Skip to content

Instantly share code, notes, and snippets.

View rparolin's full-sized avatar

Rob Parolin rparolin

View GitHub Profile
@panzi
panzi / portable_endian.h
Last active August 9, 2024 13:12
This provides the endian conversion functions form endian.h on Windows, Linux, *BSD, Mac OS X, and QNX. You still need to use -std=gnu99 instead of -std=c99 for gcc. The functions might actually be macros. Functions: htobe16, htole16, be16toh, le16toh, htobe32, htole32, be32toh, le32toh, htobe64, htole64, be64toh, le64toh. License: I hereby put …
// "License": Public Domain
// I, Mathias Panzenböck, place this file hereby into the public domain. Use it at your own risk for whatever you like.
// In case there are jurisdictions that don't support putting things in the public domain you can also consider it to
// be "dual licensed" under the BSD, MIT and Apache licenses, if you want to. This code is trivial anyway. Consider it
// an example on how to get the endian conversion functions on different platforms.
#ifndef PORTABLE_ENDIAN_H__
#define PORTABLE_ENDIAN_H__
#if (defined(_WIN16) || defined(_WIN32) || defined(_WIN64)) && !defined(__WINDOWS__)
@rygorous
rygorous / magic_ring.cpp
Created July 22, 2012 03:55
The magic ring buffer.
#define _CRT_SECURE_NO_DEPRECATE
#include <stdio.h>
#include <string.h>
#include <Windows.h>
// This allocates a "magic ring buffer" that is mapped twice, with the two
// copies being contiguous in (virtual) memory. The advantage of this is
// that this allows any function that expects data to be contiguous in
// memory to read from (or write to) such a buffer. It also means that
@hellerbarde
hellerbarde / latency.markdown
Created May 31, 2012 13:16 — forked from jboner/latency.txt
Latency numbers every programmer should know

Latency numbers every programmer should know

L1 cache reference ......................... 0.5 ns
Branch mispredict ............................ 5 ns
L2 cache reference ........................... 7 ns
Mutex lock/unlock ........................... 25 ns
Main memory reference ...................... 100 ns             
Compress 1K bytes with Zippy ............. 3,000 ns  =   3 µs
Send 2K bytes over 1 Gbps network ....... 20,000 ns  =  20 µs
SSD random read ........................ 150,000 ns  = 150 µs

Read 1 MB sequentially from memory ..... 250,000 ns = 250 µs