Last active
August 29, 2015 14:27
-
-
Save ronghanghu/d66d63882c25b31b6148 to your computer and use it in GitHub Desktop.
Multi-GPU Training Logs
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
I0812 15:00:42.248405 8934 caffe.cpp:160] Using GPUs 0, 1, 2 | |
I0812 15:00:42.422600 8934 solver.cpp:38] Initializing solver from parameters: | |
test_iter: 100 | |
test_interval: 500 | |
base_lr: 0.01 | |
display: 100 | |
max_iter: 10000 | |
lr_policy: "inv" | |
gamma: 0.0001 | |
power: 0.75 | |
momentum: 0.9 | |
weight_decay: 0.0005 | |
snapshot: 5000 | |
snapshot_prefix: "examples/mnist/lenet" | |
solver_mode: GPU | |
device_id: 0 | |
net: "examples/mnist/lenet_train_test.prototxt" | |
I0812 15:00:42.422646 8934 solver.cpp:80] Creating training net from net file: examples/mnist/lenet_train_test.prototxt | |
I0812 15:00:42.422924 8934 net.cpp:339] The NetState phase (0) differed from the phase (1) specified by a rule in layer mnist | |
I0812 15:00:42.422946 8934 net.cpp:339] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy | |
I0812 15:00:42.423032 8934 net.cpp:50] Initializing net from parameters: | |
name: "LeNet" | |
state { | |
phase: TRAIN | |
} | |
layer { | |
name: "mnist" | |
type: "Data" | |
top: "data" | |
top: "label" | |
include { | |
phase: TRAIN | |
} | |
transform_param { | |
scale: 0.00390625 | |
} | |
data_param { | |
source: "examples/mnist/mnist_train_lmdb" | |
batch_size: 64 | |
backend: LMDB | |
} | |
} | |
layer { | |
name: "conv1" | |
type: "Convolution" | |
bottom: "data" | |
top: "conv1" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
convolution_param { | |
num_output: 20 | |
kernel_size: 5 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "pool1" | |
type: "Pooling" | |
bottom: "conv1" | |
top: "pool1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv2" | |
type: "Convolution" | |
bottom: "pool1" | |
top: "conv2" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
convolution_param { | |
num_output: 50 | |
kernel_size: 5 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "pool2" | |
type: "Pooling" | |
bottom: "conv2" | |
top: "pool2" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "ip1" | |
type: "InnerProduct" | |
bottom: "pool2" | |
top: "ip1" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
inner_product_param { | |
num_output: 500 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu1" | |
type: "ReLU" | |
bottom: "ip1" | |
top: "ip1" | |
} | |
layer { | |
name: "ip2" | |
type: "InnerProduct" | |
bottom: "ip1" | |
top: "ip2" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
inner_product_param { | |
num_output: 10 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "loss" | |
type: "SoftmaxWithLoss" | |
bottom: "ip2" | |
bottom: "label" | |
top: "loss" | |
} | |
I0812 15:00:42.423115 8934 layer_factory.hpp:75] Creating layer mnist | |
I0812 15:00:42.423537 8934 net.cpp:110] Creating Layer mnist | |
I0812 15:00:42.423578 8934 net.cpp:432] mnist -> data | |
I0812 15:00:42.423631 8934 net.cpp:432] mnist -> label | |
I0812 15:00:42.424365 8939 db_lmdb.cpp:22] Opened lmdb examples/mnist/mnist_train_lmdb | |
I0812 15:00:42.424435 8934 data_layer.cpp:44] output data size: 64,1,28,28 | |
I0812 15:00:42.429911 8934 net.cpp:155] Setting up mnist | |
I0812 15:00:42.429991 8934 net.cpp:163] Top shape: 64 1 28 28 (50176) | |
I0812 15:00:42.430022 8934 net.cpp:163] Top shape: 64 (64) | |
I0812 15:00:42.430053 8934 layer_factory.hpp:75] Creating layer conv1 | |
I0812 15:00:42.430095 8934 net.cpp:110] Creating Layer conv1 | |
I0812 15:00:42.430129 8934 net.cpp:476] conv1 <- data | |
I0812 15:00:42.430166 8934 net.cpp:432] conv1 -> conv1 | |
I0812 15:00:42.430785 8934 net.cpp:155] Setting up conv1 | |
I0812 15:00:42.430821 8934 net.cpp:163] Top shape: 64 20 24 24 (737280) | |
I0812 15:00:42.430860 8934 layer_factory.hpp:75] Creating layer pool1 | |
I0812 15:00:42.430891 8934 net.cpp:110] Creating Layer pool1 | |
I0812 15:00:42.430914 8934 net.cpp:476] pool1 <- conv1 | |
I0812 15:00:42.430941 8934 net.cpp:432] pool1 -> pool1 | |
I0812 15:00:42.430985 8934 net.cpp:155] Setting up pool1 | |
I0812 15:00:42.431013 8934 net.cpp:163] Top shape: 64 20 12 12 (184320) | |
I0812 15:00:42.431107 8940 blocking_queue.cpp:50] Waiting for data | |
I0812 15:00:42.431123 8934 layer_factory.hpp:75] Creating layer conv2 | |
I0812 15:00:42.431198 8934 net.cpp:110] Creating Layer conv2 | |
I0812 15:00:42.431206 8934 net.cpp:476] conv2 <- pool1 | |
I0812 15:00:42.431219 8934 net.cpp:432] conv2 -> conv2 | |
I0812 15:00:42.431434 8934 net.cpp:155] Setting up conv2 | |
I0812 15:00:42.431447 8934 net.cpp:163] Top shape: 64 50 8 8 (204800) | |
I0812 15:00:42.431463 8934 layer_factory.hpp:75] Creating layer pool2 | |
I0812 15:00:42.431473 8934 net.cpp:110] Creating Layer pool2 | |
I0812 15:00:42.431480 8934 net.cpp:476] pool2 <- conv2 | |
I0812 15:00:42.431489 8934 net.cpp:432] pool2 -> pool2 | |
I0812 15:00:42.431501 8934 net.cpp:155] Setting up pool2 | |
I0812 15:00:42.431510 8934 net.cpp:163] Top shape: 64 50 4 4 (51200) | |
I0812 15:00:42.431517 8934 layer_factory.hpp:75] Creating layer ip1 | |
I0812 15:00:42.431534 8934 net.cpp:110] Creating Layer ip1 | |
I0812 15:00:42.431540 8934 net.cpp:476] ip1 <- pool2 | |
I0812 15:00:42.431553 8934 net.cpp:432] ip1 -> ip1 | |
I0812 15:00:42.434183 8934 net.cpp:155] Setting up ip1 | |
I0812 15:00:42.434196 8934 net.cpp:163] Top shape: 64 500 (32000) | |
I0812 15:00:42.434211 8934 layer_factory.hpp:75] Creating layer relu1 | |
I0812 15:00:42.434221 8934 net.cpp:110] Creating Layer relu1 | |
I0812 15:00:42.434228 8934 net.cpp:476] relu1 <- ip1 | |
I0812 15:00:42.434237 8934 net.cpp:419] relu1 -> ip1 (in-place) | |
I0812 15:00:42.434253 8934 net.cpp:155] Setting up relu1 | |
I0812 15:00:42.434262 8934 net.cpp:163] Top shape: 64 500 (32000) | |
I0812 15:00:42.434268 8934 layer_factory.hpp:75] Creating layer ip2 | |
I0812 15:00:42.434278 8934 net.cpp:110] Creating Layer ip2 | |
I0812 15:00:42.434285 8934 net.cpp:476] ip2 <- ip1 | |
I0812 15:00:42.434298 8934 net.cpp:432] ip2 -> ip2 | |
I0812 15:00:42.434734 8934 net.cpp:155] Setting up ip2 | |
I0812 15:00:42.434746 8934 net.cpp:163] Top shape: 64 10 (640) | |
I0812 15:00:42.434757 8934 layer_factory.hpp:75] Creating layer loss | |
I0812 15:00:42.434772 8934 net.cpp:110] Creating Layer loss | |
I0812 15:00:42.434778 8934 net.cpp:476] loss <- ip2 | |
I0812 15:00:42.434787 8934 net.cpp:476] loss <- label | |
I0812 15:00:42.434800 8934 net.cpp:432] loss -> loss | |
I0812 15:00:42.434823 8934 layer_factory.hpp:75] Creating layer loss | |
I0812 15:00:42.434881 8934 net.cpp:155] Setting up loss | |
I0812 15:00:42.434891 8934 net.cpp:163] Top shape: (1) | |
I0812 15:00:42.434898 8934 net.cpp:168] with loss weight 1 | |
I0812 15:00:42.434924 8934 net.cpp:236] loss needs backward computation. | |
I0812 15:00:42.434932 8934 net.cpp:236] ip2 needs backward computation. | |
I0812 15:00:42.434939 8934 net.cpp:236] relu1 needs backward computation. | |
I0812 15:00:42.434945 8934 net.cpp:236] ip1 needs backward computation. | |
I0812 15:00:42.434952 8934 net.cpp:236] pool2 needs backward computation. | |
I0812 15:00:42.434958 8934 net.cpp:236] conv2 needs backward computation. | |
I0812 15:00:42.434965 8934 net.cpp:236] pool1 needs backward computation. | |
I0812 15:00:42.434973 8934 net.cpp:236] conv1 needs backward computation. | |
I0812 15:00:42.434978 8934 net.cpp:240] mnist does not need backward computation. | |
I0812 15:00:42.434984 8934 net.cpp:283] This network produces output loss | |
I0812 15:00:42.435000 8934 net.cpp:297] Network initialization done. | |
I0812 15:00:42.435006 8934 net.cpp:298] Memory required for data: 5169924 | |
I0812 15:00:42.435240 8934 solver.cpp:170] Creating test net (#0) specified by net file: examples/mnist/lenet_train_test.prototxt | |
I0812 15:00:42.435277 8934 net.cpp:339] The NetState phase (1) differed from the phase (0) specified by a rule in layer mnist | |
I0812 15:00:42.435355 8934 net.cpp:50] Initializing net from parameters: | |
name: "LeNet" | |
state { | |
phase: TEST | |
} | |
layer { | |
name: "mnist" | |
type: "Data" | |
top: "data" | |
top: "label" | |
include { | |
phase: TEST | |
} | |
transform_param { | |
scale: 0.00390625 | |
} | |
data_param { | |
source: "examples/mnist/mnist_test_lmdb" | |
batch_size: 100 | |
backend: LMDB | |
} | |
} | |
layer { | |
name: "conv1" | |
type: "Convolution" | |
bottom: "data" | |
top: "conv1" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
convolution_param { | |
num_output: 20 | |
kernel_size: 5 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "pool1" | |
type: "Pooling" | |
bottom: "conv1" | |
top: "pool1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv2" | |
type: "Convolution" | |
bottom: "pool1" | |
top: "conv2" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
convolution_param { | |
num_output: 50 | |
kernel_size: 5 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "pool2" | |
type: "Pooling" | |
bottom: "conv2" | |
top: "pool2" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "ip1" | |
type: "InnerProduct" | |
bottom: "pool2" | |
top: "ip1" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
inner_product_param { | |
num_output: 500 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "relu1" | |
type: "ReLU" | |
bottom: "ip1" | |
top: "ip1" | |
} | |
layer { | |
name: "ip2" | |
type: "InnerProduct" | |
bottom: "ip1" | |
top: "ip2" | |
param { | |
lr_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
} | |
inner_product_param { | |
num_output: 10 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
} | |
} | |
} | |
layer { | |
name: "accuracy" | |
type: "Accuracy" | |
bottom: "ip2" | |
bottom: "label" | |
top: "accuracy" | |
include { | |
phase: TEST | |
} | |
} | |
layer { | |
name: "loss" | |
type: "SoftmaxWithLoss" | |
bottom: "ip2" | |
bottom: "label" | |
top: "loss" | |
} | |
I0812 15:00:42.435459 8934 layer_factory.hpp:75] Creating layer mnist | |
I0812 15:00:42.435576 8934 net.cpp:110] Creating Layer mnist | |
I0812 15:00:42.435588 8934 net.cpp:432] mnist -> data | |
I0812 15:00:42.435600 8934 net.cpp:432] mnist -> label | |
I0812 15:00:42.436486 8941 db_lmdb.cpp:22] Opened lmdb examples/mnist/mnist_test_lmdb | |
I0812 15:00:42.436527 8934 data_layer.cpp:44] output data size: 100,1,28,28 | |
I0812 15:00:42.437571 8934 net.cpp:155] Setting up mnist | |
I0812 15:00:42.437583 8934 net.cpp:163] Top shape: 100 1 28 28 (78400) | |
I0812 15:00:42.437592 8934 net.cpp:163] Top shape: 100 (100) | |
I0812 15:00:42.437599 8934 layer_factory.hpp:75] Creating layer label_mnist_1_split | |
I0812 15:00:42.437614 8934 net.cpp:110] Creating Layer label_mnist_1_split | |
I0812 15:00:42.437623 8934 net.cpp:476] label_mnist_1_split <- label | |
I0812 15:00:42.437631 8934 net.cpp:432] label_mnist_1_split -> label_mnist_1_split_0 | |
I0812 15:00:42.437643 8934 net.cpp:432] label_mnist_1_split -> label_mnist_1_split_1 | |
I0812 15:00:42.437655 8934 net.cpp:155] Setting up label_mnist_1_split | |
I0812 15:00:42.437664 8934 net.cpp:163] Top shape: 100 (100) | |
I0812 15:00:42.437672 8934 net.cpp:163] Top shape: 100 (100) | |
I0812 15:00:42.437682 8934 layer_factory.hpp:75] Creating layer conv1 | |
I0812 15:00:42.437696 8934 net.cpp:110] Creating Layer conv1 | |
I0812 15:00:42.437702 8934 net.cpp:476] conv1 <- data | |
I0812 15:00:42.437711 8934 net.cpp:432] conv1 -> conv1 | |
I0812 15:00:42.437780 8934 net.cpp:155] Setting up conv1 | |
I0812 15:00:42.437790 8934 net.cpp:163] Top shape: 100 20 24 24 (1152000) | |
I0812 15:00:42.437804 8934 layer_factory.hpp:75] Creating layer pool1 | |
I0812 15:00:42.437813 8934 net.cpp:110] Creating Layer pool1 | |
I0812 15:00:42.437820 8934 net.cpp:476] pool1 <- conv1 | |
I0812 15:00:42.437830 8934 net.cpp:432] pool1 -> pool1 | |
I0812 15:00:42.437842 8934 net.cpp:155] Setting up pool1 | |
I0812 15:00:42.437851 8934 net.cpp:163] Top shape: 100 20 12 12 (288000) | |
I0812 15:00:42.437857 8934 layer_factory.hpp:75] Creating layer conv2 | |
I0812 15:00:42.437870 8934 net.cpp:110] Creating Layer conv2 | |
I0812 15:00:42.437875 8934 net.cpp:476] conv2 <- pool1 | |
I0812 15:00:42.437887 8934 net.cpp:432] conv2 -> conv2 | |
I0812 15:00:42.438129 8934 net.cpp:155] Setting up conv2 | |
I0812 15:00:42.438139 8934 net.cpp:163] Top shape: 100 50 8 8 (320000) | |
I0812 15:00:42.438151 8934 layer_factory.hpp:75] Creating layer pool2 | |
I0812 15:00:42.438161 8934 net.cpp:110] Creating Layer pool2 | |
I0812 15:00:42.438169 8934 net.cpp:476] pool2 <- conv2 | |
I0812 15:00:42.438189 8934 net.cpp:432] pool2 -> pool2 | |
I0812 15:00:42.438199 8934 net.cpp:155] Setting up pool2 | |
I0812 15:00:42.438208 8934 net.cpp:163] Top shape: 100 50 4 4 (80000) | |
I0812 15:00:42.438213 8934 layer_factory.hpp:75] Creating layer ip1 | |
I0812 15:00:42.438222 8934 net.cpp:110] Creating Layer ip1 | |
I0812 15:00:42.438228 8934 net.cpp:476] ip1 <- pool2 | |
I0812 15:00:42.438241 8934 net.cpp:432] ip1 -> ip1 | |
I0812 15:00:42.442422 8934 net.cpp:155] Setting up ip1 | |
I0812 15:00:42.442476 8934 net.cpp:163] Top shape: 100 500 (50000) | |
I0812 15:00:42.442512 8934 layer_factory.hpp:75] Creating layer relu1 | |
I0812 15:00:42.442589 8934 net.cpp:110] Creating Layer relu1 | |
I0812 15:00:42.442616 8934 net.cpp:476] relu1 <- ip1 | |
I0812 15:00:42.442647 8934 net.cpp:419] relu1 -> ip1 (in-place) | |
I0812 15:00:42.442708 8934 net.cpp:155] Setting up relu1 | |
I0812 15:00:42.442756 8934 net.cpp:163] Top shape: 100 500 (50000) | |
I0812 15:00:42.442824 8934 layer_factory.hpp:75] Creating layer ip2 | |
I0812 15:00:42.442878 8934 net.cpp:110] Creating Layer ip2 | |
I0812 15:00:42.442901 8934 net.cpp:476] ip2 <- ip1 | |
I0812 15:00:42.442931 8934 net.cpp:432] ip2 -> ip2 | |
I0812 15:00:42.443135 8934 net.cpp:155] Setting up ip2 | |
I0812 15:00:42.443166 8934 net.cpp:163] Top shape: 100 10 (1000) | |
I0812 15:00:42.443194 8934 layer_factory.hpp:75] Creating layer ip2_ip2_0_split | |
I0812 15:00:42.443305 8934 net.cpp:110] Creating Layer ip2_ip2_0_split | |
I0812 15:00:42.443356 8934 net.cpp:476] ip2_ip2_0_split <- ip2 | |
I0812 15:00:42.443382 8934 net.cpp:432] ip2_ip2_0_split -> ip2_ip2_0_split_0 | |
I0812 15:00:42.443433 8934 net.cpp:432] ip2_ip2_0_split -> ip2_ip2_0_split_1 | |
I0812 15:00:42.443462 8934 net.cpp:155] Setting up ip2_ip2_0_split | |
I0812 15:00:42.443511 8934 net.cpp:163] Top shape: 100 10 (1000) | |
I0812 15:00:42.443538 8934 net.cpp:163] Top shape: 100 10 (1000) | |
I0812 15:00:42.443562 8934 layer_factory.hpp:75] Creating layer accuracy | |
I0812 15:00:42.443616 8934 net.cpp:110] Creating Layer accuracy | |
I0812 15:00:42.443640 8934 net.cpp:476] accuracy <- ip2_ip2_0_split_0 | |
I0812 15:00:42.443689 8934 net.cpp:476] accuracy <- label_mnist_1_split_0 | |
I0812 15:00:42.443716 8934 net.cpp:432] accuracy -> accuracy | |
I0812 15:00:42.443770 8934 net.cpp:155] Setting up accuracy | |
I0812 15:00:42.443799 8934 net.cpp:163] Top shape: (1) | |
I0812 15:00:42.443821 8934 layer_factory.hpp:75] Creating layer loss | |
I0812 15:00:42.443850 8934 net.cpp:110] Creating Layer loss | |
I0812 15:00:42.443874 8934 net.cpp:476] loss <- ip2_ip2_0_split_1 | |
I0812 15:00:42.443900 8934 net.cpp:476] loss <- label_mnist_1_split_1 | |
I0812 15:00:42.443928 8934 net.cpp:432] loss -> loss | |
I0812 15:00:42.443994 8934 layer_factory.hpp:75] Creating layer loss | |
I0812 15:00:42.444056 8934 net.cpp:155] Setting up loss | |
I0812 15:00:42.444066 8934 net.cpp:163] Top shape: (1) | |
I0812 15:00:42.444072 8934 net.cpp:168] with loss weight 1 | |
I0812 15:00:42.444085 8934 net.cpp:236] loss needs backward computation. | |
I0812 15:00:42.444093 8934 net.cpp:240] accuracy does not need backward computation. | |
I0812 15:00:42.444100 8934 net.cpp:236] ip2_ip2_0_split needs backward computation. | |
I0812 15:00:42.444108 8934 net.cpp:236] ip2 needs backward computation. | |
I0812 15:00:42.444113 8934 net.cpp:236] relu1 needs backward computation. | |
I0812 15:00:42.444119 8934 net.cpp:236] ip1 needs backward computation. | |
I0812 15:00:42.444125 8934 net.cpp:236] pool2 needs backward computation. | |
I0812 15:00:42.444133 8934 net.cpp:236] conv2 needs backward computation. | |
I0812 15:00:42.444139 8934 net.cpp:236] pool1 needs backward computation. | |
I0812 15:00:42.444145 8934 net.cpp:236] conv1 needs backward computation. | |
I0812 15:00:42.444152 8934 net.cpp:240] label_mnist_1_split does not need backward computation. | |
I0812 15:00:42.444162 8934 net.cpp:240] mnist does not need backward computation. | |
I0812 15:00:42.444169 8934 net.cpp:283] This network produces output accuracy | |
I0812 15:00:42.444175 8934 net.cpp:283] This network produces output loss | |
I0812 15:00:42.444226 8934 net.cpp:297] Network initialization done. | |
I0812 15:00:42.444244 8934 net.cpp:298] Memory required for data: 8086808 | |
I0812 15:00:42.444296 8934 solver.cpp:49] Solver scaffolding done. | |
I0812 15:00:42.449823 8934 parallel.cpp:392] GPUs pairs 1:2, 0:1 | |
I0812 15:00:42.683681 8934 data_layer.cpp:44] output data size: 64,1,28,28 | |
I0812 15:00:42.713794 8934 parallel.cpp:235] GPU 1 does not have p2p access to GPU 0 | |
I0812 15:00:42.901604 8934 data_layer.cpp:44] output data size: 64,1,28,28 | |
I0812 15:00:42.927168 8934 parallel.cpp:420] Starting Optimization | |
I0812 15:00:42.927347 8934 solver.cpp:265] Solving LeNet | |
I0812 15:00:42.927376 8934 solver.cpp:266] Learning Rate Policy: inv | |
I0812 15:00:42.927517 8934 solver.cpp:310] Iteration 0, Testing net (#0) | |
I0812 15:00:44.810916 8934 solver.cpp:359] Test net output #0: accuracy = 0.1171 | |
I0812 15:00:44.810952 8934 solver.cpp:359] Test net output #1: loss = 2.39372 (* 1 = 2.39372 loss) | |
I0812 15:00:44.841032 8934 solver.cpp:222] Iteration 0, loss = 2.34509 | |
I0812 15:00:44.841334 8934 solver.cpp:238] Train net output #0: loss = 2.34509 (* 1 = 2.34509 loss) | |
I0812 15:00:44.935735 8934 solver.cpp:517] Iteration 0, lr = 0.01 | |
I0812 15:00:53.956465 8934 solver.cpp:222] Iteration 100, loss = 0.259395 | |
I0812 15:00:53.956553 8934 solver.cpp:238] Train net output #0: loss = 0.259395 (* 1 = 0.259395 loss) | |
I0812 15:00:54.048570 8934 solver.cpp:517] Iteration 100, lr = 0.00992565 | |
I0812 15:01:02.986958 8934 solver.cpp:222] Iteration 200, loss = 0.220586 | |
I0812 15:01:02.996296 8934 solver.cpp:238] Train net output #0: loss = 0.220586 (* 1 = 0.220586 loss) | |
I0812 15:01:03.059922 8934 solver.cpp:517] Iteration 200, lr = 0.00985258 | |
I0812 15:01:11.830909 8934 solver.cpp:222] Iteration 300, loss = 0.113429 | |
I0812 15:01:11.830996 8934 solver.cpp:238] Train net output #0: loss = 0.113429 (* 1 = 0.113429 loss) | |
I0812 15:01:11.901401 8934 solver.cpp:517] Iteration 300, lr = 0.00978075 | |
I0812 15:01:20.998740 8934 solver.cpp:222] Iteration 400, loss = 0.120896 | |
I0812 15:01:20.998869 8934 solver.cpp:238] Train net output #0: loss = 0.120896 (* 1 = 0.120896 loss) | |
I0812 15:01:21.048179 8934 solver.cpp:517] Iteration 400, lr = 0.00971013 | |
I0812 15:01:30.206492 8934 solver.cpp:310] Iteration 500, Testing net (#0) | |
I0812 15:01:32.418656 8934 solver.cpp:359] Test net output #0: accuracy = 0.9734 | |
I0812 15:01:32.418691 8934 solver.cpp:359] Test net output #1: loss = 0.0829207 (* 1 = 0.0829207 loss) | |
I0812 15:01:32.430511 8934 solver.cpp:222] Iteration 500, loss = 0.0747729 | |
I0812 15:01:32.430588 8934 solver.cpp:238] Train net output #0: loss = 0.074773 (* 1 = 0.074773 loss) | |
I0812 15:01:32.521658 8934 solver.cpp:517] Iteration 500, lr = 0.00964069 | |
I0812 15:01:41.482954 8934 solver.cpp:222] Iteration 600, loss = 0.0415598 | |
I0812 15:01:41.482987 8934 solver.cpp:238] Train net output #0: loss = 0.0415598 (* 1 = 0.0415598 loss) | |
I0812 15:01:41.521524 8934 solver.cpp:517] Iteration 600, lr = 0.0095724 | |
I0812 15:01:50.894820 8934 solver.cpp:222] Iteration 700, loss = 0.0332583 | |
I0812 15:01:50.895135 8934 solver.cpp:238] Train net output #0: loss = 0.0332583 (* 1 = 0.0332583 loss) | |
I0812 15:01:50.970991 8934 solver.cpp:517] Iteration 700, lr = 0.00950522 | |
I0812 15:01:59.864426 8934 solver.cpp:222] Iteration 800, loss = 0.155629 | |
I0812 15:01:59.864567 8934 solver.cpp:238] Train net output #0: loss = 0.155629 (* 1 = 0.155629 loss) | |
I0812 15:01:59.948451 8934 solver.cpp:517] Iteration 800, lr = 0.00943913 | |
I0812 15:02:08.614575 8934 solver.cpp:222] Iteration 900, loss = 0.319555 | |
I0812 15:02:08.614662 8934 solver.cpp:238] Train net output #0: loss = 0.319555 (* 1 = 0.319555 loss) | |
I0812 15:02:08.665554 8934 solver.cpp:517] Iteration 900, lr = 0.00937411 | |
I0812 15:02:17.566509 8934 solver.cpp:310] Iteration 1000, Testing net (#0) | |
I0812 15:02:19.273252 8934 solver.cpp:359] Test net output #0: accuracy = 0.9828 | |
I0812 15:02:19.273288 8934 solver.cpp:359] Test net output #1: loss = 0.0536248 (* 1 = 0.0536248 loss) | |
I0812 15:02:19.303689 8934 solver.cpp:222] Iteration 1000, loss = 0.0737256 | |
I0812 15:02:19.303783 8934 solver.cpp:238] Train net output #0: loss = 0.0737256 (* 1 = 0.0737256 loss) | |
I0812 15:02:19.373178 8934 solver.cpp:517] Iteration 1000, lr = 0.00931012 | |
I0812 15:02:28.194737 8934 solver.cpp:222] Iteration 1100, loss = 0.0279671 | |
I0812 15:02:28.194826 8934 solver.cpp:238] Train net output #0: loss = 0.0279672 (* 1 = 0.0279672 loss) | |
I0812 15:02:28.288879 8934 solver.cpp:517] Iteration 1100, lr = 0.00924715 | |
I0812 15:02:36.924510 8934 solver.cpp:222] Iteration 1200, loss = 0.0784045 | |
I0812 15:02:36.924669 8934 solver.cpp:238] Train net output #0: loss = 0.0784045 (* 1 = 0.0784045 loss) | |
I0812 15:02:36.992279 8934 solver.cpp:517] Iteration 1200, lr = 0.00918515 | |
I0812 15:02:45.303750 8934 solver.cpp:222] Iteration 1300, loss = 0.0156678 | |
I0812 15:02:45.303838 8934 solver.cpp:238] Train net output #0: loss = 0.0156679 (* 1 = 0.0156679 loss) | |
I0812 15:02:45.361748 8934 solver.cpp:517] Iteration 1300, lr = 0.00912412 | |
I0812 15:02:54.148757 8934 solver.cpp:222] Iteration 1400, loss = 0.0158745 | |
I0812 15:02:54.149096 8934 solver.cpp:238] Train net output #0: loss = 0.0158746 (* 1 = 0.0158746 loss) | |
I0812 15:02:54.246583 8934 solver.cpp:517] Iteration 1400, lr = 0.00906403 | |
I0812 15:03:03.047662 8934 solver.cpp:310] Iteration 1500, Testing net (#0) | |
I0812 15:03:04.570204 8934 solver.cpp:359] Test net output #0: accuracy = 0.9851 | |
I0812 15:03:04.570343 8934 solver.cpp:359] Test net output #1: loss = 0.0448866 (* 1 = 0.0448866 loss) | |
I0812 15:03:04.599284 8934 solver.cpp:222] Iteration 1500, loss = 0.022271 | |
I0812 15:03:04.599364 8934 solver.cpp:238] Train net output #0: loss = 0.0222711 (* 1 = 0.0222711 loss) | |
I0812 15:03:04.652730 8934 solver.cpp:517] Iteration 1500, lr = 0.00900485 | |
I0812 15:03:13.586694 8934 solver.cpp:222] Iteration 1600, loss = 0.0805327 | |
I0812 15:03:13.586817 8934 solver.cpp:238] Train net output #0: loss = 0.0805328 (* 1 = 0.0805328 loss) | |
I0812 15:03:13.669781 8934 solver.cpp:517] Iteration 1600, lr = 0.00894657 | |
I0812 15:03:22.720105 8934 solver.cpp:222] Iteration 1700, loss = 0.0096161 | |
I0812 15:03:22.720190 8934 solver.cpp:238] Train net output #0: loss = 0.00961622 (* 1 = 0.00961622 loss) | |
I0812 15:03:22.766216 8934 solver.cpp:517] Iteration 1700, lr = 0.00888916 | |
I0812 15:03:31.639554 8934 solver.cpp:222] Iteration 1800, loss = 0.0161298 | |
I0812 15:03:31.639643 8934 solver.cpp:238] Train net output #0: loss = 0.0161299 (* 1 = 0.0161299 loss) | |
I0812 15:03:31.682180 8934 solver.cpp:517] Iteration 1800, lr = 0.0088326 | |
I0812 15:03:40.716598 8934 solver.cpp:222] Iteration 1900, loss = 0.0170069 | |
I0812 15:03:40.716635 8934 solver.cpp:238] Train net output #0: loss = 0.017007 (* 1 = 0.017007 loss) | |
I0812 15:03:40.811696 8934 solver.cpp:517] Iteration 1900, lr = 0.00877687 | |
I0812 15:03:49.782884 8934 solver.cpp:310] Iteration 2000, Testing net (#0) | |
I0812 15:03:51.654955 8934 solver.cpp:359] Test net output #0: accuracy = 0.9884 | |
I0812 15:03:51.654990 8934 solver.cpp:359] Test net output #1: loss = 0.0382701 (* 1 = 0.0382701 loss) | |
I0812 15:03:51.666371 8934 solver.cpp:222] Iteration 2000, loss = 0.0166309 | |
I0812 15:03:51.666401 8934 solver.cpp:238] Train net output #0: loss = 0.016631 (* 1 = 0.016631 loss) | |
I0812 15:03:51.728466 8934 solver.cpp:517] Iteration 2000, lr = 0.00872196 | |
I0812 15:04:00.866591 8934 solver.cpp:222] Iteration 2100, loss = 0.0416569 | |
I0812 15:04:00.866627 8934 solver.cpp:238] Train net output #0: loss = 0.041657 (* 1 = 0.041657 loss) | |
I0812 15:04:00.943202 8934 solver.cpp:517] Iteration 2100, lr = 0.00866784 | |
I0812 15:04:09.844360 8934 solver.cpp:222] Iteration 2200, loss = 0.00415214 | |
I0812 15:04:09.844445 8934 solver.cpp:238] Train net output #0: loss = 0.00415225 (* 1 = 0.00415225 loss) | |
I0812 15:04:09.907941 8934 solver.cpp:517] Iteration 2200, lr = 0.0086145 | |
I0812 15:04:18.904716 8934 solver.cpp:222] Iteration 2300, loss = 0.00498838 | |
I0812 15:04:18.904753 8934 solver.cpp:238] Train net output #0: loss = 0.00498849 (* 1 = 0.00498849 loss) | |
I0812 15:04:18.929219 8934 solver.cpp:517] Iteration 2300, lr = 0.00856192 | |
I0812 15:04:28.018985 8934 solver.cpp:222] Iteration 2400, loss = 0.0357902 | |
I0812 15:04:28.019296 8934 solver.cpp:238] Train net output #0: loss = 0.0357903 (* 1 = 0.0357903 loss) | |
I0812 15:04:28.066203 8934 solver.cpp:517] Iteration 2400, lr = 0.00851008 | |
I0812 15:04:37.121809 8934 solver.cpp:310] Iteration 2500, Testing net (#0) | |
I0812 15:04:39.005237 8934 solver.cpp:359] Test net output #0: accuracy = 0.9871 | |
I0812 15:04:39.005322 8934 solver.cpp:359] Test net output #1: loss = 0.0386158 (* 1 = 0.0386158 loss) | |
I0812 15:04:39.036412 8934 solver.cpp:222] Iteration 2500, loss = 0.0279232 | |
I0812 15:04:39.036489 8934 solver.cpp:238] Train net output #0: loss = 0.0279233 (* 1 = 0.0279233 loss) | |
I0812 15:04:39.127079 8934 solver.cpp:517] Iteration 2500, lr = 0.00845897 | |
I0812 15:04:48.024590 8934 solver.cpp:222] Iteration 2600, loss = 0.0129841 | |
I0812 15:04:48.024677 8934 solver.cpp:238] Train net output #0: loss = 0.0129842 (* 1 = 0.0129842 loss) | |
I0812 15:04:48.087580 8934 solver.cpp:517] Iteration 2600, lr = 0.00840857 | |
I0812 15:04:57.082221 8934 solver.cpp:222] Iteration 2700, loss = 0.0233948 | |
I0812 15:04:57.082298 8934 solver.cpp:238] Train net output #0: loss = 0.0233949 (* 1 = 0.0233949 loss) | |
I0812 15:04:57.195091 8934 solver.cpp:517] Iteration 2700, lr = 0.00835886 | |
I0812 15:05:06.519223 8934 solver.cpp:222] Iteration 2800, loss = 0.0220501 | |
I0812 15:05:06.519353 8934 solver.cpp:238] Train net output #0: loss = 0.0220502 (* 1 = 0.0220502 loss) | |
I0812 15:05:06.542099 8934 solver.cpp:517] Iteration 2800, lr = 0.00830984 | |
I0812 15:05:15.537714 8934 solver.cpp:222] Iteration 2900, loss = 0.020445 | |
I0812 15:05:15.537787 8934 solver.cpp:238] Train net output #0: loss = 0.0204451 (* 1 = 0.0204451 loss) | |
I0812 15:05:15.594329 8934 solver.cpp:517] Iteration 2900, lr = 0.00826148 | |
I0812 15:05:24.883646 8934 solver.cpp:310] Iteration 3000, Testing net (#0) | |
I0812 15:05:26.701876 8934 solver.cpp:359] Test net output #0: accuracy = 0.9886 | |
I0812 15:05:26.701910 8934 solver.cpp:359] Test net output #1: loss = 0.032208 (* 1 = 0.032208 loss) | |
I0812 15:05:26.730984 8934 solver.cpp:222] Iteration 3000, loss = 0.0241014 | |
I0812 15:05:26.731063 8934 solver.cpp:238] Train net output #0: loss = 0.0241016 (* 1 = 0.0241016 loss) | |
I0812 15:05:26.783557 8934 solver.cpp:517] Iteration 3000, lr = 0.00821377 | |
I0812 15:05:35.732266 8934 solver.cpp:222] Iteration 3100, loss = 0.0201092 | |
I0812 15:05:35.732301 8934 solver.cpp:238] Train net output #0: loss = 0.0201094 (* 1 = 0.0201094 loss) | |
I0812 15:05:35.808251 8934 solver.cpp:517] Iteration 3100, lr = 0.0081667 | |
I0812 15:05:44.867094 8934 solver.cpp:222] Iteration 3200, loss = 0.00797207 | |
I0812 15:05:44.867220 8934 solver.cpp:238] Train net output #0: loss = 0.00797222 (* 1 = 0.00797222 loss) | |
I0812 15:05:44.948299 8934 solver.cpp:517] Iteration 3200, lr = 0.00812025 | |
I0812 15:05:53.949679 8934 solver.cpp:222] Iteration 3300, loss = 0.012678 | |
I0812 15:05:53.949769 8934 solver.cpp:238] Train net output #0: loss = 0.0126782 (* 1 = 0.0126782 loss) | |
I0812 15:05:54.064254 8934 solver.cpp:517] Iteration 3300, lr = 0.00807442 | |
I0812 15:06:03.066782 8934 solver.cpp:222] Iteration 3400, loss = 0.0928055 | |
I0812 15:06:03.066819 8934 solver.cpp:238] Train net output #0: loss = 0.0928057 (* 1 = 0.0928057 loss) | |
I0812 15:06:03.136878 8934 solver.cpp:517] Iteration 3400, lr = 0.00802918 | |
I0812 15:06:12.386310 8934 solver.cpp:310] Iteration 3500, Testing net (#0) | |
I0812 15:06:14.325238 8934 solver.cpp:359] Test net output #0: accuracy = 0.9902 | |
I0812 15:06:14.325274 8934 solver.cpp:359] Test net output #1: loss = 0.029976 (* 1 = 0.029976 loss) | |
I0812 15:06:14.362886 8934 solver.cpp:222] Iteration 3500, loss = 0.0376475 | |
I0812 15:06:14.362972 8934 solver.cpp:238] Train net output #0: loss = 0.0376476 (* 1 = 0.0376476 loss) | |
I0812 15:06:14.381422 8934 solver.cpp:517] Iteration 3500, lr = 0.00798454 | |
I0812 15:06:23.279611 8934 solver.cpp:222] Iteration 3600, loss = 0.00911815 | |
I0812 15:06:23.279723 8934 solver.cpp:238] Train net output #0: loss = 0.00911829 (* 1 = 0.00911829 loss) | |
I0812 15:06:23.314371 8934 solver.cpp:517] Iteration 3600, lr = 0.00794046 | |
I0812 15:06:32.182525 8934 solver.cpp:222] Iteration 3700, loss = 0.0182947 | |
I0812 15:06:32.182616 8934 solver.cpp:238] Train net output #0: loss = 0.0182949 (* 1 = 0.0182949 loss) | |
I0812 15:06:32.245113 8934 solver.cpp:517] Iteration 3700, lr = 0.00789695 | |
I0812 15:06:41.339375 8934 solver.cpp:222] Iteration 3800, loss = 0.00605706 | |
I0812 15:06:41.339462 8934 solver.cpp:238] Train net output #0: loss = 0.00605719 (* 1 = 0.00605719 loss) | |
I0812 15:06:41.423751 8934 solver.cpp:517] Iteration 3800, lr = 0.007854 | |
I0812 15:06:50.360689 8934 solver.cpp:222] Iteration 3900, loss = 0.00607884 | |
I0812 15:06:50.360779 8934 solver.cpp:238] Train net output #0: loss = 0.00607896 (* 1 = 0.00607896 loss) | |
I0812 15:06:50.407685 8934 solver.cpp:517] Iteration 3900, lr = 0.00781158 | |
I0812 15:06:59.592584 8934 solver.cpp:310] Iteration 4000, Testing net (#0) | |
I0812 15:07:01.409979 8934 solver.cpp:359] Test net output #0: accuracy = 0.9899 | |
I0812 15:07:01.410017 8934 solver.cpp:359] Test net output #1: loss = 0.0315973 (* 1 = 0.0315973 loss) | |
I0812 15:07:01.440788 8934 solver.cpp:222] Iteration 4000, loss = 0.00715784 | |
I0812 15:07:01.440866 8934 solver.cpp:238] Train net output #0: loss = 0.00715796 (* 1 = 0.00715796 loss) | |
I0812 15:07:01.498203 8934 solver.cpp:517] Iteration 4000, lr = 0.0077697 | |
I0812 15:07:10.408756 8934 solver.cpp:222] Iteration 4100, loss = 0.0181035 | |
I0812 15:07:10.408840 8934 solver.cpp:238] Train net output #0: loss = 0.0181036 (* 1 = 0.0181036 loss) | |
I0812 15:07:10.496220 8934 solver.cpp:517] Iteration 4100, lr = 0.00772833 | |
I0812 15:07:19.468960 8934 solver.cpp:222] Iteration 4200, loss = 0.00506859 | |
I0812 15:07:19.469070 8934 solver.cpp:238] Train net output #0: loss = 0.0050687 (* 1 = 0.0050687 loss) | |
I0812 15:07:19.563653 8934 solver.cpp:517] Iteration 4200, lr = 0.00768748 | |
I0812 15:07:28.463631 8934 solver.cpp:222] Iteration 4300, loss = 0.00685792 | |
I0812 15:07:28.463716 8934 solver.cpp:238] Train net output #0: loss = 0.00685804 (* 1 = 0.00685804 loss) | |
I0812 15:07:28.573341 8934 solver.cpp:517] Iteration 4300, lr = 0.00764712 | |
I0812 15:07:37.770794 8934 solver.cpp:222] Iteration 4400, loss = 0.00494956 | |
I0812 15:07:37.772317 8934 solver.cpp:238] Train net output #0: loss = 0.00494967 (* 1 = 0.00494967 loss) | |
I0812 15:07:37.867321 8934 solver.cpp:517] Iteration 4400, lr = 0.00760726 | |
I0812 15:07:47.014811 8934 solver.cpp:310] Iteration 4500, Testing net (#0) | |
I0812 15:07:49.268638 8934 solver.cpp:359] Test net output #0: accuracy = 0.9906 | |
I0812 15:07:49.268673 8934 solver.cpp:359] Test net output #1: loss = 0.02887 (* 1 = 0.02887 loss) | |
I0812 15:07:49.280167 8934 solver.cpp:222] Iteration 4500, loss = 0.00429833 | |
I0812 15:07:49.280246 8934 solver.cpp:238] Train net output #0: loss = 0.00429844 (* 1 = 0.00429844 loss) | |
I0812 15:07:49.304939 8934 solver.cpp:517] Iteration 4500, lr = 0.00756788 | |
I0812 15:07:58.014494 8934 solver.cpp:222] Iteration 4600, loss = 0.00628843 | |
I0812 15:07:58.014528 8934 solver.cpp:238] Train net output #0: loss = 0.00628854 (* 1 = 0.00628854 loss) | |
I0812 15:07:58.130872 8934 solver.cpp:517] Iteration 4600, lr = 0.00752897 | |
I0812 15:08:07.087723 8934 solver.cpp:222] Iteration 4700, loss = 0.000914029 | |
I0812 15:08:07.091270 8934 solver.cpp:238] Train net output #0: loss = 0.000914142 (* 1 = 0.000914142 loss) | |
I0812 15:08:07.159850 8934 solver.cpp:517] Iteration 4700, lr = 0.00749052 | |
I0812 15:08:16.295464 8934 solver.cpp:222] Iteration 4800, loss = 0.000818103 | |
I0812 15:08:16.295585 8934 solver.cpp:238] Train net output #0: loss = 0.000818218 (* 1 = 0.000818218 loss) | |
I0812 15:08:16.340133 8934 solver.cpp:517] Iteration 4800, lr = 0.00745253 | |
I0812 15:08:25.389153 8934 solver.cpp:222] Iteration 4900, loss = 0.0150521 | |
I0812 15:08:25.389377 8934 solver.cpp:238] Train net output #0: loss = 0.0150522 (* 1 = 0.0150522 loss) | |
I0812 15:08:25.444224 8934 solver.cpp:517] Iteration 4900, lr = 0.00741498 | |
I0812 15:08:34.499964 8934 solver.cpp:395] Snapshotting to binary proto file examples/mnist/lenet_iter_5000.caffemodel | |
I0812 15:08:34.511214 8934 solver.cpp:680] Snapshotting solver state to binary proto fileexamples/mnist/lenet_iter_5000.solverstate | |
I0812 15:08:34.515492 8934 solver.cpp:310] Iteration 5000, Testing net (#0) | |
I0812 15:08:36.037077 8934 solver.cpp:359] Test net output #0: accuracy = 0.9896 | |
I0812 15:08:36.037163 8934 solver.cpp:359] Test net output #1: loss = 0.0328394 (* 1 = 0.0328394 loss) | |
I0812 15:08:36.069629 8934 solver.cpp:222] Iteration 5000, loss = 0.0221282 | |
I0812 15:08:36.069816 8934 solver.cpp:238] Train net output #0: loss = 0.0221283 (* 1 = 0.0221283 loss) | |
I0812 15:08:36.117702 8934 solver.cpp:517] Iteration 5000, lr = 0.00737788 | |
I0812 15:08:45.425815 8934 solver.cpp:222] Iteration 5100, loss = 0.0028408 | |
I0812 15:08:45.425850 8934 solver.cpp:238] Train net output #0: loss = 0.00284091 (* 1 = 0.00284091 loss) | |
I0812 15:08:45.514688 8934 solver.cpp:517] Iteration 5100, lr = 0.0073412 | |
I0812 15:08:54.635145 8934 solver.cpp:222] Iteration 5200, loss = 0.0174867 | |
I0812 15:08:54.635305 8934 solver.cpp:238] Train net output #0: loss = 0.0174868 (* 1 = 0.0174868 loss) | |
I0812 15:08:54.706445 8934 solver.cpp:517] Iteration 5200, lr = 0.00730495 | |
I0812 15:09:03.833523 8934 solver.cpp:222] Iteration 5300, loss = 0.0100477 | |
I0812 15:09:03.833560 8934 solver.cpp:238] Train net output #0: loss = 0.0100478 (* 1 = 0.0100478 loss) | |
I0812 15:09:03.929847 8934 solver.cpp:517] Iteration 5300, lr = 0.00726911 | |
I0812 15:09:12.852756 8934 solver.cpp:222] Iteration 5400, loss = 0.0106576 | |
I0812 15:09:12.852849 8934 solver.cpp:238] Train net output #0: loss = 0.0106577 (* 1 = 0.0106577 loss) | |
I0812 15:09:12.963768 8934 solver.cpp:517] Iteration 5400, lr = 0.00723368 | |
I0812 15:09:22.129829 8934 solver.cpp:310] Iteration 5500, Testing net (#0) | |
I0812 15:09:24.004926 8934 solver.cpp:359] Test net output #0: accuracy = 0.9903 | |
I0812 15:09:24.004957 8934 solver.cpp:359] Test net output #1: loss = 0.0280474 (* 1 = 0.0280474 loss) | |
I0812 15:09:24.016491 8934 solver.cpp:222] Iteration 5500, loss = 0.0179802 | |
I0812 15:09:24.016526 8934 solver.cpp:238] Train net output #0: loss = 0.0179803 (* 1 = 0.0179803 loss) | |
I0812 15:09:24.041682 8934 solver.cpp:517] Iteration 5500, lr = 0.00719865 | |
I0812 15:09:32.959800 8934 solver.cpp:222] Iteration 5600, loss = 0.0115019 | |
I0812 15:09:32.959924 8934 solver.cpp:238] Train net output #0: loss = 0.0115021 (* 1 = 0.0115021 loss) | |
I0812 15:09:33.076342 8934 solver.cpp:517] Iteration 5600, lr = 0.00716402 | |
I0812 15:09:41.954908 8934 solver.cpp:222] Iteration 5700, loss = 0.0016562 | |
I0812 15:09:41.954982 8934 solver.cpp:238] Train net output #0: loss = 0.0016563 (* 1 = 0.0016563 loss) | |
I0812 15:09:42.058688 8934 solver.cpp:517] Iteration 5700, lr = 0.00712977 | |
I0812 15:09:51.092350 8934 solver.cpp:222] Iteration 5800, loss = 0.00438052 | |
I0812 15:09:51.092428 8934 solver.cpp:238] Train net output #0: loss = 0.00438063 (* 1 = 0.00438063 loss) | |
I0812 15:09:51.111524 8934 solver.cpp:517] Iteration 5800, lr = 0.0070959 | |
I0812 15:10:00.229512 8934 solver.cpp:222] Iteration 5900, loss = 0.0425145 | |
I0812 15:10:00.229599 8934 solver.cpp:238] Train net output #0: loss = 0.0425146 (* 1 = 0.0425146 loss) | |
I0812 15:10:00.343152 8934 solver.cpp:517] Iteration 5900, lr = 0.0070624 | |
I0812 15:10:09.415284 8934 solver.cpp:310] Iteration 6000, Testing net (#0) | |
I0812 15:10:11.496309 8934 solver.cpp:359] Test net output #0: accuracy = 0.9896 | |
I0812 15:10:11.496342 8934 solver.cpp:359] Test net output #1: loss = 0.0310988 (* 1 = 0.0310988 loss) | |
I0812 15:10:11.506505 8934 solver.cpp:222] Iteration 6000, loss = 0.024175 | |
I0812 15:10:11.506533 8934 solver.cpp:238] Train net output #0: loss = 0.0241751 (* 1 = 0.0241751 loss) | |
I0812 15:10:11.570771 8934 solver.cpp:517] Iteration 6000, lr = 0.00702927 | |
I0812 15:10:20.583513 8934 solver.cpp:222] Iteration 6100, loss = 0.00508203 | |
I0812 15:10:20.583612 8934 solver.cpp:238] Train net output #0: loss = 0.00508214 (* 1 = 0.00508214 loss) | |
I0812 15:10:20.703438 8934 solver.cpp:517] Iteration 6100, lr = 0.0069965 | |
I0812 15:10:29.704063 8934 solver.cpp:222] Iteration 6200, loss = 0.00718511 | |
I0812 15:10:29.704149 8934 solver.cpp:238] Train net output #0: loss = 0.00718522 (* 1 = 0.00718522 loss) | |
I0812 15:10:29.820086 8934 solver.cpp:517] Iteration 6200, lr = 0.00696408 | |
I0812 15:10:38.826932 8934 solver.cpp:222] Iteration 6300, loss = 0.00189943 | |
I0812 15:10:38.826966 8934 solver.cpp:238] Train net output #0: loss = 0.00189954 (* 1 = 0.00189954 loss) | |
I0812 15:10:38.860199 8934 solver.cpp:517] Iteration 6300, lr = 0.00693201 | |
I0812 15:10:47.882072 8934 solver.cpp:222] Iteration 6400, loss = 0.00205551 | |
I0812 15:10:47.882189 8934 solver.cpp:238] Train net output #0: loss = 0.00205561 (* 1 = 0.00205561 loss) | |
I0812 15:10:47.961988 8934 solver.cpp:517] Iteration 6400, lr = 0.00690029 | |
I0812 15:10:56.863453 8934 solver.cpp:310] Iteration 6500, Testing net (#0) | |
I0812 15:10:59.112794 8934 solver.cpp:359] Test net output #0: accuracy = 0.9892 | |
I0812 15:10:59.112825 8934 solver.cpp:359] Test net output #1: loss = 0.0309178 (* 1 = 0.0309178 loss) | |
I0812 15:10:59.124754 8934 solver.cpp:222] Iteration 6500, loss = 0.00429155 | |
I0812 15:10:59.124832 8934 solver.cpp:238] Train net output #0: loss = 0.00429165 (* 1 = 0.00429165 loss) | |
I0812 15:10:59.205926 8934 solver.cpp:517] Iteration 6500, lr = 0.0068689 | |
I0812 15:11:08.017499 8934 solver.cpp:222] Iteration 6600, loss = 0.0103716 | |
I0812 15:11:08.017586 8934 solver.cpp:238] Train net output #0: loss = 0.0103717 (* 1 = 0.0103717 loss) | |
I0812 15:11:08.069288 8934 solver.cpp:517] Iteration 6600, lr = 0.00683784 | |
I0812 15:11:17.202719 8934 solver.cpp:222] Iteration 6700, loss = 0.00595986 | |
I0812 15:11:17.202792 8934 solver.cpp:238] Train net output #0: loss = 0.00595996 (* 1 = 0.00595996 loss) | |
I0812 15:11:17.305418 8934 solver.cpp:517] Iteration 6700, lr = 0.00680711 | |
I0812 15:11:26.384793 8934 solver.cpp:222] Iteration 6800, loss = 0.00682748 | |
I0812 15:11:26.385243 8934 solver.cpp:238] Train net output #0: loss = 0.00682758 (* 1 = 0.00682758 loss) | |
I0812 15:11:26.455240 8934 solver.cpp:517] Iteration 6800, lr = 0.0067767 | |
I0812 15:11:35.483453 8934 solver.cpp:222] Iteration 6900, loss = 0.00190708 | |
I0812 15:11:35.483487 8934 solver.cpp:238] Train net output #0: loss = 0.00190719 (* 1 = 0.00190719 loss) | |
I0812 15:11:35.534250 8934 solver.cpp:517] Iteration 6900, lr = 0.0067466 | |
I0812 15:11:44.375579 8934 solver.cpp:310] Iteration 7000, Testing net (#0) | |
I0812 15:11:46.136260 8934 solver.cpp:359] Test net output #0: accuracy = 0.991 | |
I0812 15:11:46.136289 8934 solver.cpp:359] Test net output #1: loss = 0.0276416 (* 1 = 0.0276416 loss) | |
I0812 15:11:46.148154 8934 solver.cpp:222] Iteration 7000, loss = 0.00189898 | |
I0812 15:11:46.148188 8934 solver.cpp:238] Train net output #0: loss = 0.00189909 (* 1 = 0.00189909 loss) | |
I0812 15:11:46.176205 8934 solver.cpp:517] Iteration 7000, lr = 0.00671681 | |
I0812 15:11:54.379050 8934 solver.cpp:222] Iteration 7100, loss = 0.00385309 | |
I0812 15:11:54.379124 8934 solver.cpp:238] Train net output #0: loss = 0.0038532 (* 1 = 0.0038532 loss) | |
I0812 15:11:54.433017 8934 solver.cpp:517] Iteration 7100, lr = 0.00668733 | |
I0812 15:12:02.811902 8934 solver.cpp:222] Iteration 7200, loss = 0.000648332 | |
I0812 15:12:02.812017 8934 solver.cpp:238] Train net output #0: loss = 0.000648438 (* 1 = 0.000648438 loss) | |
I0812 15:12:02.856523 8934 solver.cpp:517] Iteration 7200, lr = 0.00665815 | |
I0812 15:12:11.316092 8934 solver.cpp:222] Iteration 7300, loss = 0.000467351 | |
I0812 15:12:11.316174 8934 solver.cpp:238] Train net output #0: loss = 0.000467456 (* 1 = 0.000467456 loss) | |
I0812 15:12:11.387338 8934 solver.cpp:517] Iteration 7300, lr = 0.00662927 | |
I0812 15:12:19.648627 8934 solver.cpp:222] Iteration 7400, loss = 0.0100936 | |
I0812 15:12:19.648660 8934 solver.cpp:238] Train net output #0: loss = 0.0100937 (* 1 = 0.0100937 loss) | |
I0812 15:12:19.726174 8934 solver.cpp:517] Iteration 7400, lr = 0.00660067 | |
I0812 15:12:27.860529 8934 solver.cpp:310] Iteration 7500, Testing net (#0) | |
I0812 15:12:29.803882 8934 solver.cpp:359] Test net output #0: accuracy = 0.9905 | |
I0812 15:12:29.803916 8934 solver.cpp:359] Test net output #1: loss = 0.0296367 (* 1 = 0.0296367 loss) | |
I0812 15:12:29.835386 8934 solver.cpp:222] Iteration 7500, loss = 0.0135883 | |
I0812 15:12:29.835468 8934 solver.cpp:238] Train net output #0: loss = 0.0135884 (* 1 = 0.0135884 loss) | |
I0812 15:12:29.851951 8934 solver.cpp:517] Iteration 7500, lr = 0.00657236 | |
I0812 15:12:38.653424 8934 solver.cpp:222] Iteration 7600, loss = 0.00192597 | |
I0812 15:12:38.653540 8934 solver.cpp:238] Train net output #0: loss = 0.00192608 (* 1 = 0.00192608 loss) | |
I0812 15:12:38.666893 8934 solver.cpp:517] Iteration 7600, lr = 0.00654433 | |
I0812 15:12:47.777663 8934 solver.cpp:222] Iteration 7700, loss = 0.0122421 | |
I0812 15:12:47.777700 8934 solver.cpp:238] Train net output #0: loss = 0.0122422 (* 1 = 0.0122422 loss) | |
I0812 15:12:47.847755 8934 solver.cpp:517] Iteration 7700, lr = 0.00651658 | |
I0812 15:12:56.987732 8934 solver.cpp:222] Iteration 7800, loss = 0.00705013 | |
I0812 15:12:56.987818 8934 solver.cpp:238] Train net output #0: loss = 0.00705024 (* 1 = 0.00705024 loss) | |
I0812 15:12:57.055039 8934 solver.cpp:517] Iteration 7800, lr = 0.00648911 | |
I0812 15:13:05.894214 8934 solver.cpp:222] Iteration 7900, loss = 0.00460331 | |
I0812 15:13:05.894297 8934 solver.cpp:238] Train net output #0: loss = 0.00460342 (* 1 = 0.00460342 loss) | |
I0812 15:13:05.998929 8934 solver.cpp:517] Iteration 7900, lr = 0.0064619 | |
I0812 15:13:15.322681 8934 solver.cpp:310] Iteration 8000, Testing net (#0) | |
I0812 15:13:17.185226 8934 solver.cpp:359] Test net output #0: accuracy = 0.9906 | |
I0812 15:13:17.185304 8934 solver.cpp:359] Test net output #1: loss = 0.0265522 (* 1 = 0.0265522 loss) | |
I0812 15:13:17.216338 8934 solver.cpp:222] Iteration 8000, loss = 0.0135588 | |
I0812 15:13:17.216421 8934 solver.cpp:238] Train net output #0: loss = 0.013559 (* 1 = 0.013559 loss) | |
I0812 15:13:17.298643 8934 solver.cpp:517] Iteration 8000, lr = 0.00643496 | |
I0812 15:13:26.446269 8934 solver.cpp:222] Iteration 8100, loss = 0.00705471 | |
I0812 15:13:26.446355 8934 solver.cpp:238] Train net output #0: loss = 0.00705481 (* 1 = 0.00705481 loss) | |
I0812 15:13:26.499325 8934 solver.cpp:517] Iteration 8100, lr = 0.00640827 | |
I0812 15:13:35.745419 8934 solver.cpp:222] Iteration 8200, loss = 0.00144347 | |
I0812 15:13:35.745501 8934 solver.cpp:238] Train net output #0: loss = 0.00144357 (* 1 = 0.00144357 loss) | |
I0812 15:13:35.834023 8934 solver.cpp:517] Iteration 8200, lr = 0.00638185 | |
I0812 15:13:44.658489 8934 solver.cpp:222] Iteration 8300, loss = 0.00511854 | |
I0812 15:13:44.658574 8934 solver.cpp:238] Train net output #0: loss = 0.00511864 (* 1 = 0.00511864 loss) | |
I0812 15:13:44.710475 8934 solver.cpp:517] Iteration 8300, lr = 0.00635567 | |
I0812 15:13:53.553982 8934 solver.cpp:222] Iteration 8400, loss = 0.0271572 | |
I0812 15:13:53.554057 8934 solver.cpp:238] Train net output #0: loss = 0.0271573 (* 1 = 0.0271573 loss) | |
I0812 15:13:53.619370 8934 solver.cpp:517] Iteration 8400, lr = 0.00632975 | |
I0812 15:14:02.415545 8934 solver.cpp:310] Iteration 8500, Testing net (#0) | |
I0812 15:14:04.291296 8934 solver.cpp:359] Test net output #0: accuracy = 0.9895 | |
I0812 15:14:04.291326 8934 solver.cpp:359] Test net output #1: loss = 0.0309789 (* 1 = 0.0309789 loss) | |
I0812 15:14:04.302868 8934 solver.cpp:222] Iteration 8500, loss = 0.015714 | |
I0812 15:14:04.302906 8934 solver.cpp:238] Train net output #0: loss = 0.0157141 (* 1 = 0.0157141 loss) | |
I0812 15:14:04.328243 8934 solver.cpp:517] Iteration 8500, lr = 0.00630407 | |
I0812 15:14:12.892047 8934 solver.cpp:222] Iteration 8600, loss = 0.00425323 | |
I0812 15:14:12.892132 8934 solver.cpp:238] Train net output #0: loss = 0.00425334 (* 1 = 0.00425334 loss) | |
I0812 15:14:12.919698 8934 solver.cpp:517] Iteration 8600, lr = 0.00627864 | |
I0812 15:14:22.127713 8934 solver.cpp:222] Iteration 8700, loss = 0.00508571 | |
I0812 15:14:22.127817 8934 solver.cpp:238] Train net output #0: loss = 0.00508582 (* 1 = 0.00508582 loss) | |
I0812 15:14:22.196290 8934 solver.cpp:517] Iteration 8700, lr = 0.00625344 | |
I0812 15:14:31.163892 8934 solver.cpp:222] Iteration 8800, loss = 0.00125972 | |
I0812 15:14:31.164049 8934 solver.cpp:238] Train net output #0: loss = 0.00125983 (* 1 = 0.00125983 loss) | |
I0812 15:14:31.224545 8934 solver.cpp:517] Iteration 8800, lr = 0.00622847 | |
I0812 15:14:40.362598 8934 solver.cpp:222] Iteration 8900, loss = 0.0014759 | |
I0812 15:14:40.362864 8934 solver.cpp:238] Train net output #0: loss = 0.00147601 (* 1 = 0.00147601 loss) | |
I0812 15:14:40.454977 8934 solver.cpp:517] Iteration 8900, lr = 0.00620374 | |
I0812 15:14:49.448246 8934 solver.cpp:310] Iteration 9000, Testing net (#0) | |
I0812 15:14:51.062361 8934 solver.cpp:359] Test net output #0: accuracy = 0.9906 | |
I0812 15:14:51.062409 8934 solver.cpp:359] Test net output #1: loss = 0.02796 (* 1 = 0.02796 loss) | |
I0812 15:14:51.072724 8934 solver.cpp:222] Iteration 9000, loss = 0.00350029 | |
I0812 15:14:51.072757 8934 solver.cpp:238] Train net output #0: loss = 0.0035004 (* 1 = 0.0035004 loss) | |
I0812 15:14:51.148672 8934 solver.cpp:517] Iteration 9000, lr = 0.00617924 | |
I0812 15:14:59.800629 8934 solver.cpp:222] Iteration 9100, loss = 0.00817083 | |
I0812 15:14:59.800715 8934 solver.cpp:238] Train net output #0: loss = 0.00817095 (* 1 = 0.00817095 loss) | |
I0812 15:14:59.912013 8934 solver.cpp:517] Iteration 9100, lr = 0.00615496 | |
I0812 15:15:08.791244 8934 solver.cpp:222] Iteration 9200, loss = 0.00630721 | |
I0812 15:15:08.791373 8934 solver.cpp:238] Train net output #0: loss = 0.00630733 (* 1 = 0.00630733 loss) | |
I0812 15:15:08.904939 8934 solver.cpp:517] Iteration 9200, lr = 0.0061309 | |
I0812 15:15:17.983322 8934 solver.cpp:222] Iteration 9300, loss = 0.00714821 | |
I0812 15:15:17.983409 8934 solver.cpp:238] Train net output #0: loss = 0.00714833 (* 1 = 0.00714833 loss) | |
I0812 15:15:18.064748 8934 solver.cpp:517] Iteration 9300, lr = 0.00610706 | |
I0812 15:15:27.277515 8934 solver.cpp:222] Iteration 9400, loss = 0.0016361 | |
I0812 15:15:27.277743 8934 solver.cpp:238] Train net output #0: loss = 0.00163623 (* 1 = 0.00163623 loss) | |
I0812 15:15:27.334009 8934 solver.cpp:517] Iteration 9400, lr = 0.00608343 | |
I0812 15:15:36.018651 8934 solver.cpp:310] Iteration 9500, Testing net (#0) | |
I0812 15:15:38.153204 8934 solver.cpp:359] Test net output #0: accuracy = 0.991 | |
I0812 15:15:38.153237 8934 solver.cpp:359] Test net output #1: loss = 0.026864 (* 1 = 0.026864 loss) | |
I0812 15:15:38.164965 8934 solver.cpp:222] Iteration 9500, loss = 0.00147481 | |
I0812 15:15:38.165042 8934 solver.cpp:238] Train net output #0: loss = 0.00147493 (* 1 = 0.00147493 loss) | |
I0812 15:15:38.246574 8934 solver.cpp:517] Iteration 9500, lr = 0.00606002 | |
I0812 15:15:47.346539 8934 solver.cpp:222] Iteration 9600, loss = 0.00334556 | |
I0812 15:15:47.346612 8934 solver.cpp:238] Train net output #0: loss = 0.00334569 (* 1 = 0.00334569 loss) | |
I0812 15:15:47.402668 8934 solver.cpp:517] Iteration 9600, lr = 0.00603682 | |
I0812 15:15:56.393163 8934 solver.cpp:222] Iteration 9700, loss = 0.000684135 | |
I0812 15:15:56.393198 8934 solver.cpp:238] Train net output #0: loss = 0.00068426 (* 1 = 0.00068426 loss) | |
I0812 15:15:56.459017 8934 solver.cpp:517] Iteration 9700, lr = 0.00601382 | |
I0812 15:16:05.434850 8934 solver.cpp:222] Iteration 9800, loss = 0.000417975 | |
I0812 15:16:05.434936 8934 solver.cpp:238] Train net output #0: loss = 0.000418103 (* 1 = 0.000418103 loss) | |
I0812 15:16:05.505854 8934 solver.cpp:517] Iteration 9800, lr = 0.00599102 | |
I0812 15:16:14.228703 8934 solver.cpp:222] Iteration 9900, loss = 0.00772128 | |
I0812 15:16:14.228785 8934 solver.cpp:238] Train net output #0: loss = 0.00772141 (* 1 = 0.00772141 loss) | |
I0812 15:16:14.273255 8934 solver.cpp:517] Iteration 9900, lr = 0.00596843 | |
I0812 15:16:23.274432 8934 solver.cpp:395] Snapshotting to binary proto file examples/mnist/lenet_iter_10000.caffemodel | |
I0812 15:16:23.281019 8934 solver.cpp:680] Snapshotting solver state to binary proto fileexamples/mnist/lenet_iter_10000.solverstate | |
I0812 15:16:23.291081 8934 solver.cpp:291] Iteration 10000, loss = 0.010073 | |
I0812 15:16:23.291107 8934 solver.cpp:310] Iteration 10000, Testing net (#0) | |
I0812 15:16:24.803035 8934 solver.cpp:359] Test net output #0: accuracy = 0.9908 | |
I0812 15:16:24.803066 8934 solver.cpp:359] Test net output #1: loss = 0.0285205 (* 1 = 0.0285205 loss) | |
I0812 15:16:24.803072 8934 solver.cpp:296] Optimization Done. | |
I0812 15:16:24.815353 8934 caffe.cpp:184] Optimization Done. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment