Created
June 17, 2017 03:04
-
-
Save rubenfiszel/ebb3e9979a75163852ab95a2aea53c54 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras import layers | |
from keras.layers import Activation | |
from keras import models | |
def residual_network(x): | |
def resnet_conv(channels, kernel_size, strides, y): | |
pad_total = kernel_size[0] - 1 | |
pad_beg = pad_total // 2 | |
pad_end = pad_total - pad_beg | |
padding = ((0, 0), (pad_beg, pad_end)) | |
padded = layers.convolutional.ZeroPadding2D(padding=padding)(y) | |
return layers.Conv2D(channels, kernel_size=kernel_size, strides=strides, padding='valid')(padded) | |
def bottleneck(y, nb_channels_out, nb_channels_in, _strides=(1, 1), _project_shortcut=False): | |
shortcut = y | |
y = layers.Conv2D(nb_channels_in, kernel_size=(1, 1), strides=(1, 1), padding='same')(y) | |
y = Activation('relu')(y) | |
if _strides == (1, 1): | |
y = layers.Conv2D(nb_channels_in, kernel_size=(3, 3), strides=_strides, padding="same")(y) | |
else: | |
y = resnet_conv(nb_channels_in, (3, 3), _strides, y) | |
y = Activation('relu')(y) | |
y = layers.Conv2D(nb_channels_out, kernel_size=(1, 1), strides=(1, 1), padding='same')(y) | |
if _project_shortcut or _strides != (1, 1): | |
shortcut = layers.Conv2D(nb_channels_out, kernel_size=(1, 1), strides=_strides, padding='same')(shortcut) | |
y = layers.add([shortcut, y]) | |
y = Activation('relu')(y) | |
return y | |
x = resnet_conv(64, (7, 7), (2, 2), x) | |
x = Activation('relu')(x) | |
x = layers.MaxPool2D(pool_size=(3, 3), strides=(2, 2), padding='same')(x) | |
for i in range(3): | |
x = bottleneck(x, 256, 64, _project_shortcut=(i == 0)) | |
x = bottleneck(x, 512, 128, _strides=(2, 2)) | |
for i in range(4): | |
strides = (2, 2) if i == 0 else (1, 1) | |
x = bottleneck(x, 512, 128, _strides=strides) | |
for i in range(6): | |
strides = (2, 2) if i == 0 else (1, 1) | |
x = bottleneck(x, 1024, 256, _strides=strides) | |
for i in range(3): | |
strides = (2, 2) if i == 0 else (1, 1) | |
x = bottleneck(x, 2048, 512, _strides=strides) | |
x = layers.GlobalAveragePooling2D()(x) | |
x = layers.Dense(10)(x) | |
return x | |
image_tensor = layers.Input(shape=(32, 32, 3)) | |
network_output = residual_network(image_tensor) | |
model = models.Model(inputs=[image_tensor], outputs=[network_output]) | |
print(model.summary()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment