A comprehensive implementation of an Ai powered genetic testing platform, complete with detailed instructions and documentation. This guide will walk you through setting up each component, ensuring a fully functional system.
- System Overview
- Project Structure
- Environment Setup
- Configuration Management
- Database Integration
- MinION Controller Implementation
- Machine Learning Pipeline
- Analysis Pipeline
- API Development with FastAPI
- Testing
- Deployment
- References
The genetic testing platform is designed to perform rapid sequencing and analysis using Oxford Nanopore's MinION device. It integrates real-time data processing, modification detection, and machine learning (ML) analysis of genetic edits. The system architecture includes:
- Configuration Management: Using Pydantic for settings management.
- Database Integration: SQLAlchemy for interacting with a PostgreSQL database.
- MinION Control Interface: Controlling the MinION device using the MinKNOW API.
- Machine Learning Pipeline: PyTorch-based models for sequence analysis.
- RESTful API: FastAPI for exposing endpoints to interact with the system.
- Dependency Management: Poetry for managing project dependencies.
Organize your project as follows:
genetic_testing/
├── pyproject.toml
├── config/
│ └── settings.py
├── src/
│ ├── core/
│ │ ├── minion_controller.py
│ │ └── database.py
│ ├── models/
│ │ └── schemas.py
│ ├── pipeline/
│ │ ├── sequencing.py
│ │ └── analysis.py
│ ├── ml/
│ │ ├── autoencoder.py
│ │ └── classifier.py
│ └── main.py
└── tests/
└── test_pipeline.py
- config/: Configuration files and settings.
- src/core/: Core functionalities like database and MinION controller.
- src/models/: Data models and schemas.
- src/pipeline/: Sequencing and analysis pipelines.
- src/ml/: Machine learning models.
- tests/: Unit and integration tests.
Ensure you have Python 3.9 or higher installed. Install Poetry for dependency management:
pip install poetry
Navigate to your project directory and initialize it:
cd genetic_testing
poetry init
Follow the prompts to set up your pyproject.toml
file.
Add the required dependencies:
poetry add fastapi sqlalchemy pydantic torch biopython minknow-api numpy uvicorn
Create a virtual environment and activate it:
poetry shell
Create a settings file to manage configurations using Pydantic:
# config/settings.py
from pydantic import BaseSettings, Field
from typing import Optional
class Settings(BaseSettings):
# Database settings
DATABASE_URL: str = Field(..., env="DATABASE_URL")
# MinION settings
MINION_HOST: str = Field(default="localhost", env="MINION_HOST")
MINION_PORT: int = Field(default=9502, env="MINION_PORT")
FLOW_CELL_ID: str = Field(..., env="FLOW_CELL_ID")
# ML Pipeline settings
MODEL_PATH: str = Field(default="models/classifier.pt", env="MODEL_PATH")
BATCH_SIZE: int = Field(default=32, env="BATCH_SIZE")
MODIFICATION_THRESHOLD: float = Field(default=0.1, env="MODIFICATION_THRESHOLD")
class Config:
env_file = ".env"
# Instantiate settings
settings = Settings()
Create a .env
file in your project root to store environment variables:
DATABASE_URL=postgresql://user:password@localhost:5432/genetic_db
FLOW_CELL_ID=YOUR_FLOW_CELL_ID
Set up SQLAlchemy to interact with the PostgreSQL database:
# src/core/database.py
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker, declarative_base
from config.settings import settings
engine = create_engine(settings.DATABASE_URL)
SessionLocal = sessionmaker(bind=engine)
Base = declarative_base()
def get_db():
"""Dependency that provides a database session."""
db = SessionLocal()
try:
yield db
finally:
db.close()
Define your database models and Pydantic schemas:
# src/models/schemas.py
from sqlalchemy import Column, Integer, String, JSON
from src.core.database import Base
class SampleResult(Base):
__tablename__ = 'sample_results'
id = Column(Integer, primary_key=True, index=True)
sample_id = Column(String, unique=True, index=True)
sequence = Column(String)
modifications = Column(JSON)
edit_analysis = Column(JSON)
Use Alembic or SQLAlchemy's create_all
method to create database tables:
# Create tables (for development purposes)
from src.core.database import engine, Base
Base.metadata.create_all(bind=engine)
Implement the MinION controller using the MinKNOW API:
# src/core/minion_controller.py
import asyncio
from minknow_api.manager import Manager
from minknow_api.protocol import ProtocolService
from minknow_api import Connection
from config.settings import settings
class MinIONController:
def __init__(self):
self.connection = Connection(
host=settings.MINION_HOST,
port=settings.MINION_PORT
)
self.manager = Manager(self.connection)
self.position = self.manager.device
self.protocol = ProtocolService(self.connection)
async def start_sequencing(self, sample_id: str):
"""Starts the sequencing protocol."""
protocol_id = "sequencing/sequencing_MIN106_DNA"
run_id = await self.protocol.start_protocol(
protocol_id=protocol_id,
sample_id=sample_id
)
return run_id
async def get_sequence_data(self):
"""Retrieves raw sequencing data."""
# Implement data retrieval logic
pass
- Asynchronous Programming: The MinKNOW API uses asyncio; ensure your functions are
async def
and useawait
. - Protocol Identification: Use the correct protocol ID as per your MinION device and flow cell.
Implement the autoencoder for modification detection:
# src/ml/autoencoder.py
import torch
import torch.nn as nn
class SequenceAutoencoder(nn.Module):
def __init__(self, input_size, hidden_size):
super(SequenceAutoencoder, self).__init__()
self.encoder = nn.Sequential(
nn.Linear(input_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, hidden_size // 2)
)
self.decoder = nn.Sequential(
nn.Linear(hidden_size // 2, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, input_size)
)
def forward(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return decoded
Implement a script to train your autoencoder model on your dataset:
# src/ml/train_autoencoder.py
import torch
from torch.utils.data import DataLoader, TensorDataset
from autoencoder import SequenceAutoencoder
from config.settings import settings
# Load your dataset
def load_data():
# Implement data loading logic
pass
def train_model():
data = load_data()
dataset = TensorDataset(torch.Tensor(data))
dataloader = DataLoader(dataset, batch_size=settings.BATCH_SIZE, shuffle=True)
model = SequenceAutoencoder(input_size=1024, hidden_size=256)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
epochs = 10
for epoch in range(epochs):
for batch in dataloader:
inputs = batch[0]
outputs = model(inputs)
loss = criterion(outputs, inputs)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f"Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}")
# Save the model
torch.save(model.state_dict(), settings.MODEL_PATH)
if __name__ == "__main__":
train_model()
Implement the analysis pipeline:
# src/pipeline/analysis.py
import numpy as np
import torch
from src.ml.autoencoder import SequenceAutoencoder
from config.settings import settings
from Bio import SeqIO
class AnalysisPipeline:
def __init__(self):
self.model = SequenceAutoencoder(input_size=1024, hidden_size=256)
self.model.load_state_dict(torch.load(settings.MODEL_PATH))
self.model.eval()
def process_sequence(self, raw_data):
# Convert raw signal to sequence
sequence = self._basecall(raw_data)
# Detect modifications
modifications = self._detect_modifications(sequence)
# Analyze CRISPR edits
edit_analysis = self._analyze_edits(sequence)
return {
'sequence': sequence,
'modifications': modifications,
'edit_analysis': edit_analysis
}
def _basecall(self, raw_data):
# Implement basecalling logic using Oxford Nanopore's Guppy or similar tool
pass
def _detect_modifications(self, sequence):
# Preprocess sequence data
input_data = self._preprocess_sequence(sequence)
input_tensor = torch.Tensor(input_data)
# Pass through autoencoder
with torch.no_grad():
reconstructed = self.model(input_tensor)
# Calculate reconstruction error
error = torch.mean((input_tensor - reconstructed) ** 2, dim=1).numpy()
modifications = error > settings.MODIFICATION_THRESHOLD
return modifications.tolist()
def _analyze_edits(self, sequence):
# Implement CRISPR edit analysis
pass
def _preprocess_sequence(self, sequence):
# Convert sequence to numerical representation
nucleotide_map = {'A': 0, 'C': 1, 'G': 2, 'T': 3}
numeric_sequence = [nucleotide_map.get(nuc, 4) for nuc in sequence]
return numeric_sequence
- Basecalling: Use an external tool like Guppy for basecalling. Integrate it within
_basecall
. - Preprocessing: Ensure the sequence is appropriately preprocessed before feeding it into the model.
- Edit Analysis: Implement logic to detect specific genetic edits relevant to your application.
Develop the FastAPI application:
# src/main.py
from fastapi import FastAPI, Depends, HTTPException
from sqlalchemy.orm import Session
from src.core.database import get_db
from src.core.minion_controller import MinIONController
from src.pipeline.analysis import AnalysisPipeline
from config.settings import settings
from src.models.schemas import SampleResult
app = FastAPI()
minion = MinIONController()
pipeline = AnalysisPipeline()
@app.post("/analyze_sample")
async def analyze_sample(sample_id: str, db: Session = Depends(get_db)):
try:
# Start sequencing
run_id = await minion.start_sequencing(sample_id)
# Wait for sequencing to complete or implement real-time data handling
# For this example, we'll assume data is ready
raw_data = await minion.get_sequence_data()
# Process and analyze
results = pipeline.process_sequence(raw_data)
# Store results in the database
sample_result = SampleResult(
sample_id=sample_id,
sequence=results['sequence'],
modifications=results['modifications'],
edit_analysis=results['edit_analysis']
)
db.add(sample_result)
db.commit()
db.refresh(sample_result)
return {
"run_id": run_id,
"results": results
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
Use Uvicorn to run your FastAPI application:
uvicorn src.main:app --reload
Implement unit tests for your analysis pipeline:
# tests/test_pipeline.py
import unittest
from src.pipeline.analysis import AnalysisPipeline
class TestAnalysisPipeline(unittest.TestCase):
def setUp(self):
self.pipeline = AnalysisPipeline()
def test_process_sequence(self):
# Provide sample raw data
raw_data = "sample_raw_data"
results = self.pipeline.process_sequence(raw_data)
self.assertIn('sequence', results)
self.assertIn('modifications', results)
self.assertIn('edit_analysis', results)
if __name__ == '__main__':
unittest.main()
Run your tests:
python -m unittest discover -s tests
Create a Dockerfile
for containerization:
# Use an official Python runtime as a parent image
FROM python:3.9-slim
# Set the working directory
WORKDIR /app
# Copy the current directory contents into the container
COPY . /app
# Install any needed packages specified in requirements.txt
RUN pip install poetry
RUN poetry install
# Expose port
EXPOSE 8000
# Run the application
CMD ["poetry", "run", "uvicorn", "src.main:app", "--host", "0.0.0.0", "--port", "8000"]
Build and run your Docker image:
docker build -t genetic-testing .
docker run -p 8000:8000 genetic-testing
For production deployment, consider using Gunicorn with Uvicorn workers:
poetry run gunicorn src.main:app -w 4 -k uvicorn.workers.UvicornWorker
- Pydantic Settings Management: Pydantic Documentation
- SQLAlchemy ORM: SQLAlchemy Documentation
- MinKNOW API: MinKNOW API GitHub
- FastAPI: FastAPI Documentation
- PyTorch: PyTorch Documentation
- Biopython: Biopython Tutorial
By following this guide, you will have a fully functional genetic testing platform capable of real-time sequencing data processing and analysis. The system is modular, allowing for easy expansion and customization based on specific requirements.
Note: Ensure all third-party tools like MinKNOW and Guppy are properly installed and configured on your system. Additionally, always handle sensitive data securely and comply with relevant regulations when dealing with genetic information.