Created
December 29, 2013 19:00
-
-
Save rpietro/8173595 to your computer and use it in GitHub Desktop.
algebra and calculus with sage
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# script from http://goo.gl/7m0GGp | |
# Solving Equations Exactly | |
x = var('x') | |
solve(x^2 + 3*x + 2, x) | |
x, b, c = var('x b c') | |
solve([x^2 + b*x + c == 0],x) | |
x, y = var('x, y') | |
solve([x+y==6, x-y==4], x, y) | |
var('x y p q') | |
eq1 = p+q==9 | |
eq2 = q*y+p*x==-6 | |
eq3 = q*y^2+p*x^2==24 | |
solve([eq1,eq2,eq3,p==1],p,q,x,y) | |
solns = solve([eq1,eq2,eq3,p==1],p,q,x,y, solution_dict=True) | |
[[s[p].n(30), s[q].n(30), s[x].n(30), s[y].n(30)] for s in solns] | |
# Solving Equations Numerically | |
theta = var('theta') | |
solve(cos(theta)==sin(theta), theta) | |
phi = var('phi') | |
find_root(cos(phi)==sin(phi),0,pi/2) | |
# Differentiation, Integration | |
u = var('u') | |
diff(sin(u), u) | |
diff(sin(x^2), x, 4) | |
x, y = var('x,y') | |
f = x^2 + 17*y^2 | |
f.diff(x) | |
f.diff(y) | |
integral(x*sin(x^2), x) | |
integral(x/(x^2+1), x, 0, 1) | |
f = 1/((1+x)*(x-1)) | |
f.partial_fraction(x) | |
# Differential Equations | |
t = var('t') # define a variable t | |
x = function('x',t) # define x to be a function of that variable | |
DE = diff(x, t) + x - 1 | |
desolve(DE, [x,t]) | |
s = var("s") | |
t = var("t") | |
f = t^2*exp(t) - sin(t) | |
f.laplace(t,s | |
de1 = maxima("2*diff(x(t),t, 2) + 6*x(t) - 2*y(t)") | |
lde1 = de1.laplace("t","s"); lde1 | |
de2 = maxima("diff(y(t),t, 2) + 2*y(t) - 2*x(t)") | |
lde2 = de2.laplace("t","s"); lde2 | |
var('s X Y') | |
eqns = [(2*s^2+6)*X-2*Y == 6*s, -2*X +(s^2+2)*Y == 3*s] | |
solve(eqns, X,Y) | |
var('s t') | |
inverse_laplace((3*s^3 + 9*s)/(s^4 + 5*s^2 + 4),s,t) | |
inverse_laplace((3*s^3 + 15*s)/(s^4 + 5*s^2 + 4),s,t) | |
t = var('t') | |
P = parametric_plot((cos(2*t) + 2*cos(t), 4*cos(t) - cos(2*t) ),\ | |
show(P) | |
t = var('t') | |
p1 = plot(cos(2*t) + 2*cos(t), (t,0, 2*pi), rgbcolor=hue(0.3)) | |
p2 = plot(4*cos(t) - cos(2*t), (t,0, 2*pi), rgbcolor=hue(0.6)) | |
show(p1 + p2 | |
# Euler’s Method | |
t,x,y = PolynomialRing(RealField(10),3,"txy").gens() | |
f = y; g = -x - y * t | |
eulers_method_2x2(f,g, 0, 1, 0, 1/4, 1) | |
f = lambda z: z[2] # f(t,x,y) = y | |
g = lambda z: -sin(z[1]) # g(t,x,y) = -sin(x) | |
P = eulers_method_2x2_plot(f,g, 0.0, 0.75, 0.0, 0.1, 1.0) | |
show(P[0] + P[1]) | |
# Special functions | |
x = polygen(QQ, 'x') | |
chebyshev_U(2,x) | |
bessel_I(1,1).n(250) | |
bessel_I(1,1).n() | |
bessel_I(2,1.1).n() | |
maxima.eval("f:bessel_y(v, w)") | |
maxima.eval("diff(f,w)") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment