Created
May 21, 2013 10:35
-
-
Save rpsychologist/5618888 to your computer and use it in GitHub Desktop.
Power simulation for mixed design ANOVA
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
require(mvtnorm) | |
# function -------------------------------------------------------------------- | |
anova.pwr.mixed.sim <- function(data, Formula, FactorA, n, rho, sims) { | |
Formula <- formula(Formula) # convert to formula | |
m <- nlevels(data$time) # number of time points | |
k <- nlevels(data[[FactorA]]) # number of groups | |
if(length(n) == 1) n <- rep(n, k) # n for each level of 'group' | |
n2 <- rep(n, each=m) # n for each cell | |
n_index <- cumsum(n) # help-variable used when creating subjects factor | |
subjects <- NULL | |
# create subjects factor | |
for(i in 1:k) { | |
if(i==1) subjects <- c(subjects, (rep(1:n_index[i], m))) | |
else subjects <- c(subjects, rep((n_index[i-1]+1):n_index[i], m)) | |
} | |
subjects <- factor(subjects) | |
# expand model in 'dataframe' to fit subjects | |
dataframe <- NULL | |
for(i in 1:nrow(study)) { | |
dataframe <- rbind(dataframe, data[rep(i, n2[i]),]) | |
} | |
dataframe$subjects <- subjects | |
# create covariance matrix from rho and sigmas within cells | |
cov_matrix <- function(sigmas) { | |
B <- matrix(sigmas, ncol=length(sigmas), nrow=length(sigmas)) | |
sigma <- t(B) * B * rho | |
diag(sigma) <- sigmas^2 | |
sigma | |
} | |
mu_m <- matrix(data$DV, ncol=m, byrow=T) # used to generate data | |
sigma_m <- matrix(data$SD, ncol=m, byrow=T) # used to generate data | |
nterms <- 3 # number of possible effects | |
sig <- matrix(ncol=nterms, nrow=sims) # pre allocate sig matrix | |
# actual simulation | |
for (i in 1:sims) { | |
dataframe$DV <- unlist(lapply(1:k, function(i) rmvnorm(n[i], mu_m[i,], cov_matrix(sigma_m[i,])))) # generate data for all cells | |
result <- summary(aov(Formula, dataframe)) # perform ANOVA | |
tmp <- c(result[[1]][[1]][[5]], result[[2]][[1]][[5]]) # get p-values | |
tmp_matrix <- matrix(tmp[!is.na(tmp)], nrow=1) # remova NA | |
sig[i,] <- tmp_matrix # save p-values | |
} | |
terms_b <- head(rownames(result[[1]][[1]]), 1) # get names of between-subjects terms | |
terms_w <- head(rownames(result[[2]][[1]]), 2) # get names of within-subjects terms | |
out <- data.frame("terms" = c(terms_b, terms_w), "power" = colMeans(sig < 0.05)) # output | |
out # return output | |
} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment