Skip to content

Instantly share code, notes, and snippets.

@ronghanghu
Last active August 29, 2015 14:27
Show Gist options
  • Save ronghanghu/d66d63882c25b31b6148 to your computer and use it in GitHub Desktop.
Save ronghanghu/d66d63882c25b31b6148 to your computer and use it in GitHub Desktop.
Multi-GPU Training Logs
I0812 15:00:42.248405 8934 caffe.cpp:160] Using GPUs 0, 1, 2
I0812 15:00:42.422600 8934 solver.cpp:38] Initializing solver from parameters:
test_iter: 100
test_interval: 500
base_lr: 0.01
display: 100
max_iter: 10000
lr_policy: "inv"
gamma: 0.0001
power: 0.75
momentum: 0.9
weight_decay: 0.0005
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
solver_mode: GPU
device_id: 0
net: "examples/mnist/lenet_train_test.prototxt"
I0812 15:00:42.422646 8934 solver.cpp:80] Creating training net from net file: examples/mnist/lenet_train_test.prototxt
I0812 15:00:42.422924 8934 net.cpp:339] The NetState phase (0) differed from the phase (1) specified by a rule in layer mnist
I0812 15:00:42.422946 8934 net.cpp:339] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy
I0812 15:00:42.423032 8934 net.cpp:50] Initializing net from parameters:
name: "LeNet"
state {
phase: TRAIN
}
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
scale: 0.00390625
}
data_param {
source: "examples/mnist/mnist_train_lmdb"
batch_size: 64
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool2"
top: "ip1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
top: "loss"
}
I0812 15:00:42.423115 8934 layer_factory.hpp:75] Creating layer mnist
I0812 15:00:42.423537 8934 net.cpp:110] Creating Layer mnist
I0812 15:00:42.423578 8934 net.cpp:432] mnist -> data
I0812 15:00:42.423631 8934 net.cpp:432] mnist -> label
I0812 15:00:42.424365 8939 db_lmdb.cpp:22] Opened lmdb examples/mnist/mnist_train_lmdb
I0812 15:00:42.424435 8934 data_layer.cpp:44] output data size: 64,1,28,28
I0812 15:00:42.429911 8934 net.cpp:155] Setting up mnist
I0812 15:00:42.429991 8934 net.cpp:163] Top shape: 64 1 28 28 (50176)
I0812 15:00:42.430022 8934 net.cpp:163] Top shape: 64 (64)
I0812 15:00:42.430053 8934 layer_factory.hpp:75] Creating layer conv1
I0812 15:00:42.430095 8934 net.cpp:110] Creating Layer conv1
I0812 15:00:42.430129 8934 net.cpp:476] conv1 <- data
I0812 15:00:42.430166 8934 net.cpp:432] conv1 -> conv1
I0812 15:00:42.430785 8934 net.cpp:155] Setting up conv1
I0812 15:00:42.430821 8934 net.cpp:163] Top shape: 64 20 24 24 (737280)
I0812 15:00:42.430860 8934 layer_factory.hpp:75] Creating layer pool1
I0812 15:00:42.430891 8934 net.cpp:110] Creating Layer pool1
I0812 15:00:42.430914 8934 net.cpp:476] pool1 <- conv1
I0812 15:00:42.430941 8934 net.cpp:432] pool1 -> pool1
I0812 15:00:42.430985 8934 net.cpp:155] Setting up pool1
I0812 15:00:42.431013 8934 net.cpp:163] Top shape: 64 20 12 12 (184320)
I0812 15:00:42.431107 8940 blocking_queue.cpp:50] Waiting for data
I0812 15:00:42.431123 8934 layer_factory.hpp:75] Creating layer conv2
I0812 15:00:42.431198 8934 net.cpp:110] Creating Layer conv2
I0812 15:00:42.431206 8934 net.cpp:476] conv2 <- pool1
I0812 15:00:42.431219 8934 net.cpp:432] conv2 -> conv2
I0812 15:00:42.431434 8934 net.cpp:155] Setting up conv2
I0812 15:00:42.431447 8934 net.cpp:163] Top shape: 64 50 8 8 (204800)
I0812 15:00:42.431463 8934 layer_factory.hpp:75] Creating layer pool2
I0812 15:00:42.431473 8934 net.cpp:110] Creating Layer pool2
I0812 15:00:42.431480 8934 net.cpp:476] pool2 <- conv2
I0812 15:00:42.431489 8934 net.cpp:432] pool2 -> pool2
I0812 15:00:42.431501 8934 net.cpp:155] Setting up pool2
I0812 15:00:42.431510 8934 net.cpp:163] Top shape: 64 50 4 4 (51200)
I0812 15:00:42.431517 8934 layer_factory.hpp:75] Creating layer ip1
I0812 15:00:42.431534 8934 net.cpp:110] Creating Layer ip1
I0812 15:00:42.431540 8934 net.cpp:476] ip1 <- pool2
I0812 15:00:42.431553 8934 net.cpp:432] ip1 -> ip1
I0812 15:00:42.434183 8934 net.cpp:155] Setting up ip1
I0812 15:00:42.434196 8934 net.cpp:163] Top shape: 64 500 (32000)
I0812 15:00:42.434211 8934 layer_factory.hpp:75] Creating layer relu1
I0812 15:00:42.434221 8934 net.cpp:110] Creating Layer relu1
I0812 15:00:42.434228 8934 net.cpp:476] relu1 <- ip1
I0812 15:00:42.434237 8934 net.cpp:419] relu1 -> ip1 (in-place)
I0812 15:00:42.434253 8934 net.cpp:155] Setting up relu1
I0812 15:00:42.434262 8934 net.cpp:163] Top shape: 64 500 (32000)
I0812 15:00:42.434268 8934 layer_factory.hpp:75] Creating layer ip2
I0812 15:00:42.434278 8934 net.cpp:110] Creating Layer ip2
I0812 15:00:42.434285 8934 net.cpp:476] ip2 <- ip1
I0812 15:00:42.434298 8934 net.cpp:432] ip2 -> ip2
I0812 15:00:42.434734 8934 net.cpp:155] Setting up ip2
I0812 15:00:42.434746 8934 net.cpp:163] Top shape: 64 10 (640)
I0812 15:00:42.434757 8934 layer_factory.hpp:75] Creating layer loss
I0812 15:00:42.434772 8934 net.cpp:110] Creating Layer loss
I0812 15:00:42.434778 8934 net.cpp:476] loss <- ip2
I0812 15:00:42.434787 8934 net.cpp:476] loss <- label
I0812 15:00:42.434800 8934 net.cpp:432] loss -> loss
I0812 15:00:42.434823 8934 layer_factory.hpp:75] Creating layer loss
I0812 15:00:42.434881 8934 net.cpp:155] Setting up loss
I0812 15:00:42.434891 8934 net.cpp:163] Top shape: (1)
I0812 15:00:42.434898 8934 net.cpp:168] with loss weight 1
I0812 15:00:42.434924 8934 net.cpp:236] loss needs backward computation.
I0812 15:00:42.434932 8934 net.cpp:236] ip2 needs backward computation.
I0812 15:00:42.434939 8934 net.cpp:236] relu1 needs backward computation.
I0812 15:00:42.434945 8934 net.cpp:236] ip1 needs backward computation.
I0812 15:00:42.434952 8934 net.cpp:236] pool2 needs backward computation.
I0812 15:00:42.434958 8934 net.cpp:236] conv2 needs backward computation.
I0812 15:00:42.434965 8934 net.cpp:236] pool1 needs backward computation.
I0812 15:00:42.434973 8934 net.cpp:236] conv1 needs backward computation.
I0812 15:00:42.434978 8934 net.cpp:240] mnist does not need backward computation.
I0812 15:00:42.434984 8934 net.cpp:283] This network produces output loss
I0812 15:00:42.435000 8934 net.cpp:297] Network initialization done.
I0812 15:00:42.435006 8934 net.cpp:298] Memory required for data: 5169924
I0812 15:00:42.435240 8934 solver.cpp:170] Creating test net (#0) specified by net file: examples/mnist/lenet_train_test.prototxt
I0812 15:00:42.435277 8934 net.cpp:339] The NetState phase (1) differed from the phase (0) specified by a rule in layer mnist
I0812 15:00:42.435355 8934 net.cpp:50] Initializing net from parameters:
name: "LeNet"
state {
phase: TEST
}
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
scale: 0.00390625
}
data_param {
source: "examples/mnist/mnist_test_lmdb"
batch_size: 100
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool2"
top: "ip1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "ip2"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
top: "loss"
}
I0812 15:00:42.435459 8934 layer_factory.hpp:75] Creating layer mnist
I0812 15:00:42.435576 8934 net.cpp:110] Creating Layer mnist
I0812 15:00:42.435588 8934 net.cpp:432] mnist -> data
I0812 15:00:42.435600 8934 net.cpp:432] mnist -> label
I0812 15:00:42.436486 8941 db_lmdb.cpp:22] Opened lmdb examples/mnist/mnist_test_lmdb
I0812 15:00:42.436527 8934 data_layer.cpp:44] output data size: 100,1,28,28
I0812 15:00:42.437571 8934 net.cpp:155] Setting up mnist
I0812 15:00:42.437583 8934 net.cpp:163] Top shape: 100 1 28 28 (78400)
I0812 15:00:42.437592 8934 net.cpp:163] Top shape: 100 (100)
I0812 15:00:42.437599 8934 layer_factory.hpp:75] Creating layer label_mnist_1_split
I0812 15:00:42.437614 8934 net.cpp:110] Creating Layer label_mnist_1_split
I0812 15:00:42.437623 8934 net.cpp:476] label_mnist_1_split <- label
I0812 15:00:42.437631 8934 net.cpp:432] label_mnist_1_split -> label_mnist_1_split_0
I0812 15:00:42.437643 8934 net.cpp:432] label_mnist_1_split -> label_mnist_1_split_1
I0812 15:00:42.437655 8934 net.cpp:155] Setting up label_mnist_1_split
I0812 15:00:42.437664 8934 net.cpp:163] Top shape: 100 (100)
I0812 15:00:42.437672 8934 net.cpp:163] Top shape: 100 (100)
I0812 15:00:42.437682 8934 layer_factory.hpp:75] Creating layer conv1
I0812 15:00:42.437696 8934 net.cpp:110] Creating Layer conv1
I0812 15:00:42.437702 8934 net.cpp:476] conv1 <- data
I0812 15:00:42.437711 8934 net.cpp:432] conv1 -> conv1
I0812 15:00:42.437780 8934 net.cpp:155] Setting up conv1
I0812 15:00:42.437790 8934 net.cpp:163] Top shape: 100 20 24 24 (1152000)
I0812 15:00:42.437804 8934 layer_factory.hpp:75] Creating layer pool1
I0812 15:00:42.437813 8934 net.cpp:110] Creating Layer pool1
I0812 15:00:42.437820 8934 net.cpp:476] pool1 <- conv1
I0812 15:00:42.437830 8934 net.cpp:432] pool1 -> pool1
I0812 15:00:42.437842 8934 net.cpp:155] Setting up pool1
I0812 15:00:42.437851 8934 net.cpp:163] Top shape: 100 20 12 12 (288000)
I0812 15:00:42.437857 8934 layer_factory.hpp:75] Creating layer conv2
I0812 15:00:42.437870 8934 net.cpp:110] Creating Layer conv2
I0812 15:00:42.437875 8934 net.cpp:476] conv2 <- pool1
I0812 15:00:42.437887 8934 net.cpp:432] conv2 -> conv2
I0812 15:00:42.438129 8934 net.cpp:155] Setting up conv2
I0812 15:00:42.438139 8934 net.cpp:163] Top shape: 100 50 8 8 (320000)
I0812 15:00:42.438151 8934 layer_factory.hpp:75] Creating layer pool2
I0812 15:00:42.438161 8934 net.cpp:110] Creating Layer pool2
I0812 15:00:42.438169 8934 net.cpp:476] pool2 <- conv2
I0812 15:00:42.438189 8934 net.cpp:432] pool2 -> pool2
I0812 15:00:42.438199 8934 net.cpp:155] Setting up pool2
I0812 15:00:42.438208 8934 net.cpp:163] Top shape: 100 50 4 4 (80000)
I0812 15:00:42.438213 8934 layer_factory.hpp:75] Creating layer ip1
I0812 15:00:42.438222 8934 net.cpp:110] Creating Layer ip1
I0812 15:00:42.438228 8934 net.cpp:476] ip1 <- pool2
I0812 15:00:42.438241 8934 net.cpp:432] ip1 -> ip1
I0812 15:00:42.442422 8934 net.cpp:155] Setting up ip1
I0812 15:00:42.442476 8934 net.cpp:163] Top shape: 100 500 (50000)
I0812 15:00:42.442512 8934 layer_factory.hpp:75] Creating layer relu1
I0812 15:00:42.442589 8934 net.cpp:110] Creating Layer relu1
I0812 15:00:42.442616 8934 net.cpp:476] relu1 <- ip1
I0812 15:00:42.442647 8934 net.cpp:419] relu1 -> ip1 (in-place)
I0812 15:00:42.442708 8934 net.cpp:155] Setting up relu1
I0812 15:00:42.442756 8934 net.cpp:163] Top shape: 100 500 (50000)
I0812 15:00:42.442824 8934 layer_factory.hpp:75] Creating layer ip2
I0812 15:00:42.442878 8934 net.cpp:110] Creating Layer ip2
I0812 15:00:42.442901 8934 net.cpp:476] ip2 <- ip1
I0812 15:00:42.442931 8934 net.cpp:432] ip2 -> ip2
I0812 15:00:42.443135 8934 net.cpp:155] Setting up ip2
I0812 15:00:42.443166 8934 net.cpp:163] Top shape: 100 10 (1000)
I0812 15:00:42.443194 8934 layer_factory.hpp:75] Creating layer ip2_ip2_0_split
I0812 15:00:42.443305 8934 net.cpp:110] Creating Layer ip2_ip2_0_split
I0812 15:00:42.443356 8934 net.cpp:476] ip2_ip2_0_split <- ip2
I0812 15:00:42.443382 8934 net.cpp:432] ip2_ip2_0_split -> ip2_ip2_0_split_0
I0812 15:00:42.443433 8934 net.cpp:432] ip2_ip2_0_split -> ip2_ip2_0_split_1
I0812 15:00:42.443462 8934 net.cpp:155] Setting up ip2_ip2_0_split
I0812 15:00:42.443511 8934 net.cpp:163] Top shape: 100 10 (1000)
I0812 15:00:42.443538 8934 net.cpp:163] Top shape: 100 10 (1000)
I0812 15:00:42.443562 8934 layer_factory.hpp:75] Creating layer accuracy
I0812 15:00:42.443616 8934 net.cpp:110] Creating Layer accuracy
I0812 15:00:42.443640 8934 net.cpp:476] accuracy <- ip2_ip2_0_split_0
I0812 15:00:42.443689 8934 net.cpp:476] accuracy <- label_mnist_1_split_0
I0812 15:00:42.443716 8934 net.cpp:432] accuracy -> accuracy
I0812 15:00:42.443770 8934 net.cpp:155] Setting up accuracy
I0812 15:00:42.443799 8934 net.cpp:163] Top shape: (1)
I0812 15:00:42.443821 8934 layer_factory.hpp:75] Creating layer loss
I0812 15:00:42.443850 8934 net.cpp:110] Creating Layer loss
I0812 15:00:42.443874 8934 net.cpp:476] loss <- ip2_ip2_0_split_1
I0812 15:00:42.443900 8934 net.cpp:476] loss <- label_mnist_1_split_1
I0812 15:00:42.443928 8934 net.cpp:432] loss -> loss
I0812 15:00:42.443994 8934 layer_factory.hpp:75] Creating layer loss
I0812 15:00:42.444056 8934 net.cpp:155] Setting up loss
I0812 15:00:42.444066 8934 net.cpp:163] Top shape: (1)
I0812 15:00:42.444072 8934 net.cpp:168] with loss weight 1
I0812 15:00:42.444085 8934 net.cpp:236] loss needs backward computation.
I0812 15:00:42.444093 8934 net.cpp:240] accuracy does not need backward computation.
I0812 15:00:42.444100 8934 net.cpp:236] ip2_ip2_0_split needs backward computation.
I0812 15:00:42.444108 8934 net.cpp:236] ip2 needs backward computation.
I0812 15:00:42.444113 8934 net.cpp:236] relu1 needs backward computation.
I0812 15:00:42.444119 8934 net.cpp:236] ip1 needs backward computation.
I0812 15:00:42.444125 8934 net.cpp:236] pool2 needs backward computation.
I0812 15:00:42.444133 8934 net.cpp:236] conv2 needs backward computation.
I0812 15:00:42.444139 8934 net.cpp:236] pool1 needs backward computation.
I0812 15:00:42.444145 8934 net.cpp:236] conv1 needs backward computation.
I0812 15:00:42.444152 8934 net.cpp:240] label_mnist_1_split does not need backward computation.
I0812 15:00:42.444162 8934 net.cpp:240] mnist does not need backward computation.
I0812 15:00:42.444169 8934 net.cpp:283] This network produces output accuracy
I0812 15:00:42.444175 8934 net.cpp:283] This network produces output loss
I0812 15:00:42.444226 8934 net.cpp:297] Network initialization done.
I0812 15:00:42.444244 8934 net.cpp:298] Memory required for data: 8086808
I0812 15:00:42.444296 8934 solver.cpp:49] Solver scaffolding done.
I0812 15:00:42.449823 8934 parallel.cpp:392] GPUs pairs 1:2, 0:1
I0812 15:00:42.683681 8934 data_layer.cpp:44] output data size: 64,1,28,28
I0812 15:00:42.713794 8934 parallel.cpp:235] GPU 1 does not have p2p access to GPU 0
I0812 15:00:42.901604 8934 data_layer.cpp:44] output data size: 64,1,28,28
I0812 15:00:42.927168 8934 parallel.cpp:420] Starting Optimization
I0812 15:00:42.927347 8934 solver.cpp:265] Solving LeNet
I0812 15:00:42.927376 8934 solver.cpp:266] Learning Rate Policy: inv
I0812 15:00:42.927517 8934 solver.cpp:310] Iteration 0, Testing net (#0)
I0812 15:00:44.810916 8934 solver.cpp:359] Test net output #0: accuracy = 0.1171
I0812 15:00:44.810952 8934 solver.cpp:359] Test net output #1: loss = 2.39372 (* 1 = 2.39372 loss)
I0812 15:00:44.841032 8934 solver.cpp:222] Iteration 0, loss = 2.34509
I0812 15:00:44.841334 8934 solver.cpp:238] Train net output #0: loss = 2.34509 (* 1 = 2.34509 loss)
I0812 15:00:44.935735 8934 solver.cpp:517] Iteration 0, lr = 0.01
I0812 15:00:53.956465 8934 solver.cpp:222] Iteration 100, loss = 0.259395
I0812 15:00:53.956553 8934 solver.cpp:238] Train net output #0: loss = 0.259395 (* 1 = 0.259395 loss)
I0812 15:00:54.048570 8934 solver.cpp:517] Iteration 100, lr = 0.00992565
I0812 15:01:02.986958 8934 solver.cpp:222] Iteration 200, loss = 0.220586
I0812 15:01:02.996296 8934 solver.cpp:238] Train net output #0: loss = 0.220586 (* 1 = 0.220586 loss)
I0812 15:01:03.059922 8934 solver.cpp:517] Iteration 200, lr = 0.00985258
I0812 15:01:11.830909 8934 solver.cpp:222] Iteration 300, loss = 0.113429
I0812 15:01:11.830996 8934 solver.cpp:238] Train net output #0: loss = 0.113429 (* 1 = 0.113429 loss)
I0812 15:01:11.901401 8934 solver.cpp:517] Iteration 300, lr = 0.00978075
I0812 15:01:20.998740 8934 solver.cpp:222] Iteration 400, loss = 0.120896
I0812 15:01:20.998869 8934 solver.cpp:238] Train net output #0: loss = 0.120896 (* 1 = 0.120896 loss)
I0812 15:01:21.048179 8934 solver.cpp:517] Iteration 400, lr = 0.00971013
I0812 15:01:30.206492 8934 solver.cpp:310] Iteration 500, Testing net (#0)
I0812 15:01:32.418656 8934 solver.cpp:359] Test net output #0: accuracy = 0.9734
I0812 15:01:32.418691 8934 solver.cpp:359] Test net output #1: loss = 0.0829207 (* 1 = 0.0829207 loss)
I0812 15:01:32.430511 8934 solver.cpp:222] Iteration 500, loss = 0.0747729
I0812 15:01:32.430588 8934 solver.cpp:238] Train net output #0: loss = 0.074773 (* 1 = 0.074773 loss)
I0812 15:01:32.521658 8934 solver.cpp:517] Iteration 500, lr = 0.00964069
I0812 15:01:41.482954 8934 solver.cpp:222] Iteration 600, loss = 0.0415598
I0812 15:01:41.482987 8934 solver.cpp:238] Train net output #0: loss = 0.0415598 (* 1 = 0.0415598 loss)
I0812 15:01:41.521524 8934 solver.cpp:517] Iteration 600, lr = 0.0095724
I0812 15:01:50.894820 8934 solver.cpp:222] Iteration 700, loss = 0.0332583
I0812 15:01:50.895135 8934 solver.cpp:238] Train net output #0: loss = 0.0332583 (* 1 = 0.0332583 loss)
I0812 15:01:50.970991 8934 solver.cpp:517] Iteration 700, lr = 0.00950522
I0812 15:01:59.864426 8934 solver.cpp:222] Iteration 800, loss = 0.155629
I0812 15:01:59.864567 8934 solver.cpp:238] Train net output #0: loss = 0.155629 (* 1 = 0.155629 loss)
I0812 15:01:59.948451 8934 solver.cpp:517] Iteration 800, lr = 0.00943913
I0812 15:02:08.614575 8934 solver.cpp:222] Iteration 900, loss = 0.319555
I0812 15:02:08.614662 8934 solver.cpp:238] Train net output #0: loss = 0.319555 (* 1 = 0.319555 loss)
I0812 15:02:08.665554 8934 solver.cpp:517] Iteration 900, lr = 0.00937411
I0812 15:02:17.566509 8934 solver.cpp:310] Iteration 1000, Testing net (#0)
I0812 15:02:19.273252 8934 solver.cpp:359] Test net output #0: accuracy = 0.9828
I0812 15:02:19.273288 8934 solver.cpp:359] Test net output #1: loss = 0.0536248 (* 1 = 0.0536248 loss)
I0812 15:02:19.303689 8934 solver.cpp:222] Iteration 1000, loss = 0.0737256
I0812 15:02:19.303783 8934 solver.cpp:238] Train net output #0: loss = 0.0737256 (* 1 = 0.0737256 loss)
I0812 15:02:19.373178 8934 solver.cpp:517] Iteration 1000, lr = 0.00931012
I0812 15:02:28.194737 8934 solver.cpp:222] Iteration 1100, loss = 0.0279671
I0812 15:02:28.194826 8934 solver.cpp:238] Train net output #0: loss = 0.0279672 (* 1 = 0.0279672 loss)
I0812 15:02:28.288879 8934 solver.cpp:517] Iteration 1100, lr = 0.00924715
I0812 15:02:36.924510 8934 solver.cpp:222] Iteration 1200, loss = 0.0784045
I0812 15:02:36.924669 8934 solver.cpp:238] Train net output #0: loss = 0.0784045 (* 1 = 0.0784045 loss)
I0812 15:02:36.992279 8934 solver.cpp:517] Iteration 1200, lr = 0.00918515
I0812 15:02:45.303750 8934 solver.cpp:222] Iteration 1300, loss = 0.0156678
I0812 15:02:45.303838 8934 solver.cpp:238] Train net output #0: loss = 0.0156679 (* 1 = 0.0156679 loss)
I0812 15:02:45.361748 8934 solver.cpp:517] Iteration 1300, lr = 0.00912412
I0812 15:02:54.148757 8934 solver.cpp:222] Iteration 1400, loss = 0.0158745
I0812 15:02:54.149096 8934 solver.cpp:238] Train net output #0: loss = 0.0158746 (* 1 = 0.0158746 loss)
I0812 15:02:54.246583 8934 solver.cpp:517] Iteration 1400, lr = 0.00906403
I0812 15:03:03.047662 8934 solver.cpp:310] Iteration 1500, Testing net (#0)
I0812 15:03:04.570204 8934 solver.cpp:359] Test net output #0: accuracy = 0.9851
I0812 15:03:04.570343 8934 solver.cpp:359] Test net output #1: loss = 0.0448866 (* 1 = 0.0448866 loss)
I0812 15:03:04.599284 8934 solver.cpp:222] Iteration 1500, loss = 0.022271
I0812 15:03:04.599364 8934 solver.cpp:238] Train net output #0: loss = 0.0222711 (* 1 = 0.0222711 loss)
I0812 15:03:04.652730 8934 solver.cpp:517] Iteration 1500, lr = 0.00900485
I0812 15:03:13.586694 8934 solver.cpp:222] Iteration 1600, loss = 0.0805327
I0812 15:03:13.586817 8934 solver.cpp:238] Train net output #0: loss = 0.0805328 (* 1 = 0.0805328 loss)
I0812 15:03:13.669781 8934 solver.cpp:517] Iteration 1600, lr = 0.00894657
I0812 15:03:22.720105 8934 solver.cpp:222] Iteration 1700, loss = 0.0096161
I0812 15:03:22.720190 8934 solver.cpp:238] Train net output #0: loss = 0.00961622 (* 1 = 0.00961622 loss)
I0812 15:03:22.766216 8934 solver.cpp:517] Iteration 1700, lr = 0.00888916
I0812 15:03:31.639554 8934 solver.cpp:222] Iteration 1800, loss = 0.0161298
I0812 15:03:31.639643 8934 solver.cpp:238] Train net output #0: loss = 0.0161299 (* 1 = 0.0161299 loss)
I0812 15:03:31.682180 8934 solver.cpp:517] Iteration 1800, lr = 0.0088326
I0812 15:03:40.716598 8934 solver.cpp:222] Iteration 1900, loss = 0.0170069
I0812 15:03:40.716635 8934 solver.cpp:238] Train net output #0: loss = 0.017007 (* 1 = 0.017007 loss)
I0812 15:03:40.811696 8934 solver.cpp:517] Iteration 1900, lr = 0.00877687
I0812 15:03:49.782884 8934 solver.cpp:310] Iteration 2000, Testing net (#0)
I0812 15:03:51.654955 8934 solver.cpp:359] Test net output #0: accuracy = 0.9884
I0812 15:03:51.654990 8934 solver.cpp:359] Test net output #1: loss = 0.0382701 (* 1 = 0.0382701 loss)
I0812 15:03:51.666371 8934 solver.cpp:222] Iteration 2000, loss = 0.0166309
I0812 15:03:51.666401 8934 solver.cpp:238] Train net output #0: loss = 0.016631 (* 1 = 0.016631 loss)
I0812 15:03:51.728466 8934 solver.cpp:517] Iteration 2000, lr = 0.00872196
I0812 15:04:00.866591 8934 solver.cpp:222] Iteration 2100, loss = 0.0416569
I0812 15:04:00.866627 8934 solver.cpp:238] Train net output #0: loss = 0.041657 (* 1 = 0.041657 loss)
I0812 15:04:00.943202 8934 solver.cpp:517] Iteration 2100, lr = 0.00866784
I0812 15:04:09.844360 8934 solver.cpp:222] Iteration 2200, loss = 0.00415214
I0812 15:04:09.844445 8934 solver.cpp:238] Train net output #0: loss = 0.00415225 (* 1 = 0.00415225 loss)
I0812 15:04:09.907941 8934 solver.cpp:517] Iteration 2200, lr = 0.0086145
I0812 15:04:18.904716 8934 solver.cpp:222] Iteration 2300, loss = 0.00498838
I0812 15:04:18.904753 8934 solver.cpp:238] Train net output #0: loss = 0.00498849 (* 1 = 0.00498849 loss)
I0812 15:04:18.929219 8934 solver.cpp:517] Iteration 2300, lr = 0.00856192
I0812 15:04:28.018985 8934 solver.cpp:222] Iteration 2400, loss = 0.0357902
I0812 15:04:28.019296 8934 solver.cpp:238] Train net output #0: loss = 0.0357903 (* 1 = 0.0357903 loss)
I0812 15:04:28.066203 8934 solver.cpp:517] Iteration 2400, lr = 0.00851008
I0812 15:04:37.121809 8934 solver.cpp:310] Iteration 2500, Testing net (#0)
I0812 15:04:39.005237 8934 solver.cpp:359] Test net output #0: accuracy = 0.9871
I0812 15:04:39.005322 8934 solver.cpp:359] Test net output #1: loss = 0.0386158 (* 1 = 0.0386158 loss)
I0812 15:04:39.036412 8934 solver.cpp:222] Iteration 2500, loss = 0.0279232
I0812 15:04:39.036489 8934 solver.cpp:238] Train net output #0: loss = 0.0279233 (* 1 = 0.0279233 loss)
I0812 15:04:39.127079 8934 solver.cpp:517] Iteration 2500, lr = 0.00845897
I0812 15:04:48.024590 8934 solver.cpp:222] Iteration 2600, loss = 0.0129841
I0812 15:04:48.024677 8934 solver.cpp:238] Train net output #0: loss = 0.0129842 (* 1 = 0.0129842 loss)
I0812 15:04:48.087580 8934 solver.cpp:517] Iteration 2600, lr = 0.00840857
I0812 15:04:57.082221 8934 solver.cpp:222] Iteration 2700, loss = 0.0233948
I0812 15:04:57.082298 8934 solver.cpp:238] Train net output #0: loss = 0.0233949 (* 1 = 0.0233949 loss)
I0812 15:04:57.195091 8934 solver.cpp:517] Iteration 2700, lr = 0.00835886
I0812 15:05:06.519223 8934 solver.cpp:222] Iteration 2800, loss = 0.0220501
I0812 15:05:06.519353 8934 solver.cpp:238] Train net output #0: loss = 0.0220502 (* 1 = 0.0220502 loss)
I0812 15:05:06.542099 8934 solver.cpp:517] Iteration 2800, lr = 0.00830984
I0812 15:05:15.537714 8934 solver.cpp:222] Iteration 2900, loss = 0.020445
I0812 15:05:15.537787 8934 solver.cpp:238] Train net output #0: loss = 0.0204451 (* 1 = 0.0204451 loss)
I0812 15:05:15.594329 8934 solver.cpp:517] Iteration 2900, lr = 0.00826148
I0812 15:05:24.883646 8934 solver.cpp:310] Iteration 3000, Testing net (#0)
I0812 15:05:26.701876 8934 solver.cpp:359] Test net output #0: accuracy = 0.9886
I0812 15:05:26.701910 8934 solver.cpp:359] Test net output #1: loss = 0.032208 (* 1 = 0.032208 loss)
I0812 15:05:26.730984 8934 solver.cpp:222] Iteration 3000, loss = 0.0241014
I0812 15:05:26.731063 8934 solver.cpp:238] Train net output #0: loss = 0.0241016 (* 1 = 0.0241016 loss)
I0812 15:05:26.783557 8934 solver.cpp:517] Iteration 3000, lr = 0.00821377
I0812 15:05:35.732266 8934 solver.cpp:222] Iteration 3100, loss = 0.0201092
I0812 15:05:35.732301 8934 solver.cpp:238] Train net output #0: loss = 0.0201094 (* 1 = 0.0201094 loss)
I0812 15:05:35.808251 8934 solver.cpp:517] Iteration 3100, lr = 0.0081667
I0812 15:05:44.867094 8934 solver.cpp:222] Iteration 3200, loss = 0.00797207
I0812 15:05:44.867220 8934 solver.cpp:238] Train net output #0: loss = 0.00797222 (* 1 = 0.00797222 loss)
I0812 15:05:44.948299 8934 solver.cpp:517] Iteration 3200, lr = 0.00812025
I0812 15:05:53.949679 8934 solver.cpp:222] Iteration 3300, loss = 0.012678
I0812 15:05:53.949769 8934 solver.cpp:238] Train net output #0: loss = 0.0126782 (* 1 = 0.0126782 loss)
I0812 15:05:54.064254 8934 solver.cpp:517] Iteration 3300, lr = 0.00807442
I0812 15:06:03.066782 8934 solver.cpp:222] Iteration 3400, loss = 0.0928055
I0812 15:06:03.066819 8934 solver.cpp:238] Train net output #0: loss = 0.0928057 (* 1 = 0.0928057 loss)
I0812 15:06:03.136878 8934 solver.cpp:517] Iteration 3400, lr = 0.00802918
I0812 15:06:12.386310 8934 solver.cpp:310] Iteration 3500, Testing net (#0)
I0812 15:06:14.325238 8934 solver.cpp:359] Test net output #0: accuracy = 0.9902
I0812 15:06:14.325274 8934 solver.cpp:359] Test net output #1: loss = 0.029976 (* 1 = 0.029976 loss)
I0812 15:06:14.362886 8934 solver.cpp:222] Iteration 3500, loss = 0.0376475
I0812 15:06:14.362972 8934 solver.cpp:238] Train net output #0: loss = 0.0376476 (* 1 = 0.0376476 loss)
I0812 15:06:14.381422 8934 solver.cpp:517] Iteration 3500, lr = 0.00798454
I0812 15:06:23.279611 8934 solver.cpp:222] Iteration 3600, loss = 0.00911815
I0812 15:06:23.279723 8934 solver.cpp:238] Train net output #0: loss = 0.00911829 (* 1 = 0.00911829 loss)
I0812 15:06:23.314371 8934 solver.cpp:517] Iteration 3600, lr = 0.00794046
I0812 15:06:32.182525 8934 solver.cpp:222] Iteration 3700, loss = 0.0182947
I0812 15:06:32.182616 8934 solver.cpp:238] Train net output #0: loss = 0.0182949 (* 1 = 0.0182949 loss)
I0812 15:06:32.245113 8934 solver.cpp:517] Iteration 3700, lr = 0.00789695
I0812 15:06:41.339375 8934 solver.cpp:222] Iteration 3800, loss = 0.00605706
I0812 15:06:41.339462 8934 solver.cpp:238] Train net output #0: loss = 0.00605719 (* 1 = 0.00605719 loss)
I0812 15:06:41.423751 8934 solver.cpp:517] Iteration 3800, lr = 0.007854
I0812 15:06:50.360689 8934 solver.cpp:222] Iteration 3900, loss = 0.00607884
I0812 15:06:50.360779 8934 solver.cpp:238] Train net output #0: loss = 0.00607896 (* 1 = 0.00607896 loss)
I0812 15:06:50.407685 8934 solver.cpp:517] Iteration 3900, lr = 0.00781158
I0812 15:06:59.592584 8934 solver.cpp:310] Iteration 4000, Testing net (#0)
I0812 15:07:01.409979 8934 solver.cpp:359] Test net output #0: accuracy = 0.9899
I0812 15:07:01.410017 8934 solver.cpp:359] Test net output #1: loss = 0.0315973 (* 1 = 0.0315973 loss)
I0812 15:07:01.440788 8934 solver.cpp:222] Iteration 4000, loss = 0.00715784
I0812 15:07:01.440866 8934 solver.cpp:238] Train net output #0: loss = 0.00715796 (* 1 = 0.00715796 loss)
I0812 15:07:01.498203 8934 solver.cpp:517] Iteration 4000, lr = 0.0077697
I0812 15:07:10.408756 8934 solver.cpp:222] Iteration 4100, loss = 0.0181035
I0812 15:07:10.408840 8934 solver.cpp:238] Train net output #0: loss = 0.0181036 (* 1 = 0.0181036 loss)
I0812 15:07:10.496220 8934 solver.cpp:517] Iteration 4100, lr = 0.00772833
I0812 15:07:19.468960 8934 solver.cpp:222] Iteration 4200, loss = 0.00506859
I0812 15:07:19.469070 8934 solver.cpp:238] Train net output #0: loss = 0.0050687 (* 1 = 0.0050687 loss)
I0812 15:07:19.563653 8934 solver.cpp:517] Iteration 4200, lr = 0.00768748
I0812 15:07:28.463631 8934 solver.cpp:222] Iteration 4300, loss = 0.00685792
I0812 15:07:28.463716 8934 solver.cpp:238] Train net output #0: loss = 0.00685804 (* 1 = 0.00685804 loss)
I0812 15:07:28.573341 8934 solver.cpp:517] Iteration 4300, lr = 0.00764712
I0812 15:07:37.770794 8934 solver.cpp:222] Iteration 4400, loss = 0.00494956
I0812 15:07:37.772317 8934 solver.cpp:238] Train net output #0: loss = 0.00494967 (* 1 = 0.00494967 loss)
I0812 15:07:37.867321 8934 solver.cpp:517] Iteration 4400, lr = 0.00760726
I0812 15:07:47.014811 8934 solver.cpp:310] Iteration 4500, Testing net (#0)
I0812 15:07:49.268638 8934 solver.cpp:359] Test net output #0: accuracy = 0.9906
I0812 15:07:49.268673 8934 solver.cpp:359] Test net output #1: loss = 0.02887 (* 1 = 0.02887 loss)
I0812 15:07:49.280167 8934 solver.cpp:222] Iteration 4500, loss = 0.00429833
I0812 15:07:49.280246 8934 solver.cpp:238] Train net output #0: loss = 0.00429844 (* 1 = 0.00429844 loss)
I0812 15:07:49.304939 8934 solver.cpp:517] Iteration 4500, lr = 0.00756788
I0812 15:07:58.014494 8934 solver.cpp:222] Iteration 4600, loss = 0.00628843
I0812 15:07:58.014528 8934 solver.cpp:238] Train net output #0: loss = 0.00628854 (* 1 = 0.00628854 loss)
I0812 15:07:58.130872 8934 solver.cpp:517] Iteration 4600, lr = 0.00752897
I0812 15:08:07.087723 8934 solver.cpp:222] Iteration 4700, loss = 0.000914029
I0812 15:08:07.091270 8934 solver.cpp:238] Train net output #0: loss = 0.000914142 (* 1 = 0.000914142 loss)
I0812 15:08:07.159850 8934 solver.cpp:517] Iteration 4700, lr = 0.00749052
I0812 15:08:16.295464 8934 solver.cpp:222] Iteration 4800, loss = 0.000818103
I0812 15:08:16.295585 8934 solver.cpp:238] Train net output #0: loss = 0.000818218 (* 1 = 0.000818218 loss)
I0812 15:08:16.340133 8934 solver.cpp:517] Iteration 4800, lr = 0.00745253
I0812 15:08:25.389153 8934 solver.cpp:222] Iteration 4900, loss = 0.0150521
I0812 15:08:25.389377 8934 solver.cpp:238] Train net output #0: loss = 0.0150522 (* 1 = 0.0150522 loss)
I0812 15:08:25.444224 8934 solver.cpp:517] Iteration 4900, lr = 0.00741498
I0812 15:08:34.499964 8934 solver.cpp:395] Snapshotting to binary proto file examples/mnist/lenet_iter_5000.caffemodel
I0812 15:08:34.511214 8934 solver.cpp:680] Snapshotting solver state to binary proto fileexamples/mnist/lenet_iter_5000.solverstate
I0812 15:08:34.515492 8934 solver.cpp:310] Iteration 5000, Testing net (#0)
I0812 15:08:36.037077 8934 solver.cpp:359] Test net output #0: accuracy = 0.9896
I0812 15:08:36.037163 8934 solver.cpp:359] Test net output #1: loss = 0.0328394 (* 1 = 0.0328394 loss)
I0812 15:08:36.069629 8934 solver.cpp:222] Iteration 5000, loss = 0.0221282
I0812 15:08:36.069816 8934 solver.cpp:238] Train net output #0: loss = 0.0221283 (* 1 = 0.0221283 loss)
I0812 15:08:36.117702 8934 solver.cpp:517] Iteration 5000, lr = 0.00737788
I0812 15:08:45.425815 8934 solver.cpp:222] Iteration 5100, loss = 0.0028408
I0812 15:08:45.425850 8934 solver.cpp:238] Train net output #0: loss = 0.00284091 (* 1 = 0.00284091 loss)
I0812 15:08:45.514688 8934 solver.cpp:517] Iteration 5100, lr = 0.0073412
I0812 15:08:54.635145 8934 solver.cpp:222] Iteration 5200, loss = 0.0174867
I0812 15:08:54.635305 8934 solver.cpp:238] Train net output #0: loss = 0.0174868 (* 1 = 0.0174868 loss)
I0812 15:08:54.706445 8934 solver.cpp:517] Iteration 5200, lr = 0.00730495
I0812 15:09:03.833523 8934 solver.cpp:222] Iteration 5300, loss = 0.0100477
I0812 15:09:03.833560 8934 solver.cpp:238] Train net output #0: loss = 0.0100478 (* 1 = 0.0100478 loss)
I0812 15:09:03.929847 8934 solver.cpp:517] Iteration 5300, lr = 0.00726911
I0812 15:09:12.852756 8934 solver.cpp:222] Iteration 5400, loss = 0.0106576
I0812 15:09:12.852849 8934 solver.cpp:238] Train net output #0: loss = 0.0106577 (* 1 = 0.0106577 loss)
I0812 15:09:12.963768 8934 solver.cpp:517] Iteration 5400, lr = 0.00723368
I0812 15:09:22.129829 8934 solver.cpp:310] Iteration 5500, Testing net (#0)
I0812 15:09:24.004926 8934 solver.cpp:359] Test net output #0: accuracy = 0.9903
I0812 15:09:24.004957 8934 solver.cpp:359] Test net output #1: loss = 0.0280474 (* 1 = 0.0280474 loss)
I0812 15:09:24.016491 8934 solver.cpp:222] Iteration 5500, loss = 0.0179802
I0812 15:09:24.016526 8934 solver.cpp:238] Train net output #0: loss = 0.0179803 (* 1 = 0.0179803 loss)
I0812 15:09:24.041682 8934 solver.cpp:517] Iteration 5500, lr = 0.00719865
I0812 15:09:32.959800 8934 solver.cpp:222] Iteration 5600, loss = 0.0115019
I0812 15:09:32.959924 8934 solver.cpp:238] Train net output #0: loss = 0.0115021 (* 1 = 0.0115021 loss)
I0812 15:09:33.076342 8934 solver.cpp:517] Iteration 5600, lr = 0.00716402
I0812 15:09:41.954908 8934 solver.cpp:222] Iteration 5700, loss = 0.0016562
I0812 15:09:41.954982 8934 solver.cpp:238] Train net output #0: loss = 0.0016563 (* 1 = 0.0016563 loss)
I0812 15:09:42.058688 8934 solver.cpp:517] Iteration 5700, lr = 0.00712977
I0812 15:09:51.092350 8934 solver.cpp:222] Iteration 5800, loss = 0.00438052
I0812 15:09:51.092428 8934 solver.cpp:238] Train net output #0: loss = 0.00438063 (* 1 = 0.00438063 loss)
I0812 15:09:51.111524 8934 solver.cpp:517] Iteration 5800, lr = 0.0070959
I0812 15:10:00.229512 8934 solver.cpp:222] Iteration 5900, loss = 0.0425145
I0812 15:10:00.229599 8934 solver.cpp:238] Train net output #0: loss = 0.0425146 (* 1 = 0.0425146 loss)
I0812 15:10:00.343152 8934 solver.cpp:517] Iteration 5900, lr = 0.0070624
I0812 15:10:09.415284 8934 solver.cpp:310] Iteration 6000, Testing net (#0)
I0812 15:10:11.496309 8934 solver.cpp:359] Test net output #0: accuracy = 0.9896
I0812 15:10:11.496342 8934 solver.cpp:359] Test net output #1: loss = 0.0310988 (* 1 = 0.0310988 loss)
I0812 15:10:11.506505 8934 solver.cpp:222] Iteration 6000, loss = 0.024175
I0812 15:10:11.506533 8934 solver.cpp:238] Train net output #0: loss = 0.0241751 (* 1 = 0.0241751 loss)
I0812 15:10:11.570771 8934 solver.cpp:517] Iteration 6000, lr = 0.00702927
I0812 15:10:20.583513 8934 solver.cpp:222] Iteration 6100, loss = 0.00508203
I0812 15:10:20.583612 8934 solver.cpp:238] Train net output #0: loss = 0.00508214 (* 1 = 0.00508214 loss)
I0812 15:10:20.703438 8934 solver.cpp:517] Iteration 6100, lr = 0.0069965
I0812 15:10:29.704063 8934 solver.cpp:222] Iteration 6200, loss = 0.00718511
I0812 15:10:29.704149 8934 solver.cpp:238] Train net output #0: loss = 0.00718522 (* 1 = 0.00718522 loss)
I0812 15:10:29.820086 8934 solver.cpp:517] Iteration 6200, lr = 0.00696408
I0812 15:10:38.826932 8934 solver.cpp:222] Iteration 6300, loss = 0.00189943
I0812 15:10:38.826966 8934 solver.cpp:238] Train net output #0: loss = 0.00189954 (* 1 = 0.00189954 loss)
I0812 15:10:38.860199 8934 solver.cpp:517] Iteration 6300, lr = 0.00693201
I0812 15:10:47.882072 8934 solver.cpp:222] Iteration 6400, loss = 0.00205551
I0812 15:10:47.882189 8934 solver.cpp:238] Train net output #0: loss = 0.00205561 (* 1 = 0.00205561 loss)
I0812 15:10:47.961988 8934 solver.cpp:517] Iteration 6400, lr = 0.00690029
I0812 15:10:56.863453 8934 solver.cpp:310] Iteration 6500, Testing net (#0)
I0812 15:10:59.112794 8934 solver.cpp:359] Test net output #0: accuracy = 0.9892
I0812 15:10:59.112825 8934 solver.cpp:359] Test net output #1: loss = 0.0309178 (* 1 = 0.0309178 loss)
I0812 15:10:59.124754 8934 solver.cpp:222] Iteration 6500, loss = 0.00429155
I0812 15:10:59.124832 8934 solver.cpp:238] Train net output #0: loss = 0.00429165 (* 1 = 0.00429165 loss)
I0812 15:10:59.205926 8934 solver.cpp:517] Iteration 6500, lr = 0.0068689
I0812 15:11:08.017499 8934 solver.cpp:222] Iteration 6600, loss = 0.0103716
I0812 15:11:08.017586 8934 solver.cpp:238] Train net output #0: loss = 0.0103717 (* 1 = 0.0103717 loss)
I0812 15:11:08.069288 8934 solver.cpp:517] Iteration 6600, lr = 0.00683784
I0812 15:11:17.202719 8934 solver.cpp:222] Iteration 6700, loss = 0.00595986
I0812 15:11:17.202792 8934 solver.cpp:238] Train net output #0: loss = 0.00595996 (* 1 = 0.00595996 loss)
I0812 15:11:17.305418 8934 solver.cpp:517] Iteration 6700, lr = 0.00680711
I0812 15:11:26.384793 8934 solver.cpp:222] Iteration 6800, loss = 0.00682748
I0812 15:11:26.385243 8934 solver.cpp:238] Train net output #0: loss = 0.00682758 (* 1 = 0.00682758 loss)
I0812 15:11:26.455240 8934 solver.cpp:517] Iteration 6800, lr = 0.0067767
I0812 15:11:35.483453 8934 solver.cpp:222] Iteration 6900, loss = 0.00190708
I0812 15:11:35.483487 8934 solver.cpp:238] Train net output #0: loss = 0.00190719 (* 1 = 0.00190719 loss)
I0812 15:11:35.534250 8934 solver.cpp:517] Iteration 6900, lr = 0.0067466
I0812 15:11:44.375579 8934 solver.cpp:310] Iteration 7000, Testing net (#0)
I0812 15:11:46.136260 8934 solver.cpp:359] Test net output #0: accuracy = 0.991
I0812 15:11:46.136289 8934 solver.cpp:359] Test net output #1: loss = 0.0276416 (* 1 = 0.0276416 loss)
I0812 15:11:46.148154 8934 solver.cpp:222] Iteration 7000, loss = 0.00189898
I0812 15:11:46.148188 8934 solver.cpp:238] Train net output #0: loss = 0.00189909 (* 1 = 0.00189909 loss)
I0812 15:11:46.176205 8934 solver.cpp:517] Iteration 7000, lr = 0.00671681
I0812 15:11:54.379050 8934 solver.cpp:222] Iteration 7100, loss = 0.00385309
I0812 15:11:54.379124 8934 solver.cpp:238] Train net output #0: loss = 0.0038532 (* 1 = 0.0038532 loss)
I0812 15:11:54.433017 8934 solver.cpp:517] Iteration 7100, lr = 0.00668733
I0812 15:12:02.811902 8934 solver.cpp:222] Iteration 7200, loss = 0.000648332
I0812 15:12:02.812017 8934 solver.cpp:238] Train net output #0: loss = 0.000648438 (* 1 = 0.000648438 loss)
I0812 15:12:02.856523 8934 solver.cpp:517] Iteration 7200, lr = 0.00665815
I0812 15:12:11.316092 8934 solver.cpp:222] Iteration 7300, loss = 0.000467351
I0812 15:12:11.316174 8934 solver.cpp:238] Train net output #0: loss = 0.000467456 (* 1 = 0.000467456 loss)
I0812 15:12:11.387338 8934 solver.cpp:517] Iteration 7300, lr = 0.00662927
I0812 15:12:19.648627 8934 solver.cpp:222] Iteration 7400, loss = 0.0100936
I0812 15:12:19.648660 8934 solver.cpp:238] Train net output #0: loss = 0.0100937 (* 1 = 0.0100937 loss)
I0812 15:12:19.726174 8934 solver.cpp:517] Iteration 7400, lr = 0.00660067
I0812 15:12:27.860529 8934 solver.cpp:310] Iteration 7500, Testing net (#0)
I0812 15:12:29.803882 8934 solver.cpp:359] Test net output #0: accuracy = 0.9905
I0812 15:12:29.803916 8934 solver.cpp:359] Test net output #1: loss = 0.0296367 (* 1 = 0.0296367 loss)
I0812 15:12:29.835386 8934 solver.cpp:222] Iteration 7500, loss = 0.0135883
I0812 15:12:29.835468 8934 solver.cpp:238] Train net output #0: loss = 0.0135884 (* 1 = 0.0135884 loss)
I0812 15:12:29.851951 8934 solver.cpp:517] Iteration 7500, lr = 0.00657236
I0812 15:12:38.653424 8934 solver.cpp:222] Iteration 7600, loss = 0.00192597
I0812 15:12:38.653540 8934 solver.cpp:238] Train net output #0: loss = 0.00192608 (* 1 = 0.00192608 loss)
I0812 15:12:38.666893 8934 solver.cpp:517] Iteration 7600, lr = 0.00654433
I0812 15:12:47.777663 8934 solver.cpp:222] Iteration 7700, loss = 0.0122421
I0812 15:12:47.777700 8934 solver.cpp:238] Train net output #0: loss = 0.0122422 (* 1 = 0.0122422 loss)
I0812 15:12:47.847755 8934 solver.cpp:517] Iteration 7700, lr = 0.00651658
I0812 15:12:56.987732 8934 solver.cpp:222] Iteration 7800, loss = 0.00705013
I0812 15:12:56.987818 8934 solver.cpp:238] Train net output #0: loss = 0.00705024 (* 1 = 0.00705024 loss)
I0812 15:12:57.055039 8934 solver.cpp:517] Iteration 7800, lr = 0.00648911
I0812 15:13:05.894214 8934 solver.cpp:222] Iteration 7900, loss = 0.00460331
I0812 15:13:05.894297 8934 solver.cpp:238] Train net output #0: loss = 0.00460342 (* 1 = 0.00460342 loss)
I0812 15:13:05.998929 8934 solver.cpp:517] Iteration 7900, lr = 0.0064619
I0812 15:13:15.322681 8934 solver.cpp:310] Iteration 8000, Testing net (#0)
I0812 15:13:17.185226 8934 solver.cpp:359] Test net output #0: accuracy = 0.9906
I0812 15:13:17.185304 8934 solver.cpp:359] Test net output #1: loss = 0.0265522 (* 1 = 0.0265522 loss)
I0812 15:13:17.216338 8934 solver.cpp:222] Iteration 8000, loss = 0.0135588
I0812 15:13:17.216421 8934 solver.cpp:238] Train net output #0: loss = 0.013559 (* 1 = 0.013559 loss)
I0812 15:13:17.298643 8934 solver.cpp:517] Iteration 8000, lr = 0.00643496
I0812 15:13:26.446269 8934 solver.cpp:222] Iteration 8100, loss = 0.00705471
I0812 15:13:26.446355 8934 solver.cpp:238] Train net output #0: loss = 0.00705481 (* 1 = 0.00705481 loss)
I0812 15:13:26.499325 8934 solver.cpp:517] Iteration 8100, lr = 0.00640827
I0812 15:13:35.745419 8934 solver.cpp:222] Iteration 8200, loss = 0.00144347
I0812 15:13:35.745501 8934 solver.cpp:238] Train net output #0: loss = 0.00144357 (* 1 = 0.00144357 loss)
I0812 15:13:35.834023 8934 solver.cpp:517] Iteration 8200, lr = 0.00638185
I0812 15:13:44.658489 8934 solver.cpp:222] Iteration 8300, loss = 0.00511854
I0812 15:13:44.658574 8934 solver.cpp:238] Train net output #0: loss = 0.00511864 (* 1 = 0.00511864 loss)
I0812 15:13:44.710475 8934 solver.cpp:517] Iteration 8300, lr = 0.00635567
I0812 15:13:53.553982 8934 solver.cpp:222] Iteration 8400, loss = 0.0271572
I0812 15:13:53.554057 8934 solver.cpp:238] Train net output #0: loss = 0.0271573 (* 1 = 0.0271573 loss)
I0812 15:13:53.619370 8934 solver.cpp:517] Iteration 8400, lr = 0.00632975
I0812 15:14:02.415545 8934 solver.cpp:310] Iteration 8500, Testing net (#0)
I0812 15:14:04.291296 8934 solver.cpp:359] Test net output #0: accuracy = 0.9895
I0812 15:14:04.291326 8934 solver.cpp:359] Test net output #1: loss = 0.0309789 (* 1 = 0.0309789 loss)
I0812 15:14:04.302868 8934 solver.cpp:222] Iteration 8500, loss = 0.015714
I0812 15:14:04.302906 8934 solver.cpp:238] Train net output #0: loss = 0.0157141 (* 1 = 0.0157141 loss)
I0812 15:14:04.328243 8934 solver.cpp:517] Iteration 8500, lr = 0.00630407
I0812 15:14:12.892047 8934 solver.cpp:222] Iteration 8600, loss = 0.00425323
I0812 15:14:12.892132 8934 solver.cpp:238] Train net output #0: loss = 0.00425334 (* 1 = 0.00425334 loss)
I0812 15:14:12.919698 8934 solver.cpp:517] Iteration 8600, lr = 0.00627864
I0812 15:14:22.127713 8934 solver.cpp:222] Iteration 8700, loss = 0.00508571
I0812 15:14:22.127817 8934 solver.cpp:238] Train net output #0: loss = 0.00508582 (* 1 = 0.00508582 loss)
I0812 15:14:22.196290 8934 solver.cpp:517] Iteration 8700, lr = 0.00625344
I0812 15:14:31.163892 8934 solver.cpp:222] Iteration 8800, loss = 0.00125972
I0812 15:14:31.164049 8934 solver.cpp:238] Train net output #0: loss = 0.00125983 (* 1 = 0.00125983 loss)
I0812 15:14:31.224545 8934 solver.cpp:517] Iteration 8800, lr = 0.00622847
I0812 15:14:40.362598 8934 solver.cpp:222] Iteration 8900, loss = 0.0014759
I0812 15:14:40.362864 8934 solver.cpp:238] Train net output #0: loss = 0.00147601 (* 1 = 0.00147601 loss)
I0812 15:14:40.454977 8934 solver.cpp:517] Iteration 8900, lr = 0.00620374
I0812 15:14:49.448246 8934 solver.cpp:310] Iteration 9000, Testing net (#0)
I0812 15:14:51.062361 8934 solver.cpp:359] Test net output #0: accuracy = 0.9906
I0812 15:14:51.062409 8934 solver.cpp:359] Test net output #1: loss = 0.02796 (* 1 = 0.02796 loss)
I0812 15:14:51.072724 8934 solver.cpp:222] Iteration 9000, loss = 0.00350029
I0812 15:14:51.072757 8934 solver.cpp:238] Train net output #0: loss = 0.0035004 (* 1 = 0.0035004 loss)
I0812 15:14:51.148672 8934 solver.cpp:517] Iteration 9000, lr = 0.00617924
I0812 15:14:59.800629 8934 solver.cpp:222] Iteration 9100, loss = 0.00817083
I0812 15:14:59.800715 8934 solver.cpp:238] Train net output #0: loss = 0.00817095 (* 1 = 0.00817095 loss)
I0812 15:14:59.912013 8934 solver.cpp:517] Iteration 9100, lr = 0.00615496
I0812 15:15:08.791244 8934 solver.cpp:222] Iteration 9200, loss = 0.00630721
I0812 15:15:08.791373 8934 solver.cpp:238] Train net output #0: loss = 0.00630733 (* 1 = 0.00630733 loss)
I0812 15:15:08.904939 8934 solver.cpp:517] Iteration 9200, lr = 0.0061309
I0812 15:15:17.983322 8934 solver.cpp:222] Iteration 9300, loss = 0.00714821
I0812 15:15:17.983409 8934 solver.cpp:238] Train net output #0: loss = 0.00714833 (* 1 = 0.00714833 loss)
I0812 15:15:18.064748 8934 solver.cpp:517] Iteration 9300, lr = 0.00610706
I0812 15:15:27.277515 8934 solver.cpp:222] Iteration 9400, loss = 0.0016361
I0812 15:15:27.277743 8934 solver.cpp:238] Train net output #0: loss = 0.00163623 (* 1 = 0.00163623 loss)
I0812 15:15:27.334009 8934 solver.cpp:517] Iteration 9400, lr = 0.00608343
I0812 15:15:36.018651 8934 solver.cpp:310] Iteration 9500, Testing net (#0)
I0812 15:15:38.153204 8934 solver.cpp:359] Test net output #0: accuracy = 0.991
I0812 15:15:38.153237 8934 solver.cpp:359] Test net output #1: loss = 0.026864 (* 1 = 0.026864 loss)
I0812 15:15:38.164965 8934 solver.cpp:222] Iteration 9500, loss = 0.00147481
I0812 15:15:38.165042 8934 solver.cpp:238] Train net output #0: loss = 0.00147493 (* 1 = 0.00147493 loss)
I0812 15:15:38.246574 8934 solver.cpp:517] Iteration 9500, lr = 0.00606002
I0812 15:15:47.346539 8934 solver.cpp:222] Iteration 9600, loss = 0.00334556
I0812 15:15:47.346612 8934 solver.cpp:238] Train net output #0: loss = 0.00334569 (* 1 = 0.00334569 loss)
I0812 15:15:47.402668 8934 solver.cpp:517] Iteration 9600, lr = 0.00603682
I0812 15:15:56.393163 8934 solver.cpp:222] Iteration 9700, loss = 0.000684135
I0812 15:15:56.393198 8934 solver.cpp:238] Train net output #0: loss = 0.00068426 (* 1 = 0.00068426 loss)
I0812 15:15:56.459017 8934 solver.cpp:517] Iteration 9700, lr = 0.00601382
I0812 15:16:05.434850 8934 solver.cpp:222] Iteration 9800, loss = 0.000417975
I0812 15:16:05.434936 8934 solver.cpp:238] Train net output #0: loss = 0.000418103 (* 1 = 0.000418103 loss)
I0812 15:16:05.505854 8934 solver.cpp:517] Iteration 9800, lr = 0.00599102
I0812 15:16:14.228703 8934 solver.cpp:222] Iteration 9900, loss = 0.00772128
I0812 15:16:14.228785 8934 solver.cpp:238] Train net output #0: loss = 0.00772141 (* 1 = 0.00772141 loss)
I0812 15:16:14.273255 8934 solver.cpp:517] Iteration 9900, lr = 0.00596843
I0812 15:16:23.274432 8934 solver.cpp:395] Snapshotting to binary proto file examples/mnist/lenet_iter_10000.caffemodel
I0812 15:16:23.281019 8934 solver.cpp:680] Snapshotting solver state to binary proto fileexamples/mnist/lenet_iter_10000.solverstate
I0812 15:16:23.291081 8934 solver.cpp:291] Iteration 10000, loss = 0.010073
I0812 15:16:23.291107 8934 solver.cpp:310] Iteration 10000, Testing net (#0)
I0812 15:16:24.803035 8934 solver.cpp:359] Test net output #0: accuracy = 0.9908
I0812 15:16:24.803066 8934 solver.cpp:359] Test net output #1: loss = 0.0285205 (* 1 = 0.0285205 loss)
I0812 15:16:24.803072 8934 solver.cpp:296] Optimization Done.
I0812 15:16:24.815353 8934 caffe.cpp:184] Optimization Done.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment