Created
April 14, 2018 10:08
-
-
Save rotemtam/a1f92ab7f3444cf61da305539db4997b to your computer and use it in GitHub Desktop.
csv to tfrecord file
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Usage: | |
# From the data set dir | |
# Create train data: | |
python ../generate_tfrecord.py --csv_input=data/train_labels.csv --output_path=train.record | |
""" | |
from __future__ import division | |
from __future__ import print_function | |
from __future__ import absolute_import | |
import os | |
import io | |
import pandas as pd | |
import tensorflow as tf | |
from PIL import Image | |
from object_detection.utils import dataset_util | |
from collections import namedtuple, OrderedDict | |
flags = tf.app.flags | |
flags.DEFINE_string('csv_input', '', 'Path to the CSV input') | |
flags.DEFINE_string('output_path', '', 'Path to output TFRecord') | |
FLAGS = flags.FLAGS | |
# TO-DO replace this with label map | |
def class_text_to_int(row_label): | |
if row_label == 'license_plate': | |
return 1 | |
else: | |
None | |
def split(df, group): | |
data = namedtuple('data', ['filename', 'object']) | |
gb = df.groupby(group) | |
return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)] | |
def create_tf_example(group, path): | |
with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid: | |
encoded_jpg = fid.read() | |
encoded_jpg_io = io.BytesIO(encoded_jpg) | |
image = Image.open(encoded_jpg_io) | |
width, height = image.size | |
filename = group.filename.encode('utf8') | |
image_format = b'jpg' | |
xmins = [] | |
xmaxs = [] | |
ymins = [] | |
ymaxs = [] | |
classes_text = [] | |
classes = [] | |
for index, row in group.object.iterrows(): | |
xmins.append(row['xmin'] / width) | |
xmaxs.append(row['xmax'] / width) | |
ymins.append(row['ymin'] / height) | |
ymaxs.append(row['ymax'] / height) | |
classes_text.append(row['class'].encode('utf8')) | |
classes.append(class_text_to_int(row['class'])) | |
tf_example = tf.train.Example(features=tf.train.Features(feature={ | |
'image/height': dataset_util.int64_feature(height), | |
'image/width': dataset_util.int64_feature(width), | |
'image/filename': dataset_util.bytes_feature(filename), | |
'image/source_id': dataset_util.bytes_feature(filename), | |
'image/encoded': dataset_util.bytes_feature(encoded_jpg), | |
'image/format': dataset_util.bytes_feature(image_format), | |
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins), | |
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs), | |
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins), | |
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs), | |
'image/object/class/text': dataset_util.bytes_list_feature(classes_text), | |
'image/object/class/label': dataset_util.int64_list_feature(classes), | |
})) | |
return tf_example | |
def main(_): | |
writer = tf.python_io.TFRecordWriter(FLAGS.output_path) | |
path = os.path.join(os.getcwd()) | |
examples = pd.read_csv(FLAGS.csv_input) | |
grouped = split(examples, 'filename') | |
for group in grouped: | |
tf_example = create_tf_example(group, path) | |
writer.write(tf_example.SerializeToString()) | |
writer.close() | |
output_path = os.path.join(os.getcwd(), FLAGS.output_path) | |
print('Successfully created the TFRecords: {}'.format(output_path)) | |
if __name__ == '__main__': | |
tf.app.run() |
gadde5300
commented
Mar 6, 2021
•
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment