Skip to content

Instantly share code, notes, and snippets.

@rwightman
Last active June 24, 2021 23:51
Show Gist options
  • Save rwightman/e69d5f456047c16773a77182cea68c3c to your computer and use it in GitHub Desktop.
Save rwightman/e69d5f456047c16773a77182cea68c3c to your computer and use it in GitHub Desktop.
timm config for training an nfnet, load with --config arg, override batch size, lr for your number of GPUs/dist nodes
aa: rand-m6-n5-inc1-mstd1.0
amp: false
apex_amp: false
aug_splits: 0
batch_size: 256
bn_eps: null
bn_momentum: null
bn_tf: false
channels_last: false
checkpoint_hist: 10
clip_grad: 0.02
clip_mode: agc
color_jitter: 0.4
cooldown_epochs: 10
crop_pct: 0.94
cutmix: 0.0
cutmix_minmax: null
data: /data/imagenet/
data_dir: /imagenet/
dataset: ''
decay_epochs: 1.0
decay_rate: 0.988
dist_bn: reduce
drop: 0.4
drop_block: null
drop_connect: null
drop_path: 0.25
epochs: 656
eval_metric: top1
gp: fast
hflip: 0.5
img_size: 320
initial_checkpoint: ''
input_size: null
interpolation: ''
jsd: false
local_rank: 0
log_interval: 50
lr: 0.5
lr_cycle_limit: 1
lr_cycle_mul: 1.0
lr_noise: null
lr_noise_pct: 0.67
lr_noise_std: 1.0
mean: null
min_lr: 1.0e-05
mixup: 0.2
mixup_mode: batch
mixup_off_epoch: 0
mixup_prob: 1.0
mixup_switch_prob: 0.5
model: efficientnet_v2m
model_ema: true
model_ema_decay: 0.999975
model_ema_force_cpu: false
momentum: 0.9
native_amp: true
no_aug: false
no_prefetcher: false
no_resume_opt: false
num_classes: 1000
opt: fusedsgd
opt_betas: null
opt_eps: 0.001
output: ''
patience_epochs: 10
pin_mem: false
pretrained: false
ratio:
- 0.67
- 1.5
recount: 3
recovery_interval: 0
remode: pixel
reprob: 0.5
resplit: false
resume: ''
save_images: false
scale:
- 0.08
- 1.0
sched: cosine
seed: 42
smoothing: 0.1
split_bn: false
start_epoch: null
std: null
sync_bn: false
torchscript: false
train_interpolation: random
train_split: train
tta: 0
use_multi_epochs_loader: false
val_split: validation
validation_batch_size_multiplier: 1
vflip: 0.0
warmup_epochs: 10
warmup_lr: 1.0e-06
weight_decay: 7.0e-06
workers: 5
aa: rand-m6-n4-inc1-mstd1.0
amp: false
apex_amp: false
aug_splits: 0
batch_size: 256
bn_eps: null
bn_momentum: null
bn_tf: false
channels_last: false
checkpoint_hist: 10
clip_grad: 0.015
clip_mode: agc
color_jitter: 0.4
cooldown_epochs: 10
crop_pct: 0.94
cutmix: 0.0
cutmix_minmax: null
data: /data/imagenet/
data_dir: /imagenet/
dataset: ''
decay_epochs: 1.0
decay_rate: 0.988
dist_bn: reduce
drop: 0.375
drop_block: null
drop_connect: null
drop_path: 0.25
epochs: 656
eval_metric: top1
gp: fast
hflip: 0.5
img_size: 256
initial_checkpoint: ''
input_size: null
interpolation: ''
jsd: false
local_rank: 0
log_interval: 50
lr: 0.5
lr_cycle_limit: 1
lr_cycle_mul: 1.0
lr_noise: null
lr_noise_pct: 0.67
lr_noise_std: 1.0
mean: null
min_lr: 1.0e-05
mixup: 0.2
mixup_mode: batch
mixup_off_epoch: 0
mixup_prob: 1.0
mixup_switch_prob: 0.5
model: eca_nfnet_l1
model_ema: true
model_ema_decay: 0.999975
model_ema_force_cpu: false
momentum: 0.9
native_amp: true
no_aug: false
no_prefetcher: false
no_resume_opt: false
num_classes: 1000
opt: fusedsgd
opt_betas: null
opt_eps: 0.001
output: ''
patience_epochs: 10
pin_mem: false
pretrained: false
ratio:
- 0.67
- 1.5
recount: 3
recovery_interval: 0
remode: pixel
reprob: 0.5
resplit: false
resume: ''
save_images: false
scale:
- 0.08
- 1.0
sched: cosine
seed: 42
smoothing: 0.1
split_bn: false
start_epoch: null
std: null
sync_bn: false
torchscript: false
train_interpolation: random
train_split: train
tta: 0
use_multi_epochs_loader: false
val_split: validation
validation_batch_size_multiplier: 1
vflip: 0.0
warmup_epochs: 10
warmup_lr: 1.0e-06
weight_decay: 7.0e-06
workers: 5
@linhduongtuan
Copy link

Hi Ross, I have seen various sets of Hparams for your certain models. I know the sets come from your empirical, experimental and sensible abilities. Can you share or write any statement of your experience. I am sure It will be helpful for community to save our resources.
cheers
Linh

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment