pos), 0.860103 (neg)
data reader: epoch = 0, batch = 2273 / 4040
iter = 2273, cls_loss (cur) = 0.182067, cls_loss (avg) = 0.304003, lr = 0.010000
iter = 2273, accuracy (cur) = 0.920000 (all), 0.880000 (pos), 0.960000 (neg)
iter = 2273, accuracy (avg) = 0.869661 (all), 0.879316 (pos), 0.861102 (neg)
data reader: epoch = 0, batch = 2274 / 4040
iter = 2274, cls_loss (cur) = 0.177995, cls_loss (avg) = 0.302743, lr = 0.010000
iter = 2274, accuracy (cur) = 0.940000 (all), 1.000000 (pos), 0.888889 (neg)
iter = 2274, accuracy (avg) = 0.870364 (all), 0.880522 (pos), 0.861380 (neg)
data reader: epoch = 0, batch = 2275 / 4040
iter = 2275, cls_loss (cur) = 0.277320, cls_loss (avg) = 0.302488, lr = 0.010000
iter = 2275, accuracy (cur) = 0.840000 (all), 0.857143 (pos), 0.827586 (neg)
iter = 2275, accuracy (avg) = 0.870061 (all), 0.880289 (pos), 0.861042 (neg)
data reader: epoch = 0, batch = 2276 / 4040
iter = 2276, cls_loss (cur) = 0.267054, cls_loss (avg) = 0.302134, lr = 0.010000
iter = 2276, accuracy (cur) = 0.940000 (all), 0.875000 (pos), 1.000000 (neg)
iter = 2276, accuracy (avg) = 0.870760 (all), 0.880236 (pos), 0.862432 (neg)
data reader: epoch = 0, batch = 2277 / 4040
iter = 2277, cls_loss (cur) = 0.394930, cls_loss (avg) = 0.303062, lr = 0.010000
iter = 2277, accuracy (cur) = 0.860000 (all), 0.833333 (pos), 0.884615 (neg)
iter = 2277, accuracy (avg) = 0.870652 (all), 0.879767 (pos), 0.862653 (neg)
data reader: epoch = 0, batch = 2278 / 4040
iter = 2278, cls_loss (cur) = 0.358520, cls_loss (avg) = 0.303617, lr = 0.010000
iter = 2278, accuracy (cur) = 0.800000 (all), 0.818182 (pos), 0.785714 (neg)
iter = 2278, accuracy (avg) = 0.869946 (all), 0.879151 (pos), 0.861884 (neg)
data reader: epoch = 0, batch = 2279 / 4040
iter = 2279, cls_loss (cur) = 0.196465, cls_loss (avg) = 0.302545, lr = 0.010000
iter = 2279, accuracy (cur) = 0.940000 (all), 0.916667 (pos), 0.961538 (neg)
iter = 2279, accuracy (avg) = 0.870646 (all), 0.879526 (pos), 0.862881 (neg)
data reader: epoch = 0, batch = 2280 / 4040
iter = 2280, cls_loss (cur) = 0.344078, cls_loss (avg) = 0.302960, lr = 0.010000
iter = 2280, accuracy (cur) = 0.820000 (all), 0.791667 (pos), 0.846154 (neg)
iter = 2280, accuracy (avg) = 0.870140 (all), 0.878647 (pos), 0.862713 (neg)
data reader: epoch = 0, batch = 2281 / 4040
iter = 2281, cls_loss (cur) = 0.356916, cls_loss (avg) = 0.303500, lr = 0.010000
iter = 2281, accuracy (cur) = 0.860000 (all), 0.838710 (pos), 0.894737 (neg)
iter = 2281, accuracy (avg) = 0.870039 (all), 0.878248 (pos), 0.863034 (neg)
data reader: epoch = 0, batch = 2282 / 4040
iter = 2282, cls_loss (cur) = 0.331292, cls_loss (avg) = 0.303778, lr = 0.010000
iter = 2282, accuracy (cur) = 0.860000 (all), 0.888889 (pos), 0.826087 (neg)
iter = 2282, accuracy (avg) = 0.869938 (all), 0.878354 (pos), 0.862664 (neg)
data reader: epoch = 0, batch = 2283 / 4040
iter = 2283, cls_loss (cur) = 0.364900, cls_loss (avg) = 0.304389, lr = 0.010000
iter = 2283, accuracy (cur) = 0.860000 (all), 0.843750 (pos), 0.888889 (neg)
iter = 2283, accuracy (avg) = 0.869839 (all), 0.878008 (pos), 0.862926 (neg)
data reader: epoch = 0, batch = 2284 / 4040
iter = 2284, cls_loss (cur) = 0.360601, cls_loss (avg) = 0.304951, lr = 0.010000
iter = 2284, accuracy (cur) = 0.840000 (all), 0.769231 (pos), 0.916667 (neg)
iter = 2284, accuracy (avg) = 0.869540 (all), 0.876921 (pos), 0.863464 (neg)
data reader: epoch = 0, batch = 2285 / 4040
iter = 2285, cls_loss (cur) = 0.216059, cls_loss (avg) = 0.304062, lr = 0.010000
iter = 2285, accuracy (cur) = 0.960000 (all), 0.956522 (pos), 0.962963 (neg)
iter = 2285, accuracy (avg) = 0.870445 (all), 0.877717 (pos), 0.864459 (neg)
data reader: epoch = 0, batch = 2286 / 4040
iter = 2286, cls_loss (cur) = 0.308209, cls_loss (avg) = 0.304104, lr = 0.010000
iter = 2286, accuracy (cur) = 0.860000 (all), 0.920000 (pos), 0.800000 (neg)
iter = 2286, accuracy (avg) = 0.870341 (all), 0.878140 (pos), 0.863814 (neg)
data reader: epoch = 0, batch = 2287 / 4040
iter = 2287, cls_loss (cur) = 0.350939, cls_loss (avg) = 0.304572, lr = 0.010000
iter = 2287, accuracy (cur) = 0.800000 (all), 0.875000 (pos), 0.730769 (neg)
iter = 2287, accuracy (avg) = 0.869637 (all), 0.878108 (pos), 0.862484 (neg)
data reader: epoch = 0, batch = 2288 / 4040
iter = 2288, cls_loss (cur) = 0.403921, cls_loss (avg) = 0.305566, lr = 0.010000
iter = 2288, accuracy (cur) = 0.760000 (all), 0.875000 (pos), 0.653846 (neg)
iter = 2288, accuracy (avg) = 0.868541 (all), 0.878077 (pos), 0.860397 (neg)
data reader: epoch = 0, batch = 2289 / 4040
iter = 2289, cls_loss (cur) = 0.397010, cls_loss (avg) = 0.306480, lr = 0.010000
iter = 2289, accuracy (cur) = 0.820000 (all), 0.888889 (pos), 0.781250 (neg)
iter = 2289, accuracy (avg) = 0.868055 (all), 0.878185 (pos), 0.859606 (neg)
data reader: epoch = 0, batch = 2290 / 4040
iter = 2290, cls_loss (cur) = 0.306234, cls_loss (avg) = 0.306478, lr = 0.010000
iter = 2290, accuracy (cur) = 0.840000 (all), 0.956522 (pos), 0.740741 (neg)
iter = 2290, accuracy (avg) = 0.867775 (all), 0.878969 (pos), 0.858417 (neg)
data reader: epoch = 0, batch = 2291 / 4040
iter = 2291, cls_loss (cur) = 0.450373, cls_loss (avg) = 0.307917, lr = 0.010000
iter = 2291, accuracy (cur) = 0.800000 (all), 0.800000 (pos), 0.800000 (neg)
iter = 2291, accuracy (avg) = 0.867097 (all), 0.878179 (pos), 0.857833 (neg)
data reader: epoch = 0, batch = 2292 / 4040
iter = 2292, cls_loss (cur) = 0.261367, cls_loss (avg) = 0.307451, lr = 0.010000
iter = 2292, accuracy (cur) = 0.880000 (all), 0.866667 (pos), 0.900000 (neg)
iter = 2292, accuracy (avg) = 0.867226 (all), 0.878064 (pos), 0.858255 (neg)
data reader: epoch = 0, batch = 2293 / 4040
iter = 2293, cls_loss (cur) = 0.295650, cls_loss (avg) = 0.307333, lr = 0.010000
iter = 2293, accuracy (cur) = 0.860000 (all), 0.750000 (pos), 1.000000 (neg)
iter = 2293, accuracy (avg) = 0.867154 (all), 0.876783 (pos), 0.859672 (neg)
data reader: epoch = 0, batch = 2294 / 4040
iter = 2294, cls_loss (cur) = 0.163328, cls_loss (avg) = 0.305893, lr = 0.010000
iter = 2294, accuracy (cur) = 0.980000 (all), 1.000000 (pos), 0.964286 (neg)
iter = 2294, accuracy (avg) = 0.868282 (all), 0.878015 (pos), 0.860718 (neg)
data reader: epoch = 0, batch = 2295 / 4040
iter = 2295, cls_loss (cur) = 0.196370, cls_loss (avg) = 0.304798, lr = 0.010000
iter = 2295, accuracy (cur) = 0.920000 (all), 1.000000 (pos), 0.862069 (neg)
iter = 2295, accuracy (avg) = 0.868799 (all), 0.879235 (pos), 0.860732 (neg)
data reader: epoch = 0, batch = 2296 / 4040
iter = 2296, cls_loss (cur) = 0.279055, cls_loss (avg) = 0.304540, lr = 0.010000
iter = 2296, accuracy (cur) = 0.900000 (all), 0.809524 (pos), 0.965517 (neg)
iter = 2296, accuracy (avg) = 0.869111 (all), 0.878538 (pos), 0.861780 (neg)
data reader: epoch = 0, batch = 2297 / 4040
iter = 2297, cls_loss (cur) = 0.300080, cls_loss (avg) = 0.304496, lr = 0.010000
iter = 2297, accuracy (cur) = 0.840000 (all), 0.842105 (pos), 0.838710 (neg)
iter = 2297, accuracy (avg) = 0.868820 (all), 0.878174 (pos), 0.861549 (neg)
data reader: epoch = 0, batch = 2298 / 4040
iter = 2298, cls_loss (cur) = 0.314208, cls_loss (avg) = 0.304593, lr = 0.010000
iter = 2298, accuracy (cur) = 0.860000 (all), 0.814815 (pos), 0.913043 (neg)
iter = 2298, accuracy (avg) = 0.868732 (all), 0.877540 (pos), 0.862064 (neg)
data reader: epoch = 0, batch = 2299 / 4040
iter = 2299, cls_loss (cur) = 0.306446, cls_loss (avg) = 0.304611, lr = 0.010000
iter = 2299, accuracy (cur) = 0.820000 (all), 0.826087 (pos), 0.814815 (neg)
iter = 2299, accuracy (avg) = 0.868245 (all), 0.877026 (pos), 0.861591 (neg)
data reader: epoch = 0, batch = 2300 / 4040
iter = 2300, cls_loss (cur) = 0.278774, cls_loss (avg) = 0.304353, lr = 0.010000
iter = 2300, accuracy (cur) = 0.840000 (all), 0.800000 (pos), 0.880000 (neg)
iter = 2300, accuracy (avg) = 0.867962 (all), 0.876255 (pos), 0.861776 (neg)
data reader: epoch = 0, batch = 2301 / 4040
iter = 2301, cls_loss (cur) = 0.282035, cls_loss (avg) = 0.304130, lr = 0.010000
iter = 2301, accuracy (cur) = 0.880000 (all), 0.791667 (pos), 0.961538 (neg)
iter = 2301, accuracy (avg) = 0.868083 (all), 0.875409 (pos), 0.862773 (neg)
data reader: epoch = 0, batch = 2302 / 4040
iter = 2302, cls_loss (cur) = 0.396285, cls_loss (avg) = 0.305051, lr = 0.010000
iter = 2302, accuracy (cur) = 0.820000 (all), 0.760000 (pos), 0.880000 (neg)
iter = 2302, accuracy (avg) = 0.867602 (all), 0.874255 (pos), 0.862945 (neg)
data reader: epoch = 0, batch = 2303 / 4040
iter = 2303, cls_loss (cur) = 0.275206, cls_loss (avg) = 0.304753, lr = 0.010000
iter = 2303, accuracy (cur) = 0.900000 (all), 0.903226 (pos), 0.894737 (neg)
iter = 2303, accuracy (avg) = 0.867926 (all), 0.874545 (pos), 0.863263 (neg)
data reader: epoch = 0, batch = 2304 / 4040
iter = 2304, cls_loss (cur) = 0.269508, cls_loss (avg) = 0.304400, lr = 0.010000
iter = 2304, accuracy (cur) = 0.920000 (all), 0.906250 (pos), 0.944444 (neg)
iter = 2304, accuracy (avg) = 0.868447 (all), 0.874862 (pos), 0.864075 (neg)
data reader: epoch = 0, batch = 2305 / 4040
iter = 2305, cls_loss (cur) = 0.330214, cls_loss (avg) = 0.304659, lr = 0.010000
iter = 2305, accuracy (cur) = 0.880000 (all), 1.000000 (pos), 0.785714 (neg)
iter = 2305, accuracy (avg) = 0.868562 (all), 0.876113 (pos), 0.863292 (neg)
data reader: epoch = 0, batch = 2306 / 4040
iter = 2306, cls_loss (cur) = 0.340938, cls_loss (avg) = 0.305021, lr = 0.010000
iter = 2306, accuracy (cur) = 0.820000 (all), 0.884615 (pos), 0.750000 (neg)
iter = 2306, accuracy (avg) = 0.868077 (all), 0.876198 (pos), 0.862159 (neg)
data reader: epoch = 0, batch = 2307 / 4040
iter = 2307, cls_loss (cur) = 0.287433, cls_loss (avg) = 0.304846, lr = 0.010000
iter = 2307, accuracy (cur) = 0.880000 (all), 0.888889 (pos), 0.875000 (neg)
iter = 2307, accuracy (avg) = 0.868196 (all), 0.876325 (pos), 0.862287 (neg)
data reader: epoch = 0, batch = 2308 / 4040
iter = 2308, cls_loss (cur) = 0.255194, cls_loss (avg) = 0.304349, lr = 0.010000
iter = 2308, accuracy (cur) = 0.900000 (all), 0.960000 (pos), 0.840000 (neg)
iter = 2308, accuracy (avg) = 0.868514 (all), 0.877162 (pos), 0.862064 (neg)
data reader: epoch = 0, batch = 2309 / 4040
iter = 2309, cls_loss (cur) = 0.226405, cls_loss (avg) = 0.303570, lr = 0.010000
iter = 2309, accuracy (cur) = 0.900000 (all), 0.961538 (pos), 0.833333 (neg)
iter = 2309, accuracy (avg) = 0.868829 (all), 0.878006 (pos), 0.861777 (neg)
data reader: epoch = 0, batch = 2310 / 4040
iter = 2310, cls_loss (cur) = 0.221367, cls_loss (avg) = 0.302748, lr = 0.010000
iter = 2310, accuracy (cur) = 0.920000 (all), 0.933333 (pos), 0.900000 (neg)
iter = 2310, accuracy (avg) = 0.869340 (all), 0.878559 (pos), 0.862159 (neg)
data reader: epoch = 0, batch = 2311 / 4040
iter = 2311, cls_loss (cur) = 0.430157, cls_loss (avg) = 0.304022, lr = 0.010000
iter = 2311, accuracy (cur) = 0.780000 (all), 0.869565 (pos), 0.703704 (neg)
iter = 2311, accuracy (avg) = 0.868447 (all), 0.878469 (pos), 0.860575 (neg)
data reader: epoch = 0, batch = 2312 / 4040
iter = 2312, cls_loss (cur) = 0.356230, cls_loss (avg) = 0.304544, lr = 0.010000
iter = 2312, accuracy (cur) = 0.800000 (all), 0.681818 (pos), 0.892857 (neg)
iter = 2312, accuracy (avg) = 0.867763 (all), 0.876503 (pos), 0.860897 (neg)
data reader: epoch = 0, batch = 2313 / 4040
iter = 2313, cls_loss (cur) = 0.222532, cls_loss (avg) = 0.303724, lr = 0.010000
iter = 2313, accuracy (cur) = 0.940000 (all), 0.863636 (pos), 1.000000 (neg)
iter = 2313, accuracy (avg) = 0.868485 (all), 0.876374 (pos), 0.862288 (neg)
data reader: epoch = 0, batch = 2314 / 4040
iter = 2314, cls_loss (cur) = 0.218691, cls_loss (avg) = 0.302873, lr = 0.010000
iter = 2314, accuracy (cur) = 0.940000 (all), 0.900000 (pos), 0.966667 (neg)
iter = 2314, accuracy (avg) = 0.869200 (all), 0.876610 (pos), 0.863332 (neg)
data reader: epoch = 0, batch = 2315 / 4040
iter = 2315, cls_loss (cur) = 0.296745, cls_loss (avg) = 0.302812, lr = 0.010000
iter = 2315, accuracy (cur) = 0.840000 (all), 0.809524 (pos), 0.862069 (neg)
iter = 2315, accuracy (avg) = 0.868908 (all), 0.875939 (pos), 0.863320 (neg)
data reader: epoch = 0, batch = 2316 / 4040
iter = 2316, cls_loss (cur) = 0.364064, cls_loss (avg) = 0.303424, lr = 0.010000
iter = 2316, accuracy (cur) = 0.860000 (all), 0.760000 (pos), 0.960000 (neg)
iter = 2316, accuracy (avg) = 0.868819 (all), 0.874780 (pos), 0.864286 (neg)
data reader: epoch = 0, batch = 2317 / 4040
iter = 2317, cls_loss (cur) = 0.212730, cls_loss (avg) = 0.302518, lr = 0.010000
iter = 2317, accuracy (cur) = 0.940000 (all), 0.909091 (pos), 0.964286 (neg)
iter = 2317, accuracy (avg) = 0.869531 (all), 0.875123 (pos), 0.865286 (neg)
data reader: epoch = 0, batch = 2318 / 4040
iter = 2318, cls_loss (cur) = 0.411602, cls_loss (avg) = 0.303608, lr = 0.010000
iter = 2318, accuracy (cur) = 0.760000 (all), 0.777778 (pos), 0.739130 (neg)
iter = 2318, accuracy (avg) = 0.868435 (all), 0.874150 (pos), 0.864025 (neg)
data reader: epoch = 0, batch = 2319 / 4040
iter = 2319, cls_loss (cur) = 0.321254, cls_loss (avg) = 0.303785, lr = 0.010000
iter = 2319, accuracy (cur) = 0.880000 (all), 0.821429 (pos), 0.954545 (neg)
iter = 2319, accuracy (avg) = 0.868551 (all), 0.873622 (pos), 0.864930 (neg)
data reader: epoch = 0, batch = 2320 / 4040
iter = 2320, cls_loss (cur) = 0.331258, cls_loss (avg) = 0.304060, lr = 0.010000
iter = 2320, accuracy (cur) = 0.820000 (all), 0.636364 (pos), 0.964286 (neg)
iter = 2320, accuracy (avg) = 0.868066 (all), 0.871250 (pos), 0.865924 (neg)
data reader: epoch = 0, batch = 2321 / 4040
iter = 2321, cls_loss (cur) = 0.416676, cls_loss (avg) = 0.305186, lr = 0.010000
iter = 2321, accuracy (cur) = 0.740000 (all), 0.766667 (pos), 0.700000 (neg)
iter = 2321, accuracy (avg) = 0.866785 (all), 0.870204 (pos), 0.864264 (neg)
data reader: epoch = 0, batch = 2322 / 4040
iter = 2322, cls_loss (cur) = 0.383869, cls_loss (avg) = 0.305973, lr = 0.010000
iter = 2322, accuracy (cur) = 0.800000 (all), 0.827586 (pos), 0.761905 (neg)
iter = 2322, accuracy (avg) = 0.866117 (all), 0.869778 (pos), 0.863241 (neg)
data reader: epoch = 0, batch = 2323 / 4040
iter = 2323, cls_loss (cur) = 0.235651, cls_loss (avg) = 0.305269, lr = 0.010000
iter = 2323, accuracy (cur) = 0.920000 (all), 1.000000 (pos), 0.851852 (neg)
iter = 2323, accuracy (avg) = 0.866656 (all), 0.871080 (pos), 0.863127 (neg)
data reader: epoch = 0, batch = 2324 / 4040
iter = 2324, cls_loss (cur) = 0.228895, cls_loss (avg) = 0.304506, lr = 0.010000
iter = 2324, accuracy (cur) = 0.920000 (all), 1.000000 (pos), 0.833333 (neg)
iter = 2324, accuracy (avg) = 0.867189 (all), 0.872369 (pos), 0.862829 (neg)
data reader: epoch = 0, batch = 2325 / 4040
iter = 2325, cls_loss (cur) = 0.255141, cls_loss (avg) = 0.304012, lr = 0.010000
iter = 2325, accuracy (cur) = 0.860000 (all), 0.888889 (pos), 0.826087 (neg)
iter = 2325, accuracy (avg) = 0.867117 (all), 0.872534 (pos), 0.862461 (neg)
data reader: epoch = 0, batch = 2326 / 4040
iter = 2326, cls_loss (cur) = 0.182894, cls_loss (avg) = 0.302801, lr = 0.010000
iter = 2326, accuracy (cur) = 0.940000 (all), 0.965517 (pos), 0.904762 (neg)
iter = 2326, accuracy (avg) = 0.867846 (all), 0.873464 (pos), 0.862884 (neg)
data reader: epoch = 0, batch = 2327 / 4040
iter = 2327, cls_loss (cur) = 0.426108, cls_loss (avg) = 0.304034, lr = 0.010000
iter = 2327, accuracy (cur) = 0.780000 (all), 0.800000 (pos), 0.771429 (neg)
iter = 2327, accuracy (avg) = 0.866968 (all), 0.872730 (pos), 0.861970 (neg)
data reader: epoch = 0, batch = 2328 / 4040
iter = 2328, cls_loss (cur) = 0.265875, cls_loss (avg) = 0.303652, lr = 0.010000
iter = 2328, accuracy (cur) = 0.880000 (all), 0.833333 (pos), 0.923077 (neg)
iter = 2328, accuracy (avg) = 0.867098 (all), 0.872336 (pos), 0.862581 (neg)
data reader: epoch = 0, batch = 2329 / 4040
iter = 2329, cls_loss (cur) = 0.271449, cls_loss (avg) = 0.303330, lr = 0.010000
iter = 2329, accuracy (cur) = 0.900000 (all), 0.870968 (pos), 0.947368 (neg)
iter = 2329, accuracy (avg) = 0.867427 (all), 0.872322 (pos), 0.863429 (neg)
data reader: epoch = 0, batch = 2330 / 4040
iter = 2330, cls_loss (cur) = 0.296358, cls_loss (avg) = 0.303261, lr = 0.010000
iter = 2330, accuracy (cur) = 0.860000 (all), 0.916667 (pos), 0.807692 (neg)
iter = 2330, accuracy (avg) = 0.867353 (all), 0.872765 (pos), 0.862871 (neg)
data reader: epoch = 0, batch = 2331 / 4040
iter = 2331, cls_loss (cur) = 0.385919, cls_loss (avg) = 0.304087, lr = 0.010000
iter = 2331, accuracy (cur) = 0.800000 (all), 0.900000 (pos), 0.733333 (neg)
iter = 2331, accuracy (avg) = 0.866679 (all), 0.873038 (pos), 0.861576 (neg)
data reader: epoch = 0, batch = 2332 / 4040
iter = 2332, cls_loss (cur) = 0.321475, cls_loss (avg) = 0.304261, lr = 0.010000
iter = 2332, accuracy (cur) = 0.860000 (all), 0.814815 (pos), 0.913043 (neg)
iter = 2332, accuracy (avg) = 0.866613 (all), 0.872456 (pos), 0.862091 (neg)
data reader: epoch = 0, batch = 2333 / 4040
iter = 2333, cls_loss (cur) = 0.312187, cls_loss (avg) = 0.304340, lr = 0.010000
iter = 2333, accuracy (cur) = 0.880000 (all), 0.962963 (pos), 0.782609 (neg)
iter = 2333, accuracy (avg) = 0.866746 (all), 0.873361 (pos), 0.861296 (neg)
data reader: epoch = 0, batch = 2334 / 4040
iter = 2334, cls_loss (cur) = 0.260954, cls_loss (avg) = 0.303906, lr = 0.010000
iter = 2334, accuracy (cur) = 0.900000 (all), 0.869565 (pos), 0.925926 (neg)
iter = 2334, accuracy (avg) = 0.867079 (all), 0.873323 (pos), 0.861942 (neg)
data reader: epoch = 0, batch = 2335 / 4040
iter = 2335, cls_loss (cur) = 0.322016, cls_loss (avg) = 0.304087, lr = 0.010000
iter = 2335, accuracy (cur) = 0.840000 (all), 0.772727 (pos), 0.892857 (neg)
iter = 2335, accuracy (avg) = 0.866808 (all), 0.872317 (pos), 0.862251 (neg)
data reader: epoch = 0, batch = 2336 / 4040
iter = 2336, cls_loss (cur) = 0.467974, cls_loss (avg) = 0.305726, lr = 0.010000
iter = 2336, accuracy (cur) = 0.780000 (all), 0.760000 (pos), 0.800000 (neg)
iter = 2336, accuracy (avg) = 0.865940 (all), 0.871194 (pos), 0.861629 (neg)
data reader: epoch = 0, batch = 2337 / 4040
iter = 2337, cls_loss (cur) = 0.167785, cls_loss (avg) = 0.304347, lr = 0.010000
iter = 2337, accuracy (cur) = 0.960000 (all), 0.909091 (pos), 1.000000 (neg)
iter = 2337, accuracy (avg) = 0.866881 (all), 0.871573 (pos), 0.863013 (neg)
data reader: epoch = 0, batch = 2338 / 4040
iter = 2338, cls_loss (cur) = 0.325061, cls_loss (avg) = 0.304554, lr = 0.010000
iter = 2338, accuracy (cur) = 0.840000 (all), 0.800000 (pos), 0.866667 (neg)
iter = 2338, accuracy (avg) = 0.866612 (all), 0.870857 (pos), 0.863049 (neg)
data reader: epoch = 0, batch = 2339 / 4040
iter = 2339, cls_loss (cur) = 0.354569, cls_loss (avg) = 0.305054, lr = 0.010000
iter = 2339, accuracy (cur) = 0.840000 (all), 0.809524 (pos), 0.862069 (neg)
iter = 2339, accuracy (avg) = 0.866346 (all), 0.870244 (pos), 0.863039 (neg)
data reader: epoch = 0, batch = 2340 / 4040
iter = 2340, cls_loss (cur) = 0.425997, cls_loss (avg) = 0.306264, lr = 0.010000
iter = 2340, accuracy (cur) = 0.780000 (all), 0.642857 (pos), 0.954545 (neg)
iter = 2340, accuracy (avg) = 0.865482 (all), 0.867970 (pos), 0.863954 (neg)
data reader: epoch = 0, batch = 2341 / 4040
iter = 2341, cls_loss (cur) = 0.273056, cls_loss (avg) = 0.305932, lr = 0.010000
iter = 2341, accuracy (cur) = 0.880000 (all), 0.826087 (pos), 0.925926 (neg)
iter = 2341, accuracy (avg) = 0.865628 (all), 0.867551 (pos), 0.864574 (neg)
data reader: epoch = 0, batch = 2342 / 4040
iter = 2342, cls_loss (cur) = 0.423643, cls_loss (avg) = 0.307109, lr = 0.010000
iter = 2342, accuracy (cur) = 0.760000 (all), 0.681818 (pos), 0.821429 (neg)
iter = 2342, accuracy (avg) = 0.864571 (all), 0.865693 (pos), 0.864143 (neg)
data reader: epoch = 0, batch = 2343 / 4040
iter = 2343, cls_loss (cur) = 0.247026, cls_loss (avg) = 0.306508, lr = 0.010000
iter = 2343, accuracy (cur) = 0.880000 (all), 0.866667 (pos), 0.900000 (neg)
iter = 2343, accuracy (avg) = 0.864726 (all), 0.865703 (pos), 0.864501 (neg)
data reader: epoch = 0, batch = 2344 / 4040
iter = 2344, cls_loss (cur) = 0.284873, cls_loss (avg) = 0.306291, lr = 0.010000
iter = 2344, accuracy (cur) = 0.880000 (all), 0.954545 (pos), 0.821429 (neg)
iter = 2344, accuracy (avg) = 0.864878 (all), 0.866592 (pos), 0.864071 (neg)
data reader: epoch = 0, batch = 2345 / 4040
iter = 2345, cls_loss (cur) = 0.210942, cls_loss (avg) = 0.305338,
View raw

(Sorry about that, but we can’t show files that are this big right now.)

View raw

(Sorry about that, but we can’t show files that are this big right now.)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment