I hereby claim:
- I am rueberger on github.
- I am rueberger (https://keybase.io/rueberger) on keybase.
- I have a public key ASBO3HNq5_afMicR98MdxaEZ7sby0vVooTfsyrfZCiUw4wo
To claim this, I am signing this object:
| Controller: conjure-up-localhost-e8a | |
| Model Cloud/Region Status Machines Access Last connection | |
| conjure-canonical-kubern-75b localhost/localhost available 12 admin 2017-12-10 | |
| conjure-canonical-kubern-ee0* localhost/localhost available 12 admin 17 hours ago | |
| controller localhost/localhost available 1 admin just now | |
I hereby claim:
To claim this, I am signing this object:
| """ This module contains the Preprocessor abstract class | |
| """ | |
| from abc import ABC, abstractmethod | |
| class Preprocessor(ABC): | |
| """ Abstract interface for preprocessors | |
| """ |
| [D 2017-07-27 22:25:38.734 JupyterHub app:740] Generating new cookie_secret | |
| [I 2017-07-27 22:25:38.735 JupyterHub app:745] Writing cookie_secret to /srv/jupyterhub/jupyterhub_cookie_secret | |
| [D 2017-07-27 22:25:38.735 JupyterHub app:796] Connecting to db: sqlite:///jupyterhub.sqlite | |
| [W 2017-07-27 22:25:38.823 JupyterHub app:365] | |
| Generating CONFIGPROXY_AUTH_TOKEN. Restarting the Hub will require restarting the proxy. | |
| Set CONFIGPROXY_AUTH_TOKEN env or JupyterHub.proxy_auth_token config to avoid this message. | |
| [W 2017-07-27 22:25:38.838 JupyterHub app:864] No admin users, admin interface will be unavailable. | |
| [W 2017-07-27 22:25:38.838 JupyterHub app:865] Add any administrative users to `c.Authenticator.admin_users` in config. | |
| [I 2017-07-27 22:25:38.838 JupyterHub app:892] Not using whitelist. Any authenticated user will be allowed. |
| 'alembic (0.9.3) | |
| asn1crypto (0.22.0) | |
| backports.weakref (1.0rc1) | |
| bkcharts (0.2) | |
| bleach (1.5.0) | |
| bokeh (0.12.6) | |
| certifi (2017.4.17) | |
| cffi (1.10.0) | |
| chardet (3.0.2) | |
| conda (4.3.22) |
| import PIL.Image | |
| from io import BytesIO | |
| import IPython.display | |
| import numpy as np | |
| def showarray(a, fmt='png'): | |
| a = np.uint8(((a - np.min(a)) / np.max(a)) * 255) | |
| f = BytesIO() | |
| PIL.Image.fromarray(a).save(f, fmt) | |
| IPython.display.display(IPython.display.Image(data=f.getvalue())) |
| import commands | |
| import numpy as np | |
| def fetch_gpu_status(): | |
| """ Run nvidia-smi and parse the output | |
| requires Python 2 only dependency | |
| """ | |
| status_code, output = commands.getstatusoutput('nvidia-smi') |
| WS_N_GPUS = { | |
| 'turagas-ws1': 2, | |
| 'turagas-ws2': 2, | |
| 'turagas-ws3': 2, | |
| 'turagas-ws4': 2, | |
| 'c04u01': 8, | |
| 'c04u07': 8, | |
| 'c04u12': 8, | |
| 'c04u17': 8, | |
| } |
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 1, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ |
| I'm an undergrad in Physics interested in theoretical neuroscience and machine learning. | |
| Some project ideas: | |
| -Biology inspired music compression with Minimum Probability Flow learning and hopfield networks. | |
| Image compression has been achieved with these techniques; adapting the | |
| technique to music compression by mirroring the signal processing of the cochlea would be interesting. | |
| Teammates with strong EECS backgrounds would be desired for this project. | |
| I'd also be interested in using Minimum Probability Flow learning in other ways. It's a really efficient |