Created
December 12, 2016 23:13
-
-
Save rubenfiszel/3af3b8dd32269407581693c835b7e61e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
np.random.seed(1337) # for reproducibility | |
from keras.preprocessing import sequence | |
from keras.models import Sequential | |
import as_keras_ds | |
import argparse | |
from keras.models import load_model | |
import sys | |
import os | |
import defaults | |
from sentiword import seq_to_sentiword | |
parser = argparse.ArgumentParser(description='Process test data from model') | |
parser.add_argument('fname', type=str, nargs=1, | |
help='name of the model') | |
parser.add_argument('-full', action='store_true', | |
help='Use full datasets') | |
parser.add_argument('-maxlen', type=int, nargs='?', | |
help='Max length of the sequence') | |
parser.add_argument('-sw', action='store_true', | |
help='Use sentiword in embedding') | |
args = parser.parse_args() | |
sw = args.sw | |
maxlen = args.maxlen | |
if not maxlen: | |
maxlen = defaults.MAX_LEN | |
cdir = os.path.dirname(os.path.abspath(__file__)) + '/' | |
fname = 'tokenizer' | |
if args.full: | |
fname += '-full' | |
fname += '.pkl' | |
tokenizer = as_keras_ds.load_tokenizer(cdir + fname) | |
#stdin = sys.stdin.read().splitlines() | |
#seq_test = as_keras_ds.build_seq(tokenizer, stdin) | |
#X_test = np.asarray(seq_test) | |
((X_train, y_train), (X_test, Y_test)), _, _ = as_keras_ds.load_data("fasttest.vec", True, False) | |
print("Pad sequences (samples x time)") | |
X_test = sequence.pad_sequences(X_test, maxlen=maxlen) | |
if sw: | |
print("Seq to sentiword") | |
inv_word_index = {v: k for k, v in tokenizer.word_index.items()} | |
X_test_sentiword = seq_to_sentiword(X_test, inv_word_index) | |
fname = cdir + 'saved/' + args.fname[0] + '.h5' | |
print(fname) | |
model = load_model(fname) | |
model.evaluate(X_test, Y_test) | |
if (sw): | |
predictions = model.predict([X_test, X_test_sentiword]) | |
else: | |
predictions = model.predict(X_test) | |
f = open('predictions/keras_predictions', 'w+') | |
for p in predictions: | |
value = str(int(round(p[0]))) | |
f.write(value) | |
f.write("\n") | |
f.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment