:uid: convexhulls :title: Convex Hulls :description: Halfplanes and Duality :tooltip: None :tag: :group: :license: CC-BY-4.0 :source: https://api.github.com/gists/5a8a82654acd8139af13
An introduction!
/** | |
* Extension for adding up points in an assignment. | |
* | |
* No more need to stress that point totals don't add up!! π° | |
* | |
* Defines one role: | |
* | |
* - `points` displays points and records number in total | |
* | |
* And one directives: |
<ink-var name="r" value="0.35"></ink-var> | |
<ink-var name="points" value="5"></ink-var> | |
<ink-var name="inset" value="2.5"></ink-var> | |
<ink-var name="theta" value="0" format=".1f"></ink-var> | |
<ink-var name="xC" :value="getCoord(0, theta, 'x', 0, draw)[1] || (-0.5 + r)"></ink-var> | |
<ink-var name="yC" :value="getCoord(0, theta, 'y', 0, draw)[1] || 0.5"></ink-var> | |
<ink-var name="uX" value="-0.5"></ink-var> | |
<ink-var name="uY" value="0.5"></ink-var> | |
<ink-var name="zeroX" :value="getCoord(0, theta, 'x', 0, draw)[0]"></ink-var> | |
<ink-var name="zeroY" :value="getCoord(0, theta, 'y', 0, draw)[0]"></ink-var> |
<ink-var name="r" value="0.35"></ink-var> | |
<ink-var name="theta" value="0" format=".1f"></ink-var> | |
<ink-var name="xC" :value="Math.cos(theta)*r-0.5"></ink-var> | |
<ink-var name="yC" :value="Math.sin(theta)*r+0.5"></ink-var> | |
<h3>Sin and Cos</h3> | |
<ink-dynamic bind="theta" min="0" step="0.01" :max="Math.PI*2" periodic="true" :transform="value*180/Math.PI" after="ΒΊ"></ink-dynamic> | |
<ink-chart xlim="[-1, 2]" ylim="[-1, 1]" height="400" width="600" xAxisLocation="hidden" yAxisLocation="hidden"> | |
<ink-chart-path :data="[[-1,0],[2, 0],[],[0, -1], [0, 1]]" stroke="#ddd" strokewidth="2"></ink-chart-path> | |
<ink-chart-path :data="[[-1, 0.5-r],[2, 0.5-r],[],[-1, 0.5], [2, 0.5],[],[-1, 0.5+r],[2, 0.5+r]]" stroke="#ddd" strokewidth="0.5"></ink-chart-path> |
const React = require('react'); | |
const ReactDOM = require('react-dom'); | |
const Format = require('d3-format'); | |
const Drag = require('d3-drag'); | |
const Selection = require('d3-selection'); | |
class ArrayDynamic extends React.PureComponent { | |
componentDidMount() { | |
let node; |
import sys | |
import numpy as np | |
import scipy.sparse as sp | |
from SimPEG import Mesh, Maps, DataMisfit | |
from SimPEG.FLOW import Richards | |
plotIt = False | |
order = ['Ks', 'theta_r', 'theta_s', 'alpha', 'n'] | |
soil = Richards.Empirical.VanGenuchtenParams().sandy_clay_loam |
:uid: convexhulls :title: Convex Hulls :description: Halfplanes and Duality :tooltip: None :tag: :group: :license: CC-BY-4.0 :source: https://api.github.com/gists/5a8a82654acd8139af13
An introduction!
:uid: HJformulation :title: Implementations of Frequency Domain Maxwell in simpegEM :description: Implementing the H-J forumlation of Maxwell's Equations in the Frequency Domain :tooltip: /img/ebjhdiscretizations :tag: em,fdem,finite volume :group: simpeg :license: CC-BY-4.0 :source: https://api.github.com/gists/f456755f3c01a47d9aa5
This past week, I worked on implementing the H-J formulation of Maxwell's equations (in the Frequency Domain) in simpegEM. So for this week's journal, I thought I would write about the 4 different approaches we have implemented for solving the FDEM problem.
:uid: HJformulation :title: Implementations of Frequency Domain Maxwell in simpegEM :description: Implementing the H-J forumlation of Maxwell's Equations in the Frequency Domain :tooltip: /img/ebjhdiscretizations :tag: em,fdem,finite volume :group: simpeg :license: CC-BY-4.0
This past week, I worked on implementing the H-J formulation of Maxwell's equations (in the Frequency Domain) in simpegEM. So for this week's journal, I thought I would write about the 4 different approaches we have implemented for solving the FDEM problem.
:uid: HJformulation :title: Implementations of Frequency Domain Maxwell in simpegEM :description: Implementing the H-J forumlation of Maxwell's Equations in the Frequency Domain :tooltip: /img/ebjhdiscretizations :tag: em,fdem,finite volume :group: simpeg :license: CC-BY-4.0
This past week, I worked on implementing the H-J formulation of Maxwell's equations (in the Frequency Domain) in simpegEM. So for this week's journal, I thought I would write about the 4 different approaches we have implemented for solving the FDEM problem.