Created
December 10, 2011 10:32
-
-
Save rubik/1454917 to your computer and use it in GitHub Desktop.
Creating a simple continued fraction from a square root
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
def from_root(n): | |
''' | |
Construct a continued fraction from a square root. The argument | |
`n` should be an integer representing the radicand of the root: | |
>>> from_root(2) | |
(1, [2]) | |
>>> from_root(4) | |
(2,) | |
>>> from_root(97) | |
(9, [1, 5, 1, 1, 1, 1, 1, 1, 5, 1, 18]) | |
''' | |
a0 = int(math.floor(math.sqrt(n))) | |
r = (a0, []) | |
a, b, c = 1, 2 * a0, a0 ** 2 - n | |
delta = math.sqrt(4*n) | |
while True: | |
try: | |
d = int((b + delta) / (2 * c)) | |
except ZeroDivisionError: # a perfect square | |
return (r[0],) | |
a, b, c = c, -b + 2*c*d, a - b*d + c*d ** 2 | |
r[1].append(abs(d)) | |
if abs(a) == 1: | |
break | |
return r |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
import fractions | |
def from_root(n): | |
''' | |
Construct a continued fraction from a square root. The argument | |
`n` should be an integer representing the radicand of the root: | |
>>> from_root(2) | |
(1, [2]) | |
>>> from_root(4) | |
(2,) | |
>>> from_root(97) | |
(9, [1, 5, 1, 1, 1, 1, 1, 1, 5, 1, 18]) | |
''' | |
coeff = 1 | |
floor_part = floor_ = math.floor(math.sqrt(n)) | |
denom = n - floor_part ** 2 | |
exp = (int(floor_), []) | |
while True: | |
try: | |
floor_ = math.floor((math.sqrt(n) + floor_part) / float(denom)) | |
except ZeroDivisionError: # perfect square | |
return (exp[0],) | |
if denom != 1: | |
exp[1].append(int(floor_)) | |
floor_part = denom * floor_ - floor_part | |
coeff = denom | |
denom = n - floor_part ** 2 | |
common_div = fractions.gcd(coeff, denom) | |
coeff /= common_div | |
denom /= common_div | |
if denom == 1: | |
exp[1].append(int(floor_part + exp[0])) | |
break | |
return exp |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment