Created
December 29, 2013 04:23
-
-
Save rpietro/8167429 to your computer and use it in GitHub Desktop.
sage for calculus I, II and III
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# source http://goo.gl/1zB4ee | |
# Calculus I | |
f(x)=x^3+1 | |
f(2) | |
show(f) | |
lim(f,x=1) | |
lim((x^2-1)/(x-1),x=1) | |
lim(f,x=1,dir='-'); lim(f,x=1,dir='right'); f(1) | |
diff(f,x); derivative(f,x); f.derivative(x) | |
derivative(sinh(x^2+sqrt(x-1)),x) | |
P=plot(f,(x,-1,1)) | |
P | |
c=1/3 | |
fprime=derivative(f,x) | |
fprime | |
L(x)=fprime(c)*(x-c)+f(c) | |
Q=plot(L,(x,-1,1), color="red", linestyle="--") | |
P+Q | |
%auto # allows us to have a cell, especially an interactive one, all loaded up as soon as we start - particularly convenient for a classroom situation. | |
f(x)=x^3+1 | |
@interact | |
def _(c=(1/3,(-1,1))): | |
P=plot(f,(x,-1,1)) | |
fprime=derivative(f,x) | |
L(x)=fprime(c)*(x-c)+f(c) | |
Q=plot(L,(x,-1,1),color="red", linestyle="--") | |
show(P+Q+point((c,f(c)), pointsize=40, color='red'),ymin=0,ymax=2) | |
integral(cos(x),x) | |
integral(cos(x),(x,0,pi/2)) | |
# Calculus II | |
h(x)=sec(x) | |
h.integrate(x) | |
integrate(sec(x),x) | |
integrate(1/(1+x^5),x) | |
integral(1/(1+x^10),x) | |
integral(sinh(x^2+sqrt(x-1)),x) # long execution time, if Sage doesn’t know the whole antiderivative, it returns as much of it as Maxima can do | |
integral(e^(-x^2),x) | |
erf? | |
integral(cos(x),(x,0,pi/2)) | |
plot(cos(x),(x,0,pi/2),fill=True,ticks=[[0,pi/4,pi/2],None],tick_formatter=pi) | |
var('a,b') | |
integral(cos(x),(x,a,b)) | |
integral(h,(x,0,pi/8)) | |
N(integral(h,(x,0,pi/8))) | |
numerical_integral(h,0,pi/8) | |
numerical_integral(h,0,pi/8)[0] | |
ni = numerical_integral(h,0,pi/8) | |
ni[0] | |
h(x).nintegrate(x,0,pi/8) | |
var('n') # declare variable | |
sum((1/3)^n,n,0,oo) | |
k = var('k') | |
sum(binomial(n,k), k, 0, n) | |
g(x)=taylor(log(x),x,1,6); g(x) | |
plot(g,(x,0,2))+plot(log(x),(x,0,2),color='red') | |
# Calculus III | |
var('y') | |
f(x,y)=3*sin(x)-2*cos(y)-x*y | |
f.gradient(); f.hessian(); f.diff(x,y) | |
show(f.diff()); show(f.diff(2)) | |
show(f.diff(2).det()) | |
P=plot_vector_field(f.diff(), (x,-3,3), (y,-3,3)) | |
u=vector([1,2]) | |
Q=plot(u/u.norm()) | |
P+Q | |
(f.diff()*u/u.norm())(0,0) | |
y = var('y') | |
contour_plot(y^2 + 1 - x^3 - x, (x,-pi,pi), (y,-pi,pi), contours=[-8,-4,0,4,8], colorbar=True, labels=True, label_colors='red') | |
integrate(integrate(f,(x,0,pi)),(y,0,pi)) | |
plot3d(f,(x,0,pi),(y,0,pi),color='red')+plot3d(0,(x,0,pi),(y,0,pi)) | |
t = var('t') | |
my_curve(t)=(sin(t), sin(2*t)) | |
PP=parametric_plot( my_curve, (t, 0, 2*pi), color="purple" ) | |
my_prime=my_curve.diff(t) | |
L=my_prime(1)*t+my_curve(1) # tangent line at t=1 | |
parametric_plot(L, (t,-2,2))+PP | |
# Exam | |
y = var('y') | |
Plot1=plot_slope_field(2-y,(x,0,3),(y,0,20)) | |
Plot1 | |
y = function('y',x) # declare y to be a function of x | |
h = desolve(diff(y,x) + y - 2, y, ics=[0,7]) | |
Plot2=plot(h,0,3) | |
show(expand(h)); show(Plot1+Plot2) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment