Skip to content

Instantly share code, notes, and snippets.

@rth
Last active March 2, 2018 16:47
Show Gist options
  • Save rth/78c45b1d19b71f6c86abef4824fdf0d7 to your computer and use it in GitHub Desktop.
Save rth/78c45b1d19b71f6c86abef4824fdf0d7 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## tsfresh: benchmarking the run time of individual feature calculators\n",
"\n",
"In this benchmark we will evaluate the run time of individual feature calculators,\n",
"\n",
"Requirements:\n",
"```\n",
"pip install tsfresh pandas neurtu\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"from tsfresh.feature_extraction.extraction import _do_extraction_on_chunk\n",
"from tsfresh.feature_extraction import feature_calculators\n",
"from tsfresh.feature_extraction.settings import EfficientFCParameters, ComprehensiveFCParameters\n",
"from tsfresh.utilities import dataframe_functions\n",
"\n",
"from neurtu import timeit, delayed"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here we load a randomly generated dataset,"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_csv('https://github.com/blue-yonder/tsfresh/files/1751897/sample_dataset.csv.gz')\n",
"df['t'] = pd.to_datetime(df.t)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Shape: (200000, 3)\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>amount</th>\n",
" <th>t</th>\n",
" <th>uid</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>-28.00</td>\n",
" <td>2013-01-01</td>\n",
" <td>5b3ecda7b4f48aa7fad7ceb2ae6b11</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>-7.99</td>\n",
" <td>2013-01-01</td>\n",
" <td>020c7a57c3393ea13d6a0c30eee62e</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1.79</td>\n",
" <td>2013-01-01</td>\n",
" <td>f8618d79da85a037f52221517e6147</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0.89</td>\n",
" <td>2013-01-01</td>\n",
" <td>f8618d79da85a037f52221517e6147</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>103.00</td>\n",
" <td>2013-01-01</td>\n",
" <td>5acbd7dac6c86bc773a5689b38489d</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" amount t uid\n",
"0 -28.00 2013-01-01 5b3ecda7b4f48aa7fad7ceb2ae6b11\n",
"1 -7.99 2013-01-01 020c7a57c3393ea13d6a0c30eee62e\n",
"2 1.79 2013-01-01 f8618d79da85a037f52221517e6147\n",
"3 0.89 2013-01-01 f8618d79da85a037f52221517e6147\n",
"4 103.00 2013-01-01 5acbd7dac6c86bc773a5689b38489d"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print('Shape:', df.shape)\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"amount 24738\n",
"t 601\n",
"uid 250\n",
"dtype: int64"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.nunique()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Pre-compute the relevant quantities from ``extract_features``"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 60 ms, sys: 0 ns, total: 60 ms\n",
"Wall time: 61.9 ms\n"
]
}
],
"source": [
"%%time\n",
"\n",
"df_melt, column_id, column_kind, column_value = \\\n",
" dataframe_functions._normalize_input_to_internal_representation(timeseries_container=df,\n",
" column_id='uid', column_kind=None,\n",
" column_sort='t',\n",
" column_value='amount')"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>amount</th>\n",
" <th>uid</th>\n",
" <th>_variables</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>-28.00</td>\n",
" <td>5b3ecda7b4f48aa7fad7ceb2ae6b11</td>\n",
" <td>amount</td>\n",
" </tr>\n",
" <tr>\n",
" <th>376</th>\n",
" <td>-39.99</td>\n",
" <td>1cd8c6c2dbc178430331b2ae2c0051</td>\n",
" <td>amount</td>\n",
" </tr>\n",
" <tr>\n",
" <th>375</th>\n",
" <td>-262.64</td>\n",
" <td>863e5bd69af58e07318d80d921cae1</td>\n",
" <td>amount</td>\n",
" </tr>\n",
" <tr>\n",
" <th>374</th>\n",
" <td>21.24</td>\n",
" <td>863e5bd69af58e07318d80d921cae1</td>\n",
" <td>amount</td>\n",
" </tr>\n",
" <tr>\n",
" <th>373</th>\n",
" <td>8.40</td>\n",
" <td>0c1a651ab3b683d29b0f888c372d62</td>\n",
" <td>amount</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" amount uid _variables\n",
"0 -28.00 5b3ecda7b4f48aa7fad7ceb2ae6b11 amount\n",
"376 -39.99 1cd8c6c2dbc178430331b2ae2c0051 amount\n",
"375 -262.64 863e5bd69af58e07318d80d921cae1 amount\n",
"374 21.24 863e5bd69af58e07318d80d921cae1 amount\n",
"373 8.40 0c1a651ab3b683d29b0f888c372d62 amount"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_melt.head()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 0 ns, sys: 0 ns, total: 0 ns\n",
"Wall time: 298 µs\n"
]
}
],
"source": [
"%%time\n",
"\n",
"df_g = df_melt.groupby([column_id, column_kind])[column_value]"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>fc_name</th>\n",
" <th>fctype</th>\n",
" <th>high_comp_cost</th>\n",
" <th>params</th>\n",
" <th>wall_time_max</th>\n",
" <th>wall_time_mean</th>\n",
" <th>wall_time_min</th>\n",
" <th>wall_time_std</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>variance_larger_than_standard_deviation</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.017898</td>\n",
" <td>0.016222</td>\n",
" <td>0.014694</td>\n",
" <td>0.001312</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>has_duplicate_max</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.015940</td>\n",
" <td>0.015558</td>\n",
" <td>0.014807</td>\n",
" <td>0.000531</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>has_duplicate_min</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.015417</td>\n",
" <td>0.014786</td>\n",
" <td>0.014418</td>\n",
" <td>0.000448</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>has_duplicate</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.015722</td>\n",
" <td>0.015069</td>\n",
" <td>0.014550</td>\n",
" <td>0.000488</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>sum_values</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.015267</td>\n",
" <td>0.014905</td>\n",
" <td>0.014699</td>\n",
" <td>0.000257</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>abs_energy</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014735</td>\n",
" <td>0.014683</td>\n",
" <td>0.014641</td>\n",
" <td>0.000039</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>mean_abs_change</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.015027</td>\n",
" <td>0.014843</td>\n",
" <td>0.014674</td>\n",
" <td>0.000144</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>mean_change</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014714</td>\n",
" <td>0.014601</td>\n",
" <td>0.014397</td>\n",
" <td>0.000145</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>mean_second_derivate_central</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014619</td>\n",
" <td>0.014506</td>\n",
" <td>0.014411</td>\n",
" <td>0.000086</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>median</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014933</td>\n",
" <td>0.014620</td>\n",
" <td>0.014411</td>\n",
" <td>0.000225</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>mean</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014781</td>\n",
" <td>0.014651</td>\n",
" <td>0.014442</td>\n",
" <td>0.000149</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>length</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014797</td>\n",
" <td>0.014661</td>\n",
" <td>0.014526</td>\n",
" <td>0.000111</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>standard_deviation</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.015365</td>\n",
" <td>0.014781</td>\n",
" <td>0.014409</td>\n",
" <td>0.000418</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>variance</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014519</td>\n",
" <td>0.014457</td>\n",
" <td>0.014391</td>\n",
" <td>0.000052</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>skewness</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.015350</td>\n",
" <td>0.014815</td>\n",
" <td>0.014542</td>\n",
" <td>0.000378</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>kurtosis</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.015259</td>\n",
" <td>0.015062</td>\n",
" <td>0.014709</td>\n",
" <td>0.000250</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>absolute_sum_of_changes</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.015807</td>\n",
" <td>0.015169</td>\n",
" <td>0.014538</td>\n",
" <td>0.000518</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>longest_strike_below_mean</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.015062</td>\n",
" <td>0.014851</td>\n",
" <td>0.014702</td>\n",
" <td>0.000153</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>longest_strike_above_mean</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.015032</td>\n",
" <td>0.014771</td>\n",
" <td>0.014627</td>\n",
" <td>0.000185</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>count_above_mean</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014806</td>\n",
" <td>0.014621</td>\n",
" <td>0.014404</td>\n",
" <td>0.000165</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>count_below_mean</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014599</td>\n",
" <td>0.014534</td>\n",
" <td>0.014492</td>\n",
" <td>0.000047</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>last_location_of_maximum</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.015526</td>\n",
" <td>0.015019</td>\n",
" <td>0.014444</td>\n",
" <td>0.000445</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>first_location_of_maximum</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014936</td>\n",
" <td>0.014747</td>\n",
" <td>0.014587</td>\n",
" <td>0.000144</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>last_location_of_minimum</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014953</td>\n",
" <td>0.014735</td>\n",
" <td>0.014345</td>\n",
" <td>0.000277</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>first_location_of_minimum</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.016022</td>\n",
" <td>0.015235</td>\n",
" <td>0.014479</td>\n",
" <td>0.000630</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>percentage_of_reoccurring_datapoints_to_all_da...</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014834</td>\n",
" <td>0.014682</td>\n",
" <td>0.014543</td>\n",
" <td>0.000119</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>percentage_of_reoccurring_values_to_all_values</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014478</td>\n",
" <td>0.014393</td>\n",
" <td>0.014252</td>\n",
" <td>0.000100</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>sum_of_reoccurring_values</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014980</td>\n",
" <td>0.014706</td>\n",
" <td>0.014489</td>\n",
" <td>0.000204</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>sum_of_reoccurring_data_points</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.015156</td>\n",
" <td>0.014820</td>\n",
" <td>0.014458</td>\n",
" <td>0.000286</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>ratio_value_number_to_time_series_length</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014908</td>\n",
" <td>0.014618</td>\n",
" <td>0.014378</td>\n",
" <td>0.000219</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>31</th>\n",
" <td>maximum</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014593</td>\n",
" <td>0.014524</td>\n",
" <td>0.014478</td>\n",
" <td>0.000049</td>\n",
" </tr>\n",
" <tr>\n",
" <th>32</th>\n",
" <td>minimum</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014723</td>\n",
" <td>0.014525</td>\n",
" <td>0.014299</td>\n",
" <td>0.000174</td>\n",
" </tr>\n",
" <tr>\n",
" <th>33</th>\n",
" <td>time_reversal_asymmetry_statistic</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>[{'lag': 1}, {'lag': 2}, {'lag': 3}]</td>\n",
" <td>0.014715</td>\n",
" <td>0.014587</td>\n",
" <td>0.014463</td>\n",
" <td>0.000103</td>\n",
" </tr>\n",
" <tr>\n",
" <th>34</th>\n",
" <td>c3</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>[{'lag': 1}, {'lag': 2}, {'lag': 3}]</td>\n",
" <td>0.014619</td>\n",
" <td>0.014557</td>\n",
" <td>0.014520</td>\n",
" <td>0.000044</td>\n",
" </tr>\n",
" <tr>\n",
" <th>35</th>\n",
" <td>symmetry_looking</td>\n",
" <td>combiner</td>\n",
" <td>False</td>\n",
" <td>[{'r': 0.0}, {'r': 0.05}, {'r': 0.1}, {'r': 0....</td>\n",
" <td>0.015020</td>\n",
" <td>0.014721</td>\n",
" <td>0.014543</td>\n",
" <td>0.000212</td>\n",
" </tr>\n",
" <tr>\n",
" <th>36</th>\n",
" <td>large_standard_deviation</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>[{'r': 0.05}, {'r': 0.1}, {'r': 0.150000000000...</td>\n",
" <td>0.014622</td>\n",
" <td>0.014607</td>\n",
" <td>0.014581</td>\n",
" <td>0.000018</td>\n",
" </tr>\n",
" <tr>\n",
" <th>37</th>\n",
" <td>quantile</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>[{'q': 0.1}, {'q': 0.2}, {'q': 0.3}, {'q': 0.4...</td>\n",
" <td>0.014569</td>\n",
" <td>0.014434</td>\n",
" <td>0.014314</td>\n",
" <td>0.000105</td>\n",
" </tr>\n",
" <tr>\n",
" <th>38</th>\n",
" <td>autocorrelation</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>[{'lag': 0}, {'lag': 1}, {'lag': 2}, {'lag': 3...</td>\n",
" <td>0.014661</td>\n",
" <td>0.014594</td>\n",
" <td>0.014517</td>\n",
" <td>0.000059</td>\n",
" </tr>\n",
" <tr>\n",
" <th>39</th>\n",
" <td>agg_autocorrelation</td>\n",
" <td>combiner</td>\n",
" <td>False</td>\n",
" <td>[{'f_agg': 'mean'}, {'f_agg': 'median'}, {'f_a...</td>\n",
" <td>0.014805</td>\n",
" <td>0.014674</td>\n",
" <td>0.014545</td>\n",
" <td>0.000106</td>\n",
" </tr>\n",
" <tr>\n",
" <th>40</th>\n",
" <td>partial_autocorrelation</td>\n",
" <td>combiner</td>\n",
" <td>False</td>\n",
" <td>[{'lag': 0}, {'lag': 1}, {'lag': 2}, {'lag': 3...</td>\n",
" <td>0.015003</td>\n",
" <td>0.014920</td>\n",
" <td>0.014793</td>\n",
" <td>0.000091</td>\n",
" </tr>\n",
" <tr>\n",
" <th>41</th>\n",
" <td>number_cwt_peaks</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>[{'n': 1}, {'n': 5}]</td>\n",
" <td>0.014722</td>\n",
" <td>0.014587</td>\n",
" <td>0.014449</td>\n",
" <td>0.000111</td>\n",
" </tr>\n",
" <tr>\n",
" <th>42</th>\n",
" <td>number_peaks</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>[{'n': 1}, {'n': 3}, {'n': 5}, {'n': 10}, {'n'...</td>\n",
" <td>0.014537</td>\n",
" <td>0.014436</td>\n",
" <td>0.014330</td>\n",
" <td>0.000085</td>\n",
" </tr>\n",
" <tr>\n",
" <th>43</th>\n",
" <td>binned_entropy</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>[{'max_bins': 10}]</td>\n",
" <td>0.015693</td>\n",
" <td>0.015068</td>\n",
" <td>0.014475</td>\n",
" <td>0.000498</td>\n",
" </tr>\n",
" <tr>\n",
" <th>44</th>\n",
" <td>index_mass_quantile</td>\n",
" <td>combiner</td>\n",
" <td>False</td>\n",
" <td>[{'q': 0.1}, {'q': 0.2}, {'q': 0.3}, {'q': 0.4...</td>\n",
" <td>0.014629</td>\n",
" <td>0.014514</td>\n",
" <td>0.014356</td>\n",
" <td>0.000115</td>\n",
" </tr>\n",
" <tr>\n",
" <th>45</th>\n",
" <td>cwt_coefficients</td>\n",
" <td>combiner</td>\n",
" <td>False</td>\n",
" <td>[{'widths': (2, 5, 10, 20), 'coeff': 0, 'w': 2...</td>\n",
" <td>0.014893</td>\n",
" <td>0.014821</td>\n",
" <td>0.014708</td>\n",
" <td>0.000081</td>\n",
" </tr>\n",
" <tr>\n",
" <th>46</th>\n",
" <td>spkt_welch_density</td>\n",
" <td>combiner</td>\n",
" <td>False</td>\n",
" <td>[{'coeff': 2}, {'coeff': 5}, {'coeff': 8}]</td>\n",
" <td>0.015934</td>\n",
" <td>0.015051</td>\n",
" <td>0.014581</td>\n",
" <td>0.000625</td>\n",
" </tr>\n",
" <tr>\n",
" <th>47</th>\n",
" <td>ar_coefficient</td>\n",
" <td>combiner</td>\n",
" <td>False</td>\n",
" <td>[{'coeff': 0, 'k': 10}, {'coeff': 1, 'k': 10},...</td>\n",
" <td>0.015088</td>\n",
" <td>0.014903</td>\n",
" <td>0.014804</td>\n",
" <td>0.000131</td>\n",
" </tr>\n",
" <tr>\n",
" <th>48</th>\n",
" <td>change_quantiles</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>[{'ql': 0.0, 'qh': 0.2, 'isabs': False, 'f_agg...</td>\n",
" <td>0.016497</td>\n",
" <td>0.015209</td>\n",
" <td>0.014492</td>\n",
" <td>0.000913</td>\n",
" </tr>\n",
" <tr>\n",
" <th>49</th>\n",
" <td>fft_coefficient</td>\n",
" <td>combiner</td>\n",
" <td>False</td>\n",
" <td>[{'coeff': 0, 'attr': 'real'}, {'coeff': 1, 'a...</td>\n",
" <td>0.015092</td>\n",
" <td>0.014682</td>\n",
" <td>0.014449</td>\n",
" <td>0.000291</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50</th>\n",
" <td>value_count</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>[{'value': 0}, {'value': 1}, {'value': nan}, {...</td>\n",
" <td>0.015676</td>\n",
" <td>0.015116</td>\n",
" <td>0.014636</td>\n",
" <td>0.000428</td>\n",
" </tr>\n",
" <tr>\n",
" <th>51</th>\n",
" <td>range_count</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>[{'min': -1, 'max': 1}]</td>\n",
" <td>0.015740</td>\n",
" <td>0.015193</td>\n",
" <td>0.014780</td>\n",
" <td>0.000403</td>\n",
" </tr>\n",
" <tr>\n",
" <th>52</th>\n",
" <td>approximate_entropy</td>\n",
" <td>simple</td>\n",
" <td>True</td>\n",
" <td>[{'m': 2, 'r': 0.1}, {'m': 2, 'r': 0.3}, {'m':...</td>\n",
" <td>0.015153</td>\n",
" <td>0.014735</td>\n",
" <td>0.014477</td>\n",
" <td>0.000298</td>\n",
" </tr>\n",
" <tr>\n",
" <th>53</th>\n",
" <td>friedrich_coefficients</td>\n",
" <td>combiner</td>\n",
" <td>False</td>\n",
" <td>[{'coeff': 0, 'm': 3, 'r': 30}, {'coeff': 1, '...</td>\n",
" <td>0.014929</td>\n",
" <td>0.014746</td>\n",
" <td>0.014605</td>\n",
" <td>0.000136</td>\n",
" </tr>\n",
" <tr>\n",
" <th>54</th>\n",
" <td>max_langevin_fixed_point</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>[{'m': 3, 'r': 30}]</td>\n",
" <td>0.015038</td>\n",
" <td>0.014873</td>\n",
" <td>0.014550</td>\n",
" <td>0.000228</td>\n",
" </tr>\n",
" <tr>\n",
" <th>55</th>\n",
" <td>linear_trend</td>\n",
" <td>combiner</td>\n",
" <td>False</td>\n",
" <td>[{'attr': 'pvalue'}, {'attr': 'rvalue'}, {'att...</td>\n",
" <td>0.014542</td>\n",
" <td>0.014481</td>\n",
" <td>0.014397</td>\n",
" <td>0.000061</td>\n",
" </tr>\n",
" <tr>\n",
" <th>56</th>\n",
" <td>agg_linear_trend</td>\n",
" <td>combiner</td>\n",
" <td>False</td>\n",
" <td>[{'attr': 'rvalue', 'chunk_len': 5, 'f_agg': '...</td>\n",
" <td>0.014605</td>\n",
" <td>0.014503</td>\n",
" <td>0.014348</td>\n",
" <td>0.000112</td>\n",
" </tr>\n",
" <tr>\n",
" <th>57</th>\n",
" <td>augmented_dickey_fuller</td>\n",
" <td>combiner</td>\n",
" <td>False</td>\n",
" <td>[{'attr': 'teststat'}, {'attr': 'pvalue'}, {'a...</td>\n",
" <td>0.014551</td>\n",
" <td>0.014455</td>\n",
" <td>0.014402</td>\n",
" <td>0.000068</td>\n",
" </tr>\n",
" <tr>\n",
" <th>58</th>\n",
" <td>number_crossing_m</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>[{'m': 0}, {'m': -1}, {'m': 1}]</td>\n",
" <td>0.015094</td>\n",
" <td>0.014720</td>\n",
" <td>0.014362</td>\n",
" <td>0.000299</td>\n",
" </tr>\n",
" <tr>\n",
" <th>59</th>\n",
" <td>energy_ratio_by_chunks</td>\n",
" <td>combiner</td>\n",
" <td>False</td>\n",
" <td>[{'num_segments': 10, 'segment_focus': 0}, {'n...</td>\n",
" <td>0.014593</td>\n",
" <td>0.014450</td>\n",
" <td>0.014374</td>\n",
" <td>0.000101</td>\n",
" </tr>\n",
" <tr>\n",
" <th>60</th>\n",
" <td>ratio_beyond_r_sigma</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>[{'r': 0.5}, {'r': 1}, {'r': 1.5}, {'r': 2}, {...</td>\n",
" <td>0.015083</td>\n",
" <td>0.014893</td>\n",
" <td>0.014744</td>\n",
" <td>0.000141</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>61 rows × 8 columns</p>\n",
"</div>"
],
"text/plain": [
" fc_name fctype \\\n",
"0 variance_larger_than_standard_deviation simple \n",
"1 has_duplicate_max simple \n",
"2 has_duplicate_min simple \n",
"3 has_duplicate simple \n",
"4 sum_values simple \n",
"5 abs_energy simple \n",
"6 mean_abs_change simple \n",
"7 mean_change simple \n",
"8 mean_second_derivate_central simple \n",
"9 median simple \n",
"10 mean simple \n",
"11 length simple \n",
"12 standard_deviation simple \n",
"13 variance simple \n",
"14 skewness simple \n",
"15 kurtosis simple \n",
"16 absolute_sum_of_changes simple \n",
"17 longest_strike_below_mean simple \n",
"18 longest_strike_above_mean simple \n",
"19 count_above_mean simple \n",
"20 count_below_mean simple \n",
"21 last_location_of_maximum simple \n",
"22 first_location_of_maximum simple \n",
"23 last_location_of_minimum simple \n",
"24 first_location_of_minimum simple \n",
"25 percentage_of_reoccurring_datapoints_to_all_da... simple \n",
"26 percentage_of_reoccurring_values_to_all_values simple \n",
"27 sum_of_reoccurring_values simple \n",
"28 sum_of_reoccurring_data_points simple \n",
"29 ratio_value_number_to_time_series_length simple \n",
".. ... ... \n",
"31 maximum simple \n",
"32 minimum simple \n",
"33 time_reversal_asymmetry_statistic simple \n",
"34 c3 simple \n",
"35 symmetry_looking combiner \n",
"36 large_standard_deviation simple \n",
"37 quantile simple \n",
"38 autocorrelation simple \n",
"39 agg_autocorrelation combiner \n",
"40 partial_autocorrelation combiner \n",
"41 number_cwt_peaks simple \n",
"42 number_peaks simple \n",
"43 binned_entropy simple \n",
"44 index_mass_quantile combiner \n",
"45 cwt_coefficients combiner \n",
"46 spkt_welch_density combiner \n",
"47 ar_coefficient combiner \n",
"48 change_quantiles simple \n",
"49 fft_coefficient combiner \n",
"50 value_count simple \n",
"51 range_count simple \n",
"52 approximate_entropy simple \n",
"53 friedrich_coefficients combiner \n",
"54 max_langevin_fixed_point simple \n",
"55 linear_trend combiner \n",
"56 agg_linear_trend combiner \n",
"57 augmented_dickey_fuller combiner \n",
"58 number_crossing_m simple \n",
"59 energy_ratio_by_chunks combiner \n",
"60 ratio_beyond_r_sigma simple \n",
"\n",
" high_comp_cost params \\\n",
"0 False None \n",
"1 False None \n",
"2 False None \n",
"3 False None \n",
"4 False None \n",
"5 False None \n",
"6 False None \n",
"7 False None \n",
"8 False None \n",
"9 False None \n",
"10 False None \n",
"11 False None \n",
"12 False None \n",
"13 False None \n",
"14 False None \n",
"15 False None \n",
"16 False None \n",
"17 False None \n",
"18 False None \n",
"19 False None \n",
"20 False None \n",
"21 False None \n",
"22 False None \n",
"23 False None \n",
"24 False None \n",
"25 False None \n",
"26 False None \n",
"27 False None \n",
"28 False None \n",
"29 False None \n",
".. ... ... \n",
"31 False None \n",
"32 False None \n",
"33 False [{'lag': 1}, {'lag': 2}, {'lag': 3}] \n",
"34 False [{'lag': 1}, {'lag': 2}, {'lag': 3}] \n",
"35 False [{'r': 0.0}, {'r': 0.05}, {'r': 0.1}, {'r': 0.... \n",
"36 False [{'r': 0.05}, {'r': 0.1}, {'r': 0.150000000000... \n",
"37 False [{'q': 0.1}, {'q': 0.2}, {'q': 0.3}, {'q': 0.4... \n",
"38 False [{'lag': 0}, {'lag': 1}, {'lag': 2}, {'lag': 3... \n",
"39 False [{'f_agg': 'mean'}, {'f_agg': 'median'}, {'f_a... \n",
"40 False [{'lag': 0}, {'lag': 1}, {'lag': 2}, {'lag': 3... \n",
"41 False [{'n': 1}, {'n': 5}] \n",
"42 False [{'n': 1}, {'n': 3}, {'n': 5}, {'n': 10}, {'n'... \n",
"43 False [{'max_bins': 10}] \n",
"44 False [{'q': 0.1}, {'q': 0.2}, {'q': 0.3}, {'q': 0.4... \n",
"45 False [{'widths': (2, 5, 10, 20), 'coeff': 0, 'w': 2... \n",
"46 False [{'coeff': 2}, {'coeff': 5}, {'coeff': 8}] \n",
"47 False [{'coeff': 0, 'k': 10}, {'coeff': 1, 'k': 10},... \n",
"48 False [{'ql': 0.0, 'qh': 0.2, 'isabs': False, 'f_agg... \n",
"49 False [{'coeff': 0, 'attr': 'real'}, {'coeff': 1, 'a... \n",
"50 False [{'value': 0}, {'value': 1}, {'value': nan}, {... \n",
"51 False [{'min': -1, 'max': 1}] \n",
"52 True [{'m': 2, 'r': 0.1}, {'m': 2, 'r': 0.3}, {'m':... \n",
"53 False [{'coeff': 0, 'm': 3, 'r': 30}, {'coeff': 1, '... \n",
"54 False [{'m': 3, 'r': 30}] \n",
"55 False [{'attr': 'pvalue'}, {'attr': 'rvalue'}, {'att... \n",
"56 False [{'attr': 'rvalue', 'chunk_len': 5, 'f_agg': '... \n",
"57 False [{'attr': 'teststat'}, {'attr': 'pvalue'}, {'a... \n",
"58 False [{'m': 0}, {'m': -1}, {'m': 1}] \n",
"59 False [{'num_segments': 10, 'segment_focus': 0}, {'n... \n",
"60 False [{'r': 0.5}, {'r': 1}, {'r': 1.5}, {'r': 2}, {... \n",
"\n",
" wall_time_max wall_time_mean wall_time_min wall_time_std \n",
"0 0.017898 0.016222 0.014694 0.001312 \n",
"1 0.015940 0.015558 0.014807 0.000531 \n",
"2 0.015417 0.014786 0.014418 0.000448 \n",
"3 0.015722 0.015069 0.014550 0.000488 \n",
"4 0.015267 0.014905 0.014699 0.000257 \n",
"5 0.014735 0.014683 0.014641 0.000039 \n",
"6 0.015027 0.014843 0.014674 0.000144 \n",
"7 0.014714 0.014601 0.014397 0.000145 \n",
"8 0.014619 0.014506 0.014411 0.000086 \n",
"9 0.014933 0.014620 0.014411 0.000225 \n",
"10 0.014781 0.014651 0.014442 0.000149 \n",
"11 0.014797 0.014661 0.014526 0.000111 \n",
"12 0.015365 0.014781 0.014409 0.000418 \n",
"13 0.014519 0.014457 0.014391 0.000052 \n",
"14 0.015350 0.014815 0.014542 0.000378 \n",
"15 0.015259 0.015062 0.014709 0.000250 \n",
"16 0.015807 0.015169 0.014538 0.000518 \n",
"17 0.015062 0.014851 0.014702 0.000153 \n",
"18 0.015032 0.014771 0.014627 0.000185 \n",
"19 0.014806 0.014621 0.014404 0.000165 \n",
"20 0.014599 0.014534 0.014492 0.000047 \n",
"21 0.015526 0.015019 0.014444 0.000445 \n",
"22 0.014936 0.014747 0.014587 0.000144 \n",
"23 0.014953 0.014735 0.014345 0.000277 \n",
"24 0.016022 0.015235 0.014479 0.000630 \n",
"25 0.014834 0.014682 0.014543 0.000119 \n",
"26 0.014478 0.014393 0.014252 0.000100 \n",
"27 0.014980 0.014706 0.014489 0.000204 \n",
"28 0.015156 0.014820 0.014458 0.000286 \n",
"29 0.014908 0.014618 0.014378 0.000219 \n",
".. ... ... ... ... \n",
"31 0.014593 0.014524 0.014478 0.000049 \n",
"32 0.014723 0.014525 0.014299 0.000174 \n",
"33 0.014715 0.014587 0.014463 0.000103 \n",
"34 0.014619 0.014557 0.014520 0.000044 \n",
"35 0.015020 0.014721 0.014543 0.000212 \n",
"36 0.014622 0.014607 0.014581 0.000018 \n",
"37 0.014569 0.014434 0.014314 0.000105 \n",
"38 0.014661 0.014594 0.014517 0.000059 \n",
"39 0.014805 0.014674 0.014545 0.000106 \n",
"40 0.015003 0.014920 0.014793 0.000091 \n",
"41 0.014722 0.014587 0.014449 0.000111 \n",
"42 0.014537 0.014436 0.014330 0.000085 \n",
"43 0.015693 0.015068 0.014475 0.000498 \n",
"44 0.014629 0.014514 0.014356 0.000115 \n",
"45 0.014893 0.014821 0.014708 0.000081 \n",
"46 0.015934 0.015051 0.014581 0.000625 \n",
"47 0.015088 0.014903 0.014804 0.000131 \n",
"48 0.016497 0.015209 0.014492 0.000913 \n",
"49 0.015092 0.014682 0.014449 0.000291 \n",
"50 0.015676 0.015116 0.014636 0.000428 \n",
"51 0.015740 0.015193 0.014780 0.000403 \n",
"52 0.015153 0.014735 0.014477 0.000298 \n",
"53 0.014929 0.014746 0.014605 0.000136 \n",
"54 0.015038 0.014873 0.014550 0.000228 \n",
"55 0.014542 0.014481 0.014397 0.000061 \n",
"56 0.014605 0.014503 0.014348 0.000112 \n",
"57 0.014551 0.014455 0.014402 0.000068 \n",
"58 0.015094 0.014720 0.014362 0.000299 \n",
"59 0.014593 0.014450 0.014374 0.000101 \n",
"60 0.015083 0.014893 0.014744 0.000141 \n",
"\n",
"[61 rows x 8 columns]"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def _extract_features(df_g, params):\n",
" for x, y in df_g:\n",
" delayed(_do_extraction_on_chunk)(x + (y,), params, None)\n",
"\n",
"def benchmark_gen():\n",
" fc_params = ComprehensiveFCParameters()\n",
" \n",
" for key, params in fc_params.items():\n",
" fc = getattr(feature_calculators, key) \n",
" tags = {'params': params, 'fc_name': key,\n",
" 'fctype': fc.fctype, 'high_comp_cost': hasattr(fc, \"high_comp_cost\")}\n",
" yield delayed(_extract_features, tags=tags)(df_g, {key: params})\n",
" \n",
"\n",
"res = timeit(benchmark_gen())\n",
"res"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>fc_name</th>\n",
" <th>fctype</th>\n",
" <th>high_comp_cost</th>\n",
" <th>params</th>\n",
" <th>wall_time_max</th>\n",
" <th>wall_time_mean</th>\n",
" <th>wall_time_min</th>\n",
" <th>wall_time_std</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>variance_larger_than_standard_deviation</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.017898</td>\n",
" <td>0.016222</td>\n",
" <td>0.014694</td>\n",
" <td>0.001312</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>has_duplicate_max</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.015940</td>\n",
" <td>0.015558</td>\n",
" <td>0.014807</td>\n",
" <td>0.000531</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>first_location_of_minimum</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.016022</td>\n",
" <td>0.015235</td>\n",
" <td>0.014479</td>\n",
" <td>0.000630</td>\n",
" </tr>\n",
" <tr>\n",
" <th>48</th>\n",
" <td>change_quantiles</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>[{'ql': 0.0, 'qh': 0.2, 'isabs': False, 'f_agg...</td>\n",
" <td>0.016497</td>\n",
" <td>0.015209</td>\n",
" <td>0.014492</td>\n",
" <td>0.000913</td>\n",
" </tr>\n",
" <tr>\n",
" <th>51</th>\n",
" <td>range_count</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>[{'min': -1, 'max': 1}]</td>\n",
" <td>0.015740</td>\n",
" <td>0.015193</td>\n",
" <td>0.014780</td>\n",
" <td>0.000403</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>absolute_sum_of_changes</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.015807</td>\n",
" <td>0.015169</td>\n",
" <td>0.014538</td>\n",
" <td>0.000518</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50</th>\n",
" <td>value_count</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>[{'value': 0}, {'value': 1}, {'value': nan}, {...</td>\n",
" <td>0.015676</td>\n",
" <td>0.015116</td>\n",
" <td>0.014636</td>\n",
" <td>0.000428</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>has_duplicate</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.015722</td>\n",
" <td>0.015069</td>\n",
" <td>0.014550</td>\n",
" <td>0.000488</td>\n",
" </tr>\n",
" <tr>\n",
" <th>43</th>\n",
" <td>binned_entropy</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>[{'max_bins': 10}]</td>\n",
" <td>0.015693</td>\n",
" <td>0.015068</td>\n",
" <td>0.014475</td>\n",
" <td>0.000498</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>kurtosis</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.015259</td>\n",
" <td>0.015062</td>\n",
" <td>0.014709</td>\n",
" <td>0.000250</td>\n",
" </tr>\n",
" <tr>\n",
" <th>46</th>\n",
" <td>spkt_welch_density</td>\n",
" <td>combiner</td>\n",
" <td>False</td>\n",
" <td>[{'coeff': 2}, {'coeff': 5}, {'coeff': 8}]</td>\n",
" <td>0.015934</td>\n",
" <td>0.015051</td>\n",
" <td>0.014581</td>\n",
" <td>0.000625</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>last_location_of_maximum</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.015526</td>\n",
" <td>0.015019</td>\n",
" <td>0.014444</td>\n",
" <td>0.000445</td>\n",
" </tr>\n",
" <tr>\n",
" <th>40</th>\n",
" <td>partial_autocorrelation</td>\n",
" <td>combiner</td>\n",
" <td>False</td>\n",
" <td>[{'lag': 0}, {'lag': 1}, {'lag': 2}, {'lag': 3...</td>\n",
" <td>0.015003</td>\n",
" <td>0.014920</td>\n",
" <td>0.014793</td>\n",
" <td>0.000091</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>sum_values</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.015267</td>\n",
" <td>0.014905</td>\n",
" <td>0.014699</td>\n",
" <td>0.000257</td>\n",
" </tr>\n",
" <tr>\n",
" <th>47</th>\n",
" <td>ar_coefficient</td>\n",
" <td>combiner</td>\n",
" <td>False</td>\n",
" <td>[{'coeff': 0, 'k': 10}, {'coeff': 1, 'k': 10},...</td>\n",
" <td>0.015088</td>\n",
" <td>0.014903</td>\n",
" <td>0.014804</td>\n",
" <td>0.000131</td>\n",
" </tr>\n",
" <tr>\n",
" <th>60</th>\n",
" <td>ratio_beyond_r_sigma</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>[{'r': 0.5}, {'r': 1}, {'r': 1.5}, {'r': 2}, {...</td>\n",
" <td>0.015083</td>\n",
" <td>0.014893</td>\n",
" <td>0.014744</td>\n",
" <td>0.000141</td>\n",
" </tr>\n",
" <tr>\n",
" <th>54</th>\n",
" <td>max_langevin_fixed_point</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>[{'m': 3, 'r': 30}]</td>\n",
" <td>0.015038</td>\n",
" <td>0.014873</td>\n",
" <td>0.014550</td>\n",
" <td>0.000228</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>longest_strike_below_mean</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.015062</td>\n",
" <td>0.014851</td>\n",
" <td>0.014702</td>\n",
" <td>0.000153</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>mean_abs_change</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.015027</td>\n",
" <td>0.014843</td>\n",
" <td>0.014674</td>\n",
" <td>0.000144</td>\n",
" </tr>\n",
" <tr>\n",
" <th>45</th>\n",
" <td>cwt_coefficients</td>\n",
" <td>combiner</td>\n",
" <td>False</td>\n",
" <td>[{'widths': (2, 5, 10, 20), 'coeff': 0, 'w': 2...</td>\n",
" <td>0.014893</td>\n",
" <td>0.014821</td>\n",
" <td>0.014708</td>\n",
" <td>0.000081</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>sum_of_reoccurring_data_points</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.015156</td>\n",
" <td>0.014820</td>\n",
" <td>0.014458</td>\n",
" <td>0.000286</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>skewness</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.015350</td>\n",
" <td>0.014815</td>\n",
" <td>0.014542</td>\n",
" <td>0.000378</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>has_duplicate_min</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.015417</td>\n",
" <td>0.014786</td>\n",
" <td>0.014418</td>\n",
" <td>0.000448</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>standard_deviation</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.015365</td>\n",
" <td>0.014781</td>\n",
" <td>0.014409</td>\n",
" <td>0.000418</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>longest_strike_above_mean</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.015032</td>\n",
" <td>0.014771</td>\n",
" <td>0.014627</td>\n",
" <td>0.000185</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>first_location_of_maximum</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014936</td>\n",
" <td>0.014747</td>\n",
" <td>0.014587</td>\n",
" <td>0.000144</td>\n",
" </tr>\n",
" <tr>\n",
" <th>53</th>\n",
" <td>friedrich_coefficients</td>\n",
" <td>combiner</td>\n",
" <td>False</td>\n",
" <td>[{'coeff': 0, 'm': 3, 'r': 30}, {'coeff': 1, '...</td>\n",
" <td>0.014929</td>\n",
" <td>0.014746</td>\n",
" <td>0.014605</td>\n",
" <td>0.000136</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>last_location_of_minimum</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014953</td>\n",
" <td>0.014735</td>\n",
" <td>0.014345</td>\n",
" <td>0.000277</td>\n",
" </tr>\n",
" <tr>\n",
" <th>52</th>\n",
" <td>approximate_entropy</td>\n",
" <td>simple</td>\n",
" <td>True</td>\n",
" <td>[{'m': 2, 'r': 0.1}, {'m': 2, 'r': 0.3}, {'m':...</td>\n",
" <td>0.015153</td>\n",
" <td>0.014735</td>\n",
" <td>0.014477</td>\n",
" <td>0.000298</td>\n",
" </tr>\n",
" <tr>\n",
" <th>35</th>\n",
" <td>symmetry_looking</td>\n",
" <td>combiner</td>\n",
" <td>False</td>\n",
" <td>[{'r': 0.0}, {'r': 0.05}, {'r': 0.1}, {'r': 0....</td>\n",
" <td>0.015020</td>\n",
" <td>0.014721</td>\n",
" <td>0.014543</td>\n",
" <td>0.000212</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>sum_of_reoccurring_values</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014980</td>\n",
" <td>0.014706</td>\n",
" <td>0.014489</td>\n",
" <td>0.000204</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>abs_energy</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014735</td>\n",
" <td>0.014683</td>\n",
" <td>0.014641</td>\n",
" <td>0.000039</td>\n",
" </tr>\n",
" <tr>\n",
" <th>49</th>\n",
" <td>fft_coefficient</td>\n",
" <td>combiner</td>\n",
" <td>False</td>\n",
" <td>[{'coeff': 0, 'attr': 'real'}, {'coeff': 1, 'a...</td>\n",
" <td>0.015092</td>\n",
" <td>0.014682</td>\n",
" <td>0.014449</td>\n",
" <td>0.000291</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>percentage_of_reoccurring_datapoints_to_all_da...</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014834</td>\n",
" <td>0.014682</td>\n",
" <td>0.014543</td>\n",
" <td>0.000119</td>\n",
" </tr>\n",
" <tr>\n",
" <th>39</th>\n",
" <td>agg_autocorrelation</td>\n",
" <td>combiner</td>\n",
" <td>False</td>\n",
" <td>[{'f_agg': 'mean'}, {'f_agg': 'median'}, {'f_a...</td>\n",
" <td>0.014805</td>\n",
" <td>0.014674</td>\n",
" <td>0.014545</td>\n",
" <td>0.000106</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>length</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014797</td>\n",
" <td>0.014661</td>\n",
" <td>0.014526</td>\n",
" <td>0.000111</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>mean</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014781</td>\n",
" <td>0.014651</td>\n",
" <td>0.014442</td>\n",
" <td>0.000149</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>count_above_mean</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014806</td>\n",
" <td>0.014621</td>\n",
" <td>0.014404</td>\n",
" <td>0.000165</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>median</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014933</td>\n",
" <td>0.014620</td>\n",
" <td>0.014411</td>\n",
" <td>0.000225</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>ratio_value_number_to_time_series_length</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014908</td>\n",
" <td>0.014618</td>\n",
" <td>0.014378</td>\n",
" <td>0.000219</td>\n",
" </tr>\n",
" <tr>\n",
" <th>36</th>\n",
" <td>large_standard_deviation</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>[{'r': 0.05}, {'r': 0.1}, {'r': 0.150000000000...</td>\n",
" <td>0.014622</td>\n",
" <td>0.014607</td>\n",
" <td>0.014581</td>\n",
" <td>0.000018</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>mean_change</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014714</td>\n",
" <td>0.014601</td>\n",
" <td>0.014397</td>\n",
" <td>0.000145</td>\n",
" </tr>\n",
" <tr>\n",
" <th>38</th>\n",
" <td>autocorrelation</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>[{'lag': 0}, {'lag': 1}, {'lag': 2}, {'lag': 3...</td>\n",
" <td>0.014661</td>\n",
" <td>0.014594</td>\n",
" <td>0.014517</td>\n",
" <td>0.000059</td>\n",
" </tr>\n",
" <tr>\n",
" <th>41</th>\n",
" <td>number_cwt_peaks</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>[{'n': 1}, {'n': 5}]</td>\n",
" <td>0.014722</td>\n",
" <td>0.014587</td>\n",
" <td>0.014449</td>\n",
" <td>0.000111</td>\n",
" </tr>\n",
" <tr>\n",
" <th>33</th>\n",
" <td>time_reversal_asymmetry_statistic</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>[{'lag': 1}, {'lag': 2}, {'lag': 3}]</td>\n",
" <td>0.014715</td>\n",
" <td>0.014587</td>\n",
" <td>0.014463</td>\n",
" <td>0.000103</td>\n",
" </tr>\n",
" <tr>\n",
" <th>34</th>\n",
" <td>c3</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>[{'lag': 1}, {'lag': 2}, {'lag': 3}]</td>\n",
" <td>0.014619</td>\n",
" <td>0.014557</td>\n",
" <td>0.014520</td>\n",
" <td>0.000044</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>count_below_mean</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014599</td>\n",
" <td>0.014534</td>\n",
" <td>0.014492</td>\n",
" <td>0.000047</td>\n",
" </tr>\n",
" <tr>\n",
" <th>32</th>\n",
" <td>minimum</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014723</td>\n",
" <td>0.014525</td>\n",
" <td>0.014299</td>\n",
" <td>0.000174</td>\n",
" </tr>\n",
" <tr>\n",
" <th>31</th>\n",
" <td>maximum</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014593</td>\n",
" <td>0.014524</td>\n",
" <td>0.014478</td>\n",
" <td>0.000049</td>\n",
" </tr>\n",
" <tr>\n",
" <th>44</th>\n",
" <td>index_mass_quantile</td>\n",
" <td>combiner</td>\n",
" <td>False</td>\n",
" <td>[{'q': 0.1}, {'q': 0.2}, {'q': 0.3}, {'q': 0.4...</td>\n",
" <td>0.014629</td>\n",
" <td>0.014514</td>\n",
" <td>0.014356</td>\n",
" <td>0.000115</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>mean_second_derivate_central</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014619</td>\n",
" <td>0.014506</td>\n",
" <td>0.014411</td>\n",
" <td>0.000086</td>\n",
" </tr>\n",
" <tr>\n",
" <th>56</th>\n",
" <td>agg_linear_trend</td>\n",
" <td>combiner</td>\n",
" <td>False</td>\n",
" <td>[{'attr': 'rvalue', 'chunk_len': 5, 'f_agg': '...</td>\n",
" <td>0.014605</td>\n",
" <td>0.014503</td>\n",
" <td>0.014348</td>\n",
" <td>0.000112</td>\n",
" </tr>\n",
" <tr>\n",
" <th>55</th>\n",
" <td>linear_trend</td>\n",
" <td>combiner</td>\n",
" <td>False</td>\n",
" <td>[{'attr': 'pvalue'}, {'attr': 'rvalue'}, {'att...</td>\n",
" <td>0.014542</td>\n",
" <td>0.014481</td>\n",
" <td>0.014397</td>\n",
" <td>0.000061</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>sample_entropy</td>\n",
" <td>simple</td>\n",
" <td>True</td>\n",
" <td>None</td>\n",
" <td>0.014525</td>\n",
" <td>0.014481</td>\n",
" <td>0.014402</td>\n",
" <td>0.000056</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>variance</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014519</td>\n",
" <td>0.014457</td>\n",
" <td>0.014391</td>\n",
" <td>0.000052</td>\n",
" </tr>\n",
" <tr>\n",
" <th>57</th>\n",
" <td>augmented_dickey_fuller</td>\n",
" <td>combiner</td>\n",
" <td>False</td>\n",
" <td>[{'attr': 'teststat'}, {'attr': 'pvalue'}, {'a...</td>\n",
" <td>0.014551</td>\n",
" <td>0.014455</td>\n",
" <td>0.014402</td>\n",
" <td>0.000068</td>\n",
" </tr>\n",
" <tr>\n",
" <th>59</th>\n",
" <td>energy_ratio_by_chunks</td>\n",
" <td>combiner</td>\n",
" <td>False</td>\n",
" <td>[{'num_segments': 10, 'segment_focus': 0}, {'n...</td>\n",
" <td>0.014593</td>\n",
" <td>0.014450</td>\n",
" <td>0.014374</td>\n",
" <td>0.000101</td>\n",
" </tr>\n",
" <tr>\n",
" <th>42</th>\n",
" <td>number_peaks</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>[{'n': 1}, {'n': 3}, {'n': 5}, {'n': 10}, {'n'...</td>\n",
" <td>0.014537</td>\n",
" <td>0.014436</td>\n",
" <td>0.014330</td>\n",
" <td>0.000085</td>\n",
" </tr>\n",
" <tr>\n",
" <th>37</th>\n",
" <td>quantile</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>[{'q': 0.1}, {'q': 0.2}, {'q': 0.3}, {'q': 0.4...</td>\n",
" <td>0.014569</td>\n",
" <td>0.014434</td>\n",
" <td>0.014314</td>\n",
" <td>0.000105</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>percentage_of_reoccurring_values_to_all_values</td>\n",
" <td>simple</td>\n",
" <td>False</td>\n",
" <td>None</td>\n",
" <td>0.014478</td>\n",
" <td>0.014393</td>\n",
" <td>0.014252</td>\n",
" <td>0.000100</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>61 rows × 8 columns</p>\n",
"</div>"
],
"text/plain": [
" fc_name fctype \\\n",
"0 variance_larger_than_standard_deviation simple \n",
"1 has_duplicate_max simple \n",
"24 first_location_of_minimum simple \n",
"48 change_quantiles simple \n",
"51 range_count simple \n",
"16 absolute_sum_of_changes simple \n",
"50 value_count simple \n",
"3 has_duplicate simple \n",
"43 binned_entropy simple \n",
"15 kurtosis simple \n",
"46 spkt_welch_density combiner \n",
"21 last_location_of_maximum simple \n",
"40 partial_autocorrelation combiner \n",
"4 sum_values simple \n",
"47 ar_coefficient combiner \n",
"60 ratio_beyond_r_sigma simple \n",
"54 max_langevin_fixed_point simple \n",
"17 longest_strike_below_mean simple \n",
"6 mean_abs_change simple \n",
"45 cwt_coefficients combiner \n",
"28 sum_of_reoccurring_data_points simple \n",
"14 skewness simple \n",
"2 has_duplicate_min simple \n",
"12 standard_deviation simple \n",
"18 longest_strike_above_mean simple \n",
"22 first_location_of_maximum simple \n",
"53 friedrich_coefficients combiner \n",
"23 last_location_of_minimum simple \n",
"52 approximate_entropy simple \n",
"35 symmetry_looking combiner \n",
".. ... ... \n",
"27 sum_of_reoccurring_values simple \n",
"5 abs_energy simple \n",
"49 fft_coefficient combiner \n",
"25 percentage_of_reoccurring_datapoints_to_all_da... simple \n",
"39 agg_autocorrelation combiner \n",
"11 length simple \n",
"10 mean simple \n",
"19 count_above_mean simple \n",
"9 median simple \n",
"29 ratio_value_number_to_time_series_length simple \n",
"36 large_standard_deviation simple \n",
"7 mean_change simple \n",
"38 autocorrelation simple \n",
"41 number_cwt_peaks simple \n",
"33 time_reversal_asymmetry_statistic simple \n",
"34 c3 simple \n",
"20 count_below_mean simple \n",
"32 minimum simple \n",
"31 maximum simple \n",
"44 index_mass_quantile combiner \n",
"8 mean_second_derivate_central simple \n",
"56 agg_linear_trend combiner \n",
"55 linear_trend combiner \n",
"30 sample_entropy simple \n",
"13 variance simple \n",
"57 augmented_dickey_fuller combiner \n",
"59 energy_ratio_by_chunks combiner \n",
"42 number_peaks simple \n",
"37 quantile simple \n",
"26 percentage_of_reoccurring_values_to_all_values simple \n",
"\n",
" high_comp_cost params \\\n",
"0 False None \n",
"1 False None \n",
"24 False None \n",
"48 False [{'ql': 0.0, 'qh': 0.2, 'isabs': False, 'f_agg... \n",
"51 False [{'min': -1, 'max': 1}] \n",
"16 False None \n",
"50 False [{'value': 0}, {'value': 1}, {'value': nan}, {... \n",
"3 False None \n",
"43 False [{'max_bins': 10}] \n",
"15 False None \n",
"46 False [{'coeff': 2}, {'coeff': 5}, {'coeff': 8}] \n",
"21 False None \n",
"40 False [{'lag': 0}, {'lag': 1}, {'lag': 2}, {'lag': 3... \n",
"4 False None \n",
"47 False [{'coeff': 0, 'k': 10}, {'coeff': 1, 'k': 10},... \n",
"60 False [{'r': 0.5}, {'r': 1}, {'r': 1.5}, {'r': 2}, {... \n",
"54 False [{'m': 3, 'r': 30}] \n",
"17 False None \n",
"6 False None \n",
"45 False [{'widths': (2, 5, 10, 20), 'coeff': 0, 'w': 2... \n",
"28 False None \n",
"14 False None \n",
"2 False None \n",
"12 False None \n",
"18 False None \n",
"22 False None \n",
"53 False [{'coeff': 0, 'm': 3, 'r': 30}, {'coeff': 1, '... \n",
"23 False None \n",
"52 True [{'m': 2, 'r': 0.1}, {'m': 2, 'r': 0.3}, {'m':... \n",
"35 False [{'r': 0.0}, {'r': 0.05}, {'r': 0.1}, {'r': 0.... \n",
".. ... ... \n",
"27 False None \n",
"5 False None \n",
"49 False [{'coeff': 0, 'attr': 'real'}, {'coeff': 1, 'a... \n",
"25 False None \n",
"39 False [{'f_agg': 'mean'}, {'f_agg': 'median'}, {'f_a... \n",
"11 False None \n",
"10 False None \n",
"19 False None \n",
"9 False None \n",
"29 False None \n",
"36 False [{'r': 0.05}, {'r': 0.1}, {'r': 0.150000000000... \n",
"7 False None \n",
"38 False [{'lag': 0}, {'lag': 1}, {'lag': 2}, {'lag': 3... \n",
"41 False [{'n': 1}, {'n': 5}] \n",
"33 False [{'lag': 1}, {'lag': 2}, {'lag': 3}] \n",
"34 False [{'lag': 1}, {'lag': 2}, {'lag': 3}] \n",
"20 False None \n",
"32 False None \n",
"31 False None \n",
"44 False [{'q': 0.1}, {'q': 0.2}, {'q': 0.3}, {'q': 0.4... \n",
"8 False None \n",
"56 False [{'attr': 'rvalue', 'chunk_len': 5, 'f_agg': '... \n",
"55 False [{'attr': 'pvalue'}, {'attr': 'rvalue'}, {'att... \n",
"30 True None \n",
"13 False None \n",
"57 False [{'attr': 'teststat'}, {'attr': 'pvalue'}, {'a... \n",
"59 False [{'num_segments': 10, 'segment_focus': 0}, {'n... \n",
"42 False [{'n': 1}, {'n': 3}, {'n': 5}, {'n': 10}, {'n'... \n",
"37 False [{'q': 0.1}, {'q': 0.2}, {'q': 0.3}, {'q': 0.4... \n",
"26 False None \n",
"\n",
" wall_time_max wall_time_mean wall_time_min wall_time_std \n",
"0 0.017898 0.016222 0.014694 0.001312 \n",
"1 0.015940 0.015558 0.014807 0.000531 \n",
"24 0.016022 0.015235 0.014479 0.000630 \n",
"48 0.016497 0.015209 0.014492 0.000913 \n",
"51 0.015740 0.015193 0.014780 0.000403 \n",
"16 0.015807 0.015169 0.014538 0.000518 \n",
"50 0.015676 0.015116 0.014636 0.000428 \n",
"3 0.015722 0.015069 0.014550 0.000488 \n",
"43 0.015693 0.015068 0.014475 0.000498 \n",
"15 0.015259 0.015062 0.014709 0.000250 \n",
"46 0.015934 0.015051 0.014581 0.000625 \n",
"21 0.015526 0.015019 0.014444 0.000445 \n",
"40 0.015003 0.014920 0.014793 0.000091 \n",
"4 0.015267 0.014905 0.014699 0.000257 \n",
"47 0.015088 0.014903 0.014804 0.000131 \n",
"60 0.015083 0.014893 0.014744 0.000141 \n",
"54 0.015038 0.014873 0.014550 0.000228 \n",
"17 0.015062 0.014851 0.014702 0.000153 \n",
"6 0.015027 0.014843 0.014674 0.000144 \n",
"45 0.014893 0.014821 0.014708 0.000081 \n",
"28 0.015156 0.014820 0.014458 0.000286 \n",
"14 0.015350 0.014815 0.014542 0.000378 \n",
"2 0.015417 0.014786 0.014418 0.000448 \n",
"12 0.015365 0.014781 0.014409 0.000418 \n",
"18 0.015032 0.014771 0.014627 0.000185 \n",
"22 0.014936 0.014747 0.014587 0.000144 \n",
"53 0.014929 0.014746 0.014605 0.000136 \n",
"23 0.014953 0.014735 0.014345 0.000277 \n",
"52 0.015153 0.014735 0.014477 0.000298 \n",
"35 0.015020 0.014721 0.014543 0.000212 \n",
".. ... ... ... ... \n",
"27 0.014980 0.014706 0.014489 0.000204 \n",
"5 0.014735 0.014683 0.014641 0.000039 \n",
"49 0.015092 0.014682 0.014449 0.000291 \n",
"25 0.014834 0.014682 0.014543 0.000119 \n",
"39 0.014805 0.014674 0.014545 0.000106 \n",
"11 0.014797 0.014661 0.014526 0.000111 \n",
"10 0.014781 0.014651 0.014442 0.000149 \n",
"19 0.014806 0.014621 0.014404 0.000165 \n",
"9 0.014933 0.014620 0.014411 0.000225 \n",
"29 0.014908 0.014618 0.014378 0.000219 \n",
"36 0.014622 0.014607 0.014581 0.000018 \n",
"7 0.014714 0.014601 0.014397 0.000145 \n",
"38 0.014661 0.014594 0.014517 0.000059 \n",
"41 0.014722 0.014587 0.014449 0.000111 \n",
"33 0.014715 0.014587 0.014463 0.000103 \n",
"34 0.014619 0.014557 0.014520 0.000044 \n",
"20 0.014599 0.014534 0.014492 0.000047 \n",
"32 0.014723 0.014525 0.014299 0.000174 \n",
"31 0.014593 0.014524 0.014478 0.000049 \n",
"44 0.014629 0.014514 0.014356 0.000115 \n",
"8 0.014619 0.014506 0.014411 0.000086 \n",
"56 0.014605 0.014503 0.014348 0.000112 \n",
"55 0.014542 0.014481 0.014397 0.000061 \n",
"30 0.014525 0.014481 0.014402 0.000056 \n",
"13 0.014519 0.014457 0.014391 0.000052 \n",
"57 0.014551 0.014455 0.014402 0.000068 \n",
"59 0.014593 0.014450 0.014374 0.000101 \n",
"42 0.014537 0.014436 0.014330 0.000085 \n",
"37 0.014569 0.014434 0.014314 0.000105 \n",
"26 0.014478 0.014393 0.014252 0.000100 \n",
"\n",
"[61 rows x 8 columns]"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"res.sort_values('wall_time_mean', ascending=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment