Created
October 11, 2016 02:10
-
-
Save rweeks/aaf110bb73837fe0ec6675d495bc8338 to your computer and use it in GitHub Desktop.
Not-quite-pseudocode-not-quite-code showing how to go from a Transpose table to a Data table in Spark
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package variantspark | |
import collection.JavaConverters._ | |
import com.google.common.primitives.UnsignedBytes | |
import org.apache.accumulo.core.client.{IteratorSetting, ZooKeeperInstance} | |
import org.apache.accumulo.core.client.mapred.AccumuloInputFormat | |
import org.apache.accumulo.core.client.mapreduce.impl.DelegationTokenStub | |
import org.apache.accumulo.core.client.mapreduce.lib.impl.ConfiguratorBase._ | |
import org.apache.accumulo.core.client.mapreduce.lib.impl.InputConfigurator | |
import org.apache.accumulo.core.data.{Key, Value, Range => ARange} | |
import org.apache.hadoop.conf.{Configuration => HadoopConfiguration} | |
import org.apache.hadoop.io.Text | |
import org.apache.hadoop.mapreduce.Job | |
import org.apache.hadoop.security.{Credentials, UserGroupInformation} | |
import org.apache.spark.{HashPartitioner, SerializableWritable, SparkContext} | |
import org.apache.spark.rdd.RDD | |
class VariantDereferencer { | |
/** | |
* This function is meant to be passed to mapPartitions, where the partition that we're iterating over consists of | |
* key/value pairs from the Variant transpose table. The input row id references are mapped to rows from the Variant | |
* table, encoded using the WholeRowIterator. | |
*/ | |
def dereferenceVariantIds(batchSize: Int, numDereferenceThreads: Int, | |
wConf: SerializableWritable[HadoopConfiguration], | |
wCreds: SerializableWritable[Credentials]) | |
(eIdPart: Iterator[(Array[Byte], Key)]) : Iterator[(Key,Value)] = { | |
val (conf, creds) = (wConf.value, wCreds.value) | |
val principal = getPrincipal(classOf[AccumuloInputFormat], conf) | |
val delTokenStub = getAuthenticationToken(classOf[AccumuloInputFormat], conf) | |
UserGroupInformation.getCurrentUser.addCredentials(creds) | |
val clientConfig = getClientConfiguration(classOf[AccumuloInputFormat], conf) | |
val scanAuths = InputConfigurator.getScanAuthorizations(classOf[AccumuloInputFormat], conf) | |
val delToken = unwrapAuthenticationToken(Job.getInstance(conf), delTokenStub) | |
val conn = new ZooKeeperInstance(clientConfig).getConnector(principal, delToken) | |
val scanner = conn.createBatchScanner(VariantTable, scanAuths, numDereferenceThreads) | |
scanner.addScanIterator(new IteratorSetting( | |
40, "WholeRowIterator", classOf[org.apache.accumulo.core.iterators.user.WholeRowIterator]) | |
) | |
val kvIterIter = for (keyGroup <- eIdPart.grouped(batchSize)) yield { | |
scanner.setRanges(keyGroup.map(ek => ARange.exact(new Text(ek._1))).asJava) | |
for (kvPair <- scanner.asScala) yield (kvPair.getKey, kvPair.getValue) | |
} | |
kvIterIter.flatten | |
} | |
/** | |
* This is meant to be called from a Spark driver. It applies a query to the Variant transpose table and dereferences | |
* the results to the Variant table. | |
*/ | |
def findEntities(sc: SparkContext, | |
query: String, | |
batchSize: Int = 1000, | |
numDereferenceThreads: Int = 2) : RDD[(Key,Value)] = { | |
val job = jobBuilder.prepareJob() | |
.forTable(VariantTransposeTable) | |
.forRanges(new AttrQueryParser().newRangeFromQuery(query).toList) | |
val jc = job.create().getConfiguration | |
val creds = job.create().getCredentials | |
implicit val arrayOrdering = UnsignedBytes.lexicographicalComparator() | |
val entityIds = job.createRDD(sc) | |
.map(x => (extractVariantId(x._1), x._1)) | |
.repartitionAndSortWithinPartitions(new HashPartitioner(sc.defaultParallelism)) | |
.mapPartitions(dereferenceEntityIds( | |
tenantId, batchSize, numDereferenceThreads, | |
new SerializableWritable(jc), | |
new SerializableWritable(creds) | |
)) | |
entityIds | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment