Created
April 24, 2014 22:10
-
-
Save rossdylan/11271226 to your computer and use it in GitHub Desktop.
Silly way of generating all combinations of all permutations
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package cluster | |
import ( | |
"math/big" | |
"strings" | |
) | |
// Defines a chunk of search space | |
// Used to tell worker processes what to work on | |
type Chunk struct { | |
ChunkID int | |
ComboStart big.Int | |
ComboEnd big.Int | |
SearchSpace string | |
KeyLength int | |
} | |
// Simple recursive factorial function operating on *big.Int | |
func Factorial(n int64) *big.Int { | |
if n < 0 { | |
return big.NewInt(1) | |
} | |
if n == 0 { | |
return big.NewInt(1) | |
} | |
bigN := big.NewInt(n) | |
return bigN.Mul(bigN, Factorial(n-1)) | |
} | |
// Given a searchSpace generate all possible permutations and dump them into a channel | |
func GenreatePermutations(searchSpace []string, resultsChan chan string) { | |
var permLength = len(searchSpace) | |
permutation := make([]string, permLength) | |
copy(permutation, searchSpace) | |
for { | |
var greatestK = -1 | |
var greatestL = -1 | |
for index, value := range permutation { | |
if value < permutation[index+1] { | |
greatestK = index | |
} | |
} | |
if greatestK == -1 { | |
// No more permutations | |
resultsChan <- "" | |
break | |
} | |
for index, value := range permutation { | |
if permutation[greatestK] < value { | |
greatestL = index | |
} | |
} | |
permutation[greatestK], permutation[greatestL] = permutation[greatestL], permutation[greatestK] | |
var reverseIndex = 0 | |
for index, _ := range permutation[greatestK+1:] { | |
permutation[index], permutation[permLength-reverseIndex-1] = permutation[permLength-reverseIndex-1], permutation[index] | |
} | |
resultsChan <- strings.Join(permutation, "") | |
} | |
} | |
// This function takes in a bunch of information and spits out Chunk structs | |
// The Chunk struct is used to tell workers what to work on | |
// This function is in charge of figuring out how many chunks to make | |
// and then generates them and puts them into a channel to be consumed by the work assigner | |
func GenerateChunks(searchSpace string, keyLength, chunkSize int, chunkChan chan Chunk) { | |
maxCombos := NumCombinations(int64(len(searchSpace)), int64(keyLength)) | |
bigChunkSize := big.NewInt(int64(chunkSize)) | |
idCount := 0 | |
for index := big.NewInt(0); index.Cmp(maxCombos) < 0; index.Add(index, bigChunkSize) { | |
end := big.NewInt(0) | |
end.Add(index, bigChunkSize) | |
newChunk := Chunk{idCount, *index, *end, searchSpace, keyLength} | |
chunkChan <- newChunk | |
} | |
} | |
// Figure out the Nth combo of a keyLength-Combination of searchSpace | |
func NthCombo(searchSpace string, keyLength, Nth *big.Int) ([]int, string) { | |
combo := make([]string, keyLength) | |
intCombo := make([]int, keyLength) | |
searchSpaceLen := big.NewInt(len(searchSpace)) | |
maximum := Nth | |
for index := big.NewInt(0); index.Cmp(index, KeyLength) < 0; index.Add(index, big.NewInt(1)) { | |
greatestN := big.NewInt(0) | |
greatestIndex := big.NewInt(0) | |
for i := big.NewInt(1); i.Cmp(i, searchSpaceLen) < 0; i.Add(i, 1) { | |
numCombos := NumCombinations(i, int64(keyLength-index)) | |
if numCombos.Cmp(big.NewInt(maximum)) <= 0 { | |
greatestN = numCombos | |
greatestIndex = i | |
} else { | |
maximum = maximum - int64(greatestN.Uint64()) | |
break | |
} | |
} | |
combo[keyLength-index-1] = string(searchSpace[greatestIndex]) | |
intCombo[keyLength-index-1] = int(greatestIndex) | |
} | |
return intCombo, strings.Join(combo, "") | |
} | |
//Figure out the number of possible keyLength-combinations for searchSpace | |
func NumCombinations(searchSpace int64, keyLength int64) *big.Int { | |
//keyLength == k | |
//((n k)) | |
n := searchSpace | |
top := Factorial(n + keyLength - 1) | |
kFactorial := Factorial(keyLength) | |
n1Factorial := Factorial(n - 1) | |
bottom := kFactorial.Mul(kFactorial, n1Factorial) | |
combos := top.Div(top, bottom) | |
return combos | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment