Created
April 12, 2020 22:10
-
-
Save rubenhorn/9856f64c9353334782969de94937d963 to your computer and use it in GitHub Desktop.
Fast (30fps on CPU) object localization using pretrained model from TensorFlow Hub
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
import cv2 | |
import tensorflow as tf | |
import tensorflow_hub as hub | |
import time | |
module_handle = 'https://tfhub.dev/google/object_detection/mobile_object_localizer_v1/1' | |
print('loading object detection model...') | |
model = hub.load(module_handle).signatures['default'] | |
cap = cv2.VideoCapture(0) | |
while True: | |
_, frame = cap.read() | |
img = cv2.resize(frame, (192, 192)) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
img_tensor = tf.convert_to_tensor(img, dtype=tf.float32) | |
img_tensor = tf.expand_dims(img_tensor, 0) | |
start = time.time() | |
output = model(img_tensor) | |
stop = time.time() | |
inference_time = stop - start | |
print('Inference time: {:.4f} ({} fps)'.format(inference_time, int(1 / inference_time))) | |
# print(output.keys()) | |
scores = output['detection_scores'][0] | |
boxes = output['detection_boxes'][0] | |
for i, score in enumerate(scores): | |
if score < 0.5: | |
continue | |
box = boxes[i] | |
height = frame.shape[0] | |
width = frame.shape[1] | |
cv2.rectangle(frame, (box[1] * width, box[0] * height), ((box[3]) * width, (box[2]) * height), (0, 255, 0), 2) | |
cv2.imshow('webcam', frame) | |
if cv2.waitKey(25) & 0xFF == ord('q'): | |
break | |
cap.release() | |
cv2.destroyAllWindows() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment