Created
February 7, 2020 13:08
-
-
Save rosinality/b190bf2f3428e614f4f1f401a5f668a3 to your computer and use it in GitHub Desktop.
Perceptual loss implementation sample
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch import nn | |
from torchvision.models import vgg16, vgg16_bn, vgg19, vgg19_bn | |
class PerceptualLoss(nn.Module): | |
def __init__(self, arch, indices, weights, normalize=True, min_max=(-1, 1)): | |
super().__init__() | |
vgg = ( | |
{'vgg16': vgg16, 'vgg16_bn': vgg16_bn, 'vgg19': vgg19, 'vgg19_bn': vgg19_bn} | |
.get(arch)(pretrained=True) | |
.features | |
) | |
for p in vgg.parameters(): | |
p.requires_grad = False | |
self.slices = nn.ModuleList() | |
for i, j in zip([-1] + indices, indices + [None]): | |
if j is None: | |
break | |
self.slices.append(vgg[slice(i + 1, j + 1)]) | |
self.loss = nn.L1Loss() | |
self.weights = weights | |
mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1) | |
std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1) | |
val_range = min_max[1] - min_max[0] | |
mean = mean * (val_range) + min_max[0] | |
std = std * val_range | |
self.register_buffer('mean', mean) | |
self.register_buffer('std', std) | |
self.normalize = normalize | |
def forward(self, input, target): | |
if self.normalize: | |
input = (input - self.mean) / self.std | |
target = (target - self.mean) / self.std | |
feat1 = [] | |
feat2 = [] | |
out = input | |
for layer in self.slices: | |
out = layer(out) | |
feat1.append(out) | |
out = target | |
for layer in self.slices: | |
out = layer(out) | |
feat2.append(out) | |
loss = 0 | |
for w, f1, f2 in zip(self.weights, feat1, feat2): | |
loss += w * self.loss(f1, f2.detach()) | |
return loss |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment