Last active
November 23, 2019 07:23
-
-
Save rygorous/6628262 to your computer and use it in GitHub Desktop.
RAD dtoa
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// The original author of this software is David M. Gay. | |
// RAD modifications from here down to the copyright notice | |
// Actual RAD version of this includes rrCore.h which does | |
// (among other things) endianness detection - you'll have to | |
// do that yourself. | |
#include "dtoa.h" | |
// Again, we normally use our own assert macros here. | |
#include <assert.h> | |
#define rrAssert(x) assert(x) | |
#if defined(_MSC_VER) && _MSC_VER > 1300 | |
#pragma warning(disable:4127; disable:4204; disable:4244; disable:4221; disable:4700; disable:4706; disable: 4711; disable:4820) | |
#pragma float_control(precise, on) | |
#endif | |
#ifdef __SNC__ | |
// this file needs to have 100% reproducible FP behavior | |
#pragma control fastmath=0 | |
#pragma control autovecreg=0 | |
#pragma control fusedmadd=0 // if you allow fused madd, you might get crashes!! | |
#endif | |
#ifdef __RADWII__ | |
#pragma warn_possunwant off | |
#endif | |
#define freedtoa rr_freedtoa | |
#if defined(__RADLITTLEENDIAN__) | |
#define IEEE_8087 | |
#elif defined(__RADBIGENDIAN__) | |
#define IEEE_MC68k | |
#else | |
#error "missing endian setting - #define __RADLITTLEENDIAN__ or __RADBIGENDIAN__." | |
#endif | |
#define NO_ERRNO | |
#define NO_HEX_FP | |
#define Long int | |
#define ULong unsigned int | |
#define Llong long long | |
#define ULLong unsigned long long | |
#define Local_Private_Memory | |
#define NO_MALLOC | |
#define PRIVATE_MEM 2500 | |
#if defined(_MSC_VER) | |
#if _MSC_VER < 1300 | |
// no fegetround | |
#define Honor_FLT_ROUNDS | |
#define Trust_FLT_ROUNDS | |
#else | |
// "small" integer? case will fail with 99.0 (rounds up to 100) if we | |
// don't define this bugger. | |
#define Check_FLT_ROUNDS | |
#endif | |
#endif | |
/**************************************************************** | |
* | |
* The author of this software is David M. Gay. | |
* | |
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies. | |
* | |
* Permission to use, copy, modify, and distribute this software for any | |
* purpose without fee is hereby granted, provided that this entire notice | |
* is included in all copies of any software which is or includes a copy | |
* or modification of this software and in all copies of the supporting | |
* documentation for such software. | |
* | |
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED | |
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY | |
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY | |
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. | |
* | |
***************************************************************/ | |
/* Please send bug reports to David M. Gay (dmg at acm dot org, | |
* with " at " changed at "@" and " dot " changed to "."). */ | |
/* On a machine with IEEE extended-precision registers, it is | |
* necessary to specify double-precision (53-bit) rounding precision | |
* before invoking strtod or dtoa. If the machine uses (the equivalent | |
* of) Intel 80x87 arithmetic, the call | |
* _control87(PC_53, MCW_PC); | |
* does this with many compilers. Whether this or another call is | |
* appropriate depends on the compiler; for this to work, it may be | |
* necessary to #include "float.h" or another system-dependent header | |
* file. | |
*/ | |
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines. | |
* | |
* This strtod returns a nearest machine number to the input decimal | |
* string (or sets errno to ERANGE). With IEEE arithmetic, ties are | |
* broken by the IEEE round-even rule. Otherwise ties are broken by | |
* biased rounding (add half and chop). | |
* | |
* Inspired loosely by William D. Clinger's paper "How to Read Floating | |
* Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. | |
* | |
* Modifications: | |
* | |
* 1. We only require IEEE, IBM, or VAX double-precision | |
* arithmetic (not IEEE double-extended). | |
* 2. We get by with floating-point arithmetic in a case that | |
* Clinger missed -- when we're computing d * 10^n | |
* for a small integer d and the integer n is not too | |
* much larger than 22 (the maximum integer k for which | |
* we can represent 10^k exactly), we may be able to | |
* compute (d*10^k) * 10^(e-k) with just one roundoff. | |
* 3. Rather than a bit-at-a-time adjustment of the binary | |
* result in the hard case, we use floating-point | |
* arithmetic to determine the adjustment to within | |
* one bit; only in really hard cases do we need to | |
* compute a second residual. | |
* 4. Because of 3., we don't need a large table of powers of 10 | |
* for ten-to-e (just some small tables, e.g. of 10^k | |
* for 0 <= k <= 22). | |
*/ | |
/* | |
* #define IEEE_8087 for IEEE-arithmetic machines where the least | |
* significant byte has the lowest address. | |
* #define IEEE_MC68k for IEEE-arithmetic machines where the most | |
* significant byte has the lowest address. | |
* #define Long int on machines with 32-bit ints and 64-bit longs. | |
* #define IBM for IBM mainframe-style floating-point arithmetic. | |
* #define VAX for VAX-style floating-point arithmetic (D_floating). | |
* #define No_leftright to omit left-right logic in fast floating-point | |
* computation of dtoa. | |
* #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 | |
* and strtod and dtoa should round accordingly. Unless Trust_FLT_ROUNDS | |
* is also #defined, fegetround() will be queried for the rounding mode. | |
* Note that both FLT_ROUNDS and fegetround() are specified by the C99 | |
* standard (and are specified to be consistent, with fesetround() | |
* affecting the value of FLT_ROUNDS), but that some (Linux) systems | |
* do not work correctly in this regard, so using fegetround() is more | |
* portable than using FLT_FOUNDS directly. | |
* #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 | |
* and Honor_FLT_ROUNDS is not #defined. | |
* #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines | |
* that use extended-precision instructions to compute rounded | |
* products and quotients) with IBM. | |
* #define ROUND_BIASED for IEEE-format with biased rounding. | |
* #define Inaccurate_Divide for IEEE-format with correctly rounded | |
* products but inaccurate quotients, e.g., for Intel i860. | |
* #define NO_LONG_LONG on machines that do not have a "long long" | |
* integer type (of >= 64 bits). On such machines, you can | |
* #define Just_16 to store 16 bits per 32-bit Long when doing | |
* high-precision integer arithmetic. Whether this speeds things | |
* up or slows things down depends on the machine and the number | |
* being converted. If long long is available and the name is | |
* something other than "long long", #define Llong to be the name, | |
* and if "unsigned Llong" does not work as an unsigned version of | |
* Llong, #define #ULLong to be the corresponding unsigned type. | |
* #define KR_headers for old-style C function headers. | |
* #define Bad_float_h if your system lacks a float.h or if it does not | |
* define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, | |
* FLT_RADIX, FLT_ROUNDS, and DBL_MAX. | |
* #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) | |
* if memory is available and otherwise does something you deem | |
* appropriate. If MALLOC is undefined, malloc will be invoked | |
* directly -- and assumed always to succeed. Similarly, if you | |
* want something other than the system's free() to be called to | |
* recycle memory acquired from MALLOC, #define FREE to be the | |
* name of the alternate routine. (FREE or free is only called in | |
* pathological cases, e.g., in a dtoa call after a dtoa return in | |
* mode 3 with thousands of digits requested.) | |
* #define NO_MALLOC to avoid using malloc at all (conversion will | |
* fail if malloc is needed.) Currently not supported if USE_LOCALE is set. | |
* #define Omit_Private_Memory to omit logic (added Jan. 1998) for making | |
* memory allocations from a private pool of memory when possible. | |
* When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes, | |
* unless #defined to be a different length. This default length | |
* suffices to get rid of MALLOC calls except for unusual cases, | |
* such as decimal-to-binary conversion of a very long string of | |
* digits. The longest string dtoa can return is about 751 bytes | |
* long. For conversions by strtod of strings of 800 digits and | |
* all dtoa conversions in single-threaded executions with 8-byte | |
* pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte | |
* pointers, PRIVATE_MEM >= 7112 appears adequate. | |
* #define Local_Private_Memory to keep private memory on the stack. | |
* This allows you to avoid the need for locks in multithreaded | |
* applications. However, it also means the return value can not | |
* be allocated from the private memory, so it must be passed in. | |
* #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK | |
* #defined automatically on IEEE systems. On such systems, | |
* when INFNAN_CHECK is #defined, strtod checks | |
* for Infinity and NaN (case insensitively). On some systems | |
* (e.g., some HP systems), it may be necessary to #define NAN_WORD0 | |
* appropriately -- to the most significant word of a quiet NaN. | |
* (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) | |
* When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, | |
* strtod also accepts (case insensitively) strings of the form | |
* NaN(x), where x is a string of hexadecimal digits and spaces; | |
* if there is only one string of hexadecimal digits, it is taken | |
* for the 52 fraction bits of the resulting NaN; if there are two | |
* or more strings of hex digits, the first is for the high 20 bits, | |
* the second and subsequent for the low 32 bits, with intervening | |
* white space ignored; but if this results in none of the 52 | |
* fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0 | |
* and NAN_WORD1 are used instead. | |
* #define MULTIPLE_THREADS if the system offers preemptively scheduled | |
* multiple threads. In this case, you must provide (or suitably | |
* #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed | |
* by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed | |
* in pow5mult, ensures lazy evaluation of only one copy of high | |
* powers of 5; omitting this lock would introduce a small | |
* probability of wasting memory, but would otherwise be harmless.) | |
* You must also invoke freedtoa(s) to free the value s returned by | |
* dtoa. You may do so whether or not MULTIPLE_THREADS is #defined. | |
* #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that | |
* avoids underflows on inputs whose result does not underflow. | |
* If you #define NO_IEEE_Scale on a machine that uses IEEE-format | |
* floating-point numbers and flushes underflows to zero rather | |
* than implementing gradual underflow, then you must also #define | |
* Sudden_Underflow. | |
* #define USE_LOCALE to use the current locale's decimal_point value. | |
* #define SET_INEXACT if IEEE arithmetic is being used and extra | |
* computation should be done to set the inexact flag when the | |
* result is inexact and avoid setting inexact when the result | |
* is exact. In this case, dtoa.c must be compiled in | |
* an environment, perhaps provided by #include "dtoa.c" in a | |
* suitable wrapper, that defines two functions, | |
* int get_inexact(void); | |
* void clear_inexact(void); | |
* such that get_inexact() returns a nonzero value if the | |
* inexact bit is already set, and clear_inexact() sets the | |
* inexact bit to 0. When SET_INEXACT is #defined, strtod | |
* also does extra computations to set the underflow and overflow | |
* flags when appropriate (i.e., when the result is tiny and | |
* inexact or when it is a numeric value rounded to +-infinity). | |
* #define NO_ERRNO if strtod should not assign errno = ERANGE when | |
* the result overflows to +-Infinity or underflows to 0. | |
* #define NO_HEX_FP to omit recognition of hexadecimal floating-point | |
* values by strtod. | |
* #define NO_STRTOD_BIGCOMP (on IEEE-arithmetic systems only for now) | |
* to disable logic for "fast" testing of very long input strings | |
* to strtod. This testing proceeds by initially truncating the | |
* input string, then if necessary comparing the whole string with | |
* a decimal expansion to decide close cases. This logic is only | |
* used for input more than STRTOD_DIGLIM digits long (default 40). | |
*/ | |
#ifndef Long | |
#define Long long | |
#endif | |
#ifndef ULong | |
typedef unsigned Long ULong; | |
#endif | |
#ifdef DEBUG | |
#include "stdio.h" | |
#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} | |
#endif | |
#include "stdlib.h" | |
#include "string.h" | |
#ifdef USE_LOCALE | |
#include "locale.h" | |
#endif | |
#ifdef Honor_FLT_ROUNDS | |
#ifndef Trust_FLT_ROUNDS | |
#include <fenv.h> | |
#endif | |
#endif | |
#ifdef NO_MALLOC | |
#define MALLOC x x x | |
#else | |
#ifdef MALLOC | |
#ifdef KR_headers | |
extern char *MALLOC(); | |
#else | |
extern void *MALLOC(size_t); | |
#endif | |
#else | |
#define MALLOC malloc | |
#endif | |
#endif | |
#ifndef Omit_Private_Memory | |
#ifndef PRIVATE_MEM | |
#define PRIVATE_MEM 2304 | |
#endif | |
#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double)) | |
#ifndef Local_Private_Memory | |
static double private_mem[PRIVATE_mem], *pmem_next = private_mem; | |
#endif | |
#endif | |
#ifdef NO_MALLOC | |
#undef NO_STRTOD_BIGCOMP | |
#define NO_STRTOD_BIGCOMPx // don't know how to propogate error out of bigcomp(), so just don't call it | |
#endif | |
#undef IEEE_Arith | |
#undef Avoid_Underflow | |
#ifdef IEEE_MC68k | |
#define IEEE_Arith | |
#endif | |
#ifdef IEEE_8087 | |
#define IEEE_Arith | |
#endif | |
#ifdef IEEE_Arith | |
#ifndef NO_INFNAN_CHECK | |
#undef INFNAN_CHECK | |
#define INFNAN_CHECK | |
#endif | |
#else | |
#undef INFNAN_CHECK | |
#define NO_STRTOD_BIGCOMP | |
#endif | |
#include "errno.h" | |
#ifdef Bad_float_h | |
#ifdef IEEE_Arith | |
#define DBL_DIG 15 | |
#define DBL_MAX_10_EXP 308 | |
#define DBL_MAX_EXP 1024 | |
#define FLT_RADIX 2 | |
#endif /*IEEE_Arith*/ | |
#ifdef IBM | |
#define DBL_DIG 16 | |
#define DBL_MAX_10_EXP 75 | |
#define DBL_MAX_EXP 63 | |
#define FLT_RADIX 16 | |
#define DBL_MAX 7.2370055773322621e+75 | |
#endif | |
#ifdef VAX | |
#define DBL_DIG 16 | |
#define DBL_MAX_10_EXP 38 | |
#define DBL_MAX_EXP 127 | |
#define FLT_RADIX 2 | |
#define DBL_MAX 1.7014118346046923e+38 | |
#endif | |
#ifndef LONG_MAX | |
#define LONG_MAX 2147483647 | |
#endif | |
#else /* ifndef Bad_float_h */ | |
#include "float.h" | |
#endif /* Bad_float_h */ | |
#ifndef __MATH_H__ | |
#include "math.h" | |
#endif | |
#ifdef __cplusplus | |
extern "C" { | |
#endif | |
#ifndef CONST | |
#ifdef KR_headers | |
#define CONST /* blank */ | |
#else | |
#define CONST const | |
#endif | |
#endif | |
#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1 | |
Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined. | |
#endif | |
typedef union { double d; ULong L[2]; } U; | |
#ifdef IEEE_8087 | |
#define word0(x) (x)->L[1] | |
#define word1(x) (x)->L[0] | |
#else | |
#define word0(x) (x)->L[0] | |
#define word1(x) (x)->L[1] | |
#endif | |
#define dval(x) (x)->d | |
#ifndef STRTOD_DIGLIM | |
#define STRTOD_DIGLIM 40 | |
#endif | |
#ifdef DIGLIM_DEBUG | |
extern int strtod_diglim; | |
#else | |
#define strtod_diglim STRTOD_DIGLIM | |
#endif | |
/* The following definition of Storeinc is appropriate for MIPS processors. | |
* An alternative that might be better on some machines is | |
* #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) | |
*/ | |
#if defined(IEEE_8087) + defined(VAX) | |
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ | |
((unsigned short *)a)[0] = (unsigned short)c, a++) | |
#else | |
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ | |
((unsigned short *)a)[1] = (unsigned short)c, a++) | |
#endif | |
/* #define P DBL_MANT_DIG */ | |
/* Ten_pmax = floor(P*log(2)/log(5)) */ | |
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ | |
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ | |
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ | |
#ifdef IEEE_Arith | |
#define Exp_shift 20 | |
#define Exp_shift1 20 | |
#define Exp_msk1 0x100000 | |
#define Exp_msk11 0x100000 | |
#define Exp_mask 0x7ff00000 | |
#define P 53 | |
#define Nbits 53 | |
#define Bias 1023 | |
#define Emax 1023 | |
#define Emin (-1022) | |
#define Exp_1 0x3ff00000 | |
#define Exp_11 0x3ff00000 | |
#define Ebits 11 | |
#define Frac_mask 0xfffff | |
#define Frac_mask1 0xfffff | |
#define Ten_pmax 22 | |
#define Bletch 0x10 | |
#define Bndry_mask 0xfffff | |
#define Bndry_mask1 0xfffff | |
#define LSB 1 | |
#define Sign_bit 0x80000000 | |
#define Log2P 1 | |
#define Tiny0 0 | |
#define Tiny1 1 | |
#define Quick_max 14 | |
#define Int_max 14 | |
#ifndef NO_IEEE_Scale | |
#define Avoid_Underflow | |
#ifdef Flush_Denorm /* debugging option */ | |
#undef Sudden_Underflow | |
#endif | |
#endif | |
#ifndef Flt_Rounds | |
#ifdef FLT_ROUNDS | |
#define Flt_Rounds FLT_ROUNDS | |
#else | |
#define Flt_Rounds 1 | |
#endif | |
#endif /*Flt_Rounds*/ | |
#ifdef Honor_FLT_ROUNDS | |
#undef Check_FLT_ROUNDS | |
#define Check_FLT_ROUNDS | |
#else | |
#define Rounding Flt_Rounds | |
#endif | |
#else /* ifndef IEEE_Arith */ | |
#undef Check_FLT_ROUNDS | |
#undef Honor_FLT_ROUNDS | |
#undef SET_INEXACT | |
#undef Sudden_Underflow | |
#define Sudden_Underflow | |
#ifdef IBM | |
#undef Flt_Rounds | |
#define Flt_Rounds 0 | |
#define Exp_shift 24 | |
#define Exp_shift1 24 | |
#define Exp_msk1 0x1000000 | |
#define Exp_msk11 0x1000000 | |
#define Exp_mask 0x7f000000 | |
#define P 14 | |
#define Nbits 56 | |
#define Bias 65 | |
#define Emax 248 | |
#define Emin (-260) | |
#define Exp_1 0x41000000 | |
#define Exp_11 0x41000000 | |
#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */ | |
#define Frac_mask 0xffffff | |
#define Frac_mask1 0xffffff | |
#define Bletch 4 | |
#define Ten_pmax 22 | |
#define Bndry_mask 0xefffff | |
#define Bndry_mask1 0xffffff | |
#define LSB 1 | |
#define Sign_bit 0x80000000 | |
#define Log2P 4 | |
#define Tiny0 0x100000 | |
#define Tiny1 0 | |
#define Quick_max 14 | |
#define Int_max 15 | |
#else /* VAX */ | |
#undef Flt_Rounds | |
#define Flt_Rounds 1 | |
#define Exp_shift 23 | |
#define Exp_shift1 7 | |
#define Exp_msk1 0x80 | |
#define Exp_msk11 0x800000 | |
#define Exp_mask 0x7f80 | |
#define P 56 | |
#define Nbits 56 | |
#define Bias 129 | |
#define Emax 126 | |
#define Emin (-129) | |
#define Exp_1 0x40800000 | |
#define Exp_11 0x4080 | |
#define Ebits 8 | |
#define Frac_mask 0x7fffff | |
#define Frac_mask1 0xffff007f | |
#define Ten_pmax 24 | |
#define Bletch 2 | |
#define Bndry_mask 0xffff007f | |
#define Bndry_mask1 0xffff007f | |
#define LSB 0x10000 | |
#define Sign_bit 0x8000 | |
#define Log2P 1 | |
#define Tiny0 0x80 | |
#define Tiny1 0 | |
#define Quick_max 15 | |
#define Int_max 15 | |
#endif /* IBM, VAX */ | |
#endif /* IEEE_Arith */ | |
#ifndef IEEE_Arith | |
#define ROUND_BIASED | |
#endif | |
#ifdef RND_PRODQUOT | |
#define rounded_product(a,b) a = rnd_prod(a, b) | |
#define rounded_quotient(a,b) a = rnd_quot(a, b) | |
#ifdef KR_headers | |
extern double rnd_prod(), rnd_quot(); | |
#else | |
extern double rnd_prod(double, double), rnd_quot(double, double); | |
#endif | |
#else | |
#define rounded_product(a,b) a *= b | |
#define rounded_quotient(a,b) a /= b | |
#endif | |
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) | |
#define Big1 0xffffffff | |
#ifndef Pack_32 | |
#define Pack_32 | |
#endif | |
typedef struct BCinfo BCinfo; | |
struct | |
BCinfo { int dp0, dp1, dplen, dsign, e0, inexact, nd, nd0, rounding, scale, uflchk; }; | |
#ifdef KR_headers | |
#define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff) | |
#else | |
#define FFFFFFFF 0xffffffffUL | |
#endif | |
#ifdef NO_LONG_LONG | |
#undef ULLong | |
#ifdef Just_16 | |
#undef Pack_32 | |
/* When Pack_32 is not defined, we store 16 bits per 32-bit Long. | |
* This makes some inner loops simpler and sometimes saves work | |
* during multiplications, but it often seems to make things slightly | |
* slower. Hence the default is now to store 32 bits per Long. | |
*/ | |
#endif | |
#else /* long long available */ | |
#ifndef Llong | |
#define Llong long long | |
#endif | |
#ifndef ULLong | |
#define ULLong unsigned Llong | |
#endif | |
#endif /* NO_LONG_LONG */ | |
#ifndef MULTIPLE_THREADS | |
#define ACQUIRE_DTOA_LOCK(n) /*nothing*/ | |
#define FREE_DTOA_LOCK(n) /*nothing*/ | |
#endif | |
#define Kmax 7 | |
#ifdef __cplusplus | |
extern "C" double DTOA_MANGLE(strtod)(const char *s00, char **se); | |
extern "C" char *DTOA_MANGLE(dtoa)(double d, int mode, int ndigits, | |
int *decpt, int *sign, char *rv, int rv_length); | |
#endif | |
struct | |
Bigint { | |
struct Bigint *next; | |
int k, maxwds, sign, wds; | |
ULong x[1]; | |
}; | |
typedef struct Bigint Bigint; | |
#ifdef Local_Private_Memory | |
typedef struct { | |
char *return_storage; | |
int return_storage_size; | |
int padding; | |
double *pmem_next, private_mem[PRIVATE_mem]; | |
Bigint *freelist[Kmax+1]; | |
Bigint *p5s; | |
} MemInfo; | |
#define mp(v) mem->v | |
#define KRm1 mem, | |
#define KRm2 MemInfo *mem; | |
#define mdec MemInfo *mem, | |
#define mcall mem, | |
#else | |
static Bigint *freelist[Kmax+1]; | |
static Bigint *p5s; | |
#define mp(v) v | |
#define KRm1 | |
#define KRm2 | |
#define mdec | |
#define mcall | |
#endif | |
static Bigint * | |
Balloc | |
#ifdef KR_headers | |
(KRm1 k) KRm2 int k; | |
#else | |
(mdec int k) | |
#endif | |
{ | |
int x; | |
Bigint *rv; | |
#ifndef Omit_Private_Memory | |
unsigned int len; | |
#endif | |
ACQUIRE_DTOA_LOCK(0); | |
/* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */ | |
/* but this case seems very unlikely. */ | |
if (k <= Kmax && (rv = mp(freelist)[k])) | |
mp(freelist)[k] = rv->next; | |
else { | |
x = 1 << k; | |
#ifdef Omit_Private_Memory | |
rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong)); | |
#else | |
len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) | |
/sizeof(double); | |
if (k <= Kmax && mp(pmem_next) - mp(private_mem) + len <= PRIVATE_mem) { | |
rv = (Bigint*)mp(pmem_next); | |
mp(pmem_next) += len; | |
} | |
else | |
#ifndef NO_MALLOC | |
rv = (Bigint*)MALLOC(len*sizeof(double)); | |
#else | |
rv = 0; | |
#endif | |
#endif | |
if (rv == 0) return rv; | |
rv->k = k; | |
rv->maxwds = x; | |
} | |
FREE_DTOA_LOCK(0); | |
rv->sign = rv->wds = 0; | |
return rv; | |
} | |
static void | |
Bfree | |
#ifdef KR_headers | |
(KRm1 v) KRm2 Bigint *v; | |
#else | |
(mdec Bigint *v) | |
#endif | |
{ | |
if (v) { | |
if (v->k > Kmax) | |
#ifdef FREE | |
FREE((void*)v); | |
#else | |
free((void*)v); | |
#endif | |
else { | |
ACQUIRE_DTOA_LOCK(0); | |
v->next = mp(freelist)[v->k]; | |
mp(freelist)[v->k] = v; | |
FREE_DTOA_LOCK(0); | |
} | |
} | |
} | |
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \ | |
y->wds*sizeof(Long) + 2*sizeof(int)) | |
static Bigint * | |
multadd | |
#ifdef KR_headers | |
(KRm1 b, m, a) KRm2 Bigint *b; int m, a; | |
#else | |
(mdec Bigint *b, int m, int a) /* multiply by m and add a */ | |
#endif | |
{ | |
int i, wds; | |
#ifdef ULLong | |
ULong *x; | |
ULLong carry, y; | |
#else | |
ULong carry, *x, y; | |
#ifdef Pack_32 | |
ULong xi, z; | |
#endif | |
#endif | |
Bigint *b1; | |
wds = b->wds; | |
x = b->x; | |
i = 0; | |
carry = a; | |
do { | |
#ifdef ULLong | |
y = *x * (ULLong)m + carry; | |
carry = y >> 32; | |
*x++ = (ULong) (y & FFFFFFFF); | |
#else | |
#ifdef Pack_32 | |
xi = *x; | |
y = (xi & 0xffff) * m + carry; | |
z = (xi >> 16) * m + (y >> 16); | |
carry = z >> 16; | |
*x++ = (z << 16) + (y & 0xffff); | |
#else | |
y = *x * m + carry; | |
carry = y >> 16; | |
*x++ = y & 0xffff; | |
#endif | |
#endif | |
} | |
while(++i < wds); | |
if (carry) { | |
if (wds >= b->maxwds) { | |
b1 = Balloc(mcall b->k+1); | |
if (!b1) return NULL; | |
Bcopy(b1, b); | |
Bfree(mcall b); | |
b = b1; | |
} | |
b->x[wds++] = (ULong) carry; | |
b->wds = wds; | |
} | |
return b; | |
} | |
static Bigint * | |
s2b | |
#ifdef KR_headers | |
(KRm1 s, nd0, nd, y9, dplen) KRm2 CONST char *s; int nd0, nd, dplen; ULong y9; | |
#else | |
(mdec CONST char *s, int nd0, int nd, ULong y9, int dplen) | |
#endif | |
{ | |
Bigint *b; | |
int i, k; | |
Long x, y; | |
x = (nd + 8) / 9; | |
for(k = 0, y = 1; x > y; y <<= 1, k++) ; | |
#ifdef Pack_32 | |
b = Balloc(mcall k); | |
if (b == NULL) return NULL; | |
b->x[0] = y9; | |
b->wds = 1; | |
#else | |
b = Balloc(mcall k+1); | |
if (b == NULL) return NULL; | |
b->x[0] = y9 & 0xffff; | |
b->wds = (b->x[1] = y9 >> 16) ? 2 : 1; | |
#endif | |
i = 9; | |
if (9 < nd0) { | |
s += 9; | |
do { | |
b = multadd(mcall b, 10, *s++ - '0'); | |
if (b == NULL) return NULL; | |
} while(++i < nd0); | |
s += dplen; | |
} | |
else | |
s += dplen + 9; | |
for(; i < nd; i++) { | |
b = multadd(mcall b, 10, *s++ - '0'); | |
if (!b) return NULL; | |
} | |
return b; | |
} | |
static int | |
hi0bits | |
#ifdef KR_headers | |
(x) ULong x; | |
#else | |
(ULong x) | |
#endif | |
{ | |
int k = 0; | |
if (!(x & 0xffff0000)) { | |
k = 16; | |
x <<= 16; | |
} | |
if (!(x & 0xff000000)) { | |
k += 8; | |
x <<= 8; | |
} | |
if (!(x & 0xf0000000)) { | |
k += 4; | |
x <<= 4; | |
} | |
if (!(x & 0xc0000000)) { | |
k += 2; | |
x <<= 2; | |
} | |
if (!(x & 0x80000000)) { | |
k++; | |
if (!(x & 0x40000000)) | |
return 32; | |
} | |
return k; | |
} | |
static int | |
lo0bits | |
#ifdef KR_headers | |
(y) ULong *y; | |
#else | |
(ULong *y) | |
#endif | |
{ | |
int k; | |
ULong x = *y; | |
if (x & 7) { | |
if (x & 1) | |
return 0; | |
if (x & 2) { | |
*y = x >> 1; | |
return 1; | |
} | |
*y = x >> 2; | |
return 2; | |
} | |
k = 0; | |
if (!(x & 0xffff)) { | |
k = 16; | |
x >>= 16; | |
} | |
if (!(x & 0xff)) { | |
k += 8; | |
x >>= 8; | |
} | |
if (!(x & 0xf)) { | |
k += 4; | |
x >>= 4; | |
} | |
if (!(x & 0x3)) { | |
k += 2; | |
x >>= 2; | |
} | |
if (!(x & 1)) { | |
k++; | |
x >>= 1; | |
if (!x) | |
return 32; | |
} | |
*y = x; | |
return k; | |
} | |
static Bigint * | |
i2b | |
#ifdef KR_headers | |
(KRm1 i) KRm2 int i; | |
#else | |
(mdec int i) | |
#endif | |
{ | |
Bigint *b; | |
b = Balloc(mcall 1); | |
if (b) { | |
b->x[0] = i; | |
b->wds = 1; | |
} | |
return b; | |
} | |
static Bigint * | |
mult | |
#ifdef KR_headers | |
(KRm1 a, b) KRm2 Bigint *a, *b; | |
#else | |
(mdec Bigint *a, Bigint *b) | |
#endif | |
{ | |
Bigint *c; | |
int k, wa, wb, wc; | |
ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0; | |
ULong y; | |
#ifdef ULLong | |
ULLong carry, z; | |
#else | |
ULong carry, z; | |
#ifdef Pack_32 | |
ULong z2; | |
#endif | |
#endif | |
if (a->wds < b->wds) { | |
c = a; | |
a = b; | |
b = c; | |
} | |
k = a->k; | |
wa = a->wds; | |
wb = b->wds; | |
wc = wa + wb; | |
if (wc > a->maxwds) | |
k++; | |
c = Balloc(mcall k); | |
if (c == NULL) return NULL; | |
for(x = c->x, xa = x + wc; x < xa; x++) | |
*x = 0; | |
xa = a->x; | |
xae = xa + wa; | |
xb = b->x; | |
xbe = xb + wb; | |
xc0 = c->x; | |
#ifdef ULLong | |
for(; xb < xbe; xc0++) { | |
if ((y = *xb++)) { | |
x = xa; | |
xc = xc0; | |
carry = 0; | |
do { | |
z = *x++ * (ULLong)y + *xc + carry; | |
carry = z >> 32; | |
*xc++ = (ULong) (z & FFFFFFFF); | |
} | |
while(x < xae); | |
*xc = (ULong) carry; | |
} | |
} | |
#else | |
#ifdef Pack_32 | |
for(; xb < xbe; xb++, xc0++) { | |
if (y = *xb & 0xffff) { | |
x = xa; | |
xc = xc0; | |
carry = 0; | |
do { | |
z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; | |
carry = z >> 16; | |
z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; | |
carry = z2 >> 16; | |
Storeinc(xc, z2, z); | |
} | |
while(x < xae); | |
*xc = carry; | |
} | |
if (y = *xb >> 16) { | |
x = xa; | |
xc = xc0; | |
carry = 0; | |
z2 = *xc; | |
do { | |
z = (*x & 0xffff) * y + (*xc >> 16) + carry; | |
carry = z >> 16; | |
Storeinc(xc, z, z2); | |
z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; | |
carry = z2 >> 16; | |
} | |
while(x < xae); | |
*xc = z2; | |
} | |
} | |
#else | |
for(; xb < xbe; xc0++) { | |
if (y = *xb++) { | |
x = xa; | |
xc = xc0; | |
carry = 0; | |
do { | |
z = *x++ * y + *xc + carry; | |
carry = z >> 16; | |
*xc++ = z & 0xffff; | |
} | |
while(x < xae); | |
*xc = carry; | |
} | |
} | |
#endif | |
#endif | |
for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; | |
c->wds = wc; | |
return c; | |
} | |
static Bigint * | |
pow5mult | |
#ifdef KR_headers | |
(KRm1 b, k) KRm2 Bigint *b; int k; | |
#else | |
(mdec Bigint *b, int k) | |
#endif | |
{ | |
Bigint *b1, *p5, *p51; | |
int i; | |
static int p05[3] = { 5, 25, 125 }; | |
if ((i = k & 3)) | |
b = multadd(mcall b, p05[i-1], 0); | |
if (!(k >>= 2)) | |
return b; | |
if (!(p5 = mp(p5s))) { | |
/* first time */ | |
#ifdef MULTIPLE_THREADS | |
ACQUIRE_DTOA_LOCK(1); | |
if (!(p5 = mp(p5s))) { | |
p5 = mp(p5s) = i2b(625); | |
p5->next = 0; | |
} | |
FREE_DTOA_LOCK(1); | |
#else | |
p5 = mp(p5s) = i2b(mcall 625); | |
if (p5 == NULL) return NULL; | |
p5->next = 0; | |
#endif | |
} | |
for(;;) { | |
if (k & 1) { | |
b1 = mult(mcall b, p5); | |
if (b1 == NULL) return NULL; | |
Bfree(mcall b); | |
b = b1; | |
} | |
if (!(k >>= 1)) | |
break; | |
if (!(p51 = p5->next)) { | |
#ifdef MULTIPLE_THREADS | |
ACQUIRE_DTOA_LOCK(1); | |
if (!(p51 = p5->next)) { | |
p51 = p5->next = mult(p5,p5); | |
p51->next = 0; | |
} | |
FREE_DTOA_LOCK(1); | |
#else | |
p51 = p5->next = mult(mcall p5,p5); | |
if (p51 == NULL) return NULL; | |
p51->next = 0; | |
#endif | |
} | |
p5 = p51; | |
} | |
return b; | |
} | |
static Bigint * | |
lshift | |
#ifdef KR_headers | |
(KRm1 b, k) KRm2 Bigint *b; int k; | |
#else | |
(mdec Bigint *b, int k) | |
#endif | |
{ | |
int i, k1, n, n1; | |
Bigint *b1; | |
ULong *x, *x1, *xe, z; | |
#ifdef Pack_32 | |
n = k >> 5; | |
#else | |
n = k >> 4; | |
#endif | |
k1 = b->k; | |
n1 = n + b->wds + 1; | |
for(i = b->maxwds; n1 > i; i <<= 1) | |
k1++; | |
b1 = Balloc(mcall k1); | |
x1 = b1->x; | |
for(i = 0; i < n; i++) | |
*x1++ = 0; | |
x = b->x; | |
xe = x + b->wds; | |
#ifdef Pack_32 | |
if (k &= 0x1f) { | |
k1 = 32 - k; | |
z = 0; | |
do { | |
*x1++ = *x << k | z; | |
z = *x++ >> k1; | |
} | |
while(x < xe); | |
if ((*x1 = z)) | |
++n1; | |
} | |
#else | |
if (k &= 0xf) { | |
k1 = 16 - k; | |
z = 0; | |
do { | |
*x1++ = *x << k & 0xffff | z; | |
z = *x++ >> k1; | |
} | |
while(x < xe); | |
if (*x1 = z) | |
++n1; | |
} | |
#endif | |
else do | |
*x1++ = *x++; | |
while(x < xe); | |
b1->wds = n1 - 1; | |
Bfree(mcall b); | |
return b1; | |
} | |
static int | |
cmp | |
#ifdef KR_headers | |
(a, b) Bigint *a, *b; | |
#else | |
(Bigint *a, Bigint *b) | |
#endif | |
{ | |
ULong *xa, *xa0, *xb, *xb0; | |
int i, j; | |
i = a->wds; | |
j = b->wds; | |
#ifdef DEBUG | |
if (i > 1 && !a->x[i-1]) | |
Bug("cmp called with a->x[a->wds-1] == 0"); | |
if (j > 1 && !b->x[j-1]) | |
Bug("cmp called with b->x[b->wds-1] == 0"); | |
#endif | |
if (i -= j) | |
return i; | |
xa0 = a->x; | |
xa = xa0 + j; | |
xb0 = b->x; | |
xb = xb0 + j; | |
for(;;) { | |
if (*--xa != *--xb) | |
return *xa < *xb ? -1 : 1; | |
if (xa <= xa0) | |
break; | |
} | |
return 0; | |
} | |
static Bigint * | |
diff | |
#ifdef KR_headers | |
(KRm1 a, b) KRm2 Bigint *a, *b; | |
#else | |
(mdec Bigint *a, Bigint *b) | |
#endif | |
{ | |
Bigint *c; | |
int i, wa, wb; | |
ULong *xa, *xae, *xb, *xbe, *xc; | |
#ifdef ULLong | |
ULLong borrow, y; | |
#else | |
ULong borrow, y; | |
#ifdef Pack_32 | |
ULong z; | |
#endif | |
#endif | |
i = cmp(a,b); | |
if (!i) { | |
c = Balloc(mcall 0); | |
c->wds = 1; | |
c->x[0] = 0; | |
return c; | |
} | |
if (i < 0) { | |
c = a; | |
a = b; | |
b = c; | |
i = 1; | |
} | |
else | |
i = 0; | |
c = Balloc(mcall a->k); | |
if (c == NULL) return NULL; | |
c->sign = i; | |
wa = a->wds; | |
xa = a->x; | |
xae = xa + wa; | |
wb = b->wds; | |
xb = b->x; | |
xbe = xb + wb; | |
xc = c->x; | |
borrow = 0; | |
#ifdef ULLong | |
do { | |
y = (ULLong)*xa++ - *xb++ - borrow; | |
borrow = y >> 32 & (ULong)1; | |
*xc++ = (ULong) (y & FFFFFFFF); | |
} | |
while(xb < xbe); | |
while(xa < xae) { | |
y = *xa++ - borrow; | |
borrow = y >> 32 & (ULong)1; | |
*xc++ = (ULong) (y & FFFFFFFF); | |
} | |
#else | |
#ifdef Pack_32 | |
do { | |
y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; | |
borrow = (y & 0x10000) >> 16; | |
z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; | |
borrow = (z & 0x10000) >> 16; | |
Storeinc(xc, z, y); | |
} | |
while(xb < xbe); | |
while(xa < xae) { | |
y = (*xa & 0xffff) - borrow; | |
borrow = (y & 0x10000) >> 16; | |
z = (*xa++ >> 16) - borrow; | |
borrow = (z & 0x10000) >> 16; | |
Storeinc(xc, z, y); | |
} | |
#else | |
do { | |
y = *xa++ - *xb++ - borrow; | |
borrow = (y & 0x10000) >> 16; | |
*xc++ = y & 0xffff; | |
} | |
while(xb < xbe); | |
while(xa < xae) { | |
y = *xa++ - borrow; | |
borrow = (y & 0x10000) >> 16; | |
*xc++ = y & 0xffff; | |
} | |
#endif | |
#endif | |
while(!*--xc) | |
wa--; | |
c->wds = wa; | |
return c; | |
} | |
static double | |
ulp | |
#ifdef KR_headers | |
(x) U *x; | |
#else | |
(U *x) | |
#endif | |
{ | |
Long L; | |
U u; | |
L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1; | |
#ifndef Avoid_Underflow | |
#ifndef Sudden_Underflow | |
if (L > 0) { | |
#endif | |
#endif | |
#ifdef IBM | |
L |= Exp_msk1 >> 4; | |
#endif | |
word0(&u) = L; | |
word1(&u) = 0; | |
#ifndef Avoid_Underflow | |
#ifndef Sudden_Underflow | |
} | |
else { | |
L = -L >> Exp_shift; | |
if (L < Exp_shift) { | |
word0(&u) = 0x80000 >> L; | |
word1(&u) = 0; | |
} | |
else { | |
word0(&u) = 0; | |
L -= Exp_shift; | |
word1(&u) = L >= 31 ? 1 : 1 << 31 - L; | |
} | |
} | |
#endif | |
#endif | |
return dval(&u); | |
} | |
static double | |
b2d | |
#ifdef KR_headers | |
(a, e) Bigint *a; int *e; | |
#else | |
(Bigint *a, int *e) | |
#endif | |
{ | |
ULong *xa, *xa0, w, y, z; | |
int k; | |
U d; | |
#ifdef VAX | |
ULong d0, d1; | |
#else | |
#define d0 word0(&d) | |
#define d1 word1(&d) | |
#endif | |
xa0 = a->x; | |
xa = xa0 + a->wds; | |
y = *--xa; | |
#ifdef DEBUG | |
if (!y) Bug("zero y in b2d"); | |
#endif | |
k = hi0bits(y); | |
*e = 32 - k; | |
#ifdef Pack_32 | |
if (k < Ebits) { | |
d0 = Exp_1 | y >> (Ebits - k); | |
w = xa > xa0 ? *--xa : 0; | |
d1 = y << ((32-Ebits) + k) | w >> (Ebits - k); | |
goto ret_d; | |
} | |
z = xa > xa0 ? *--xa : 0; | |
if (k -= Ebits) { | |
d0 = Exp_1 | y << k | z >> (32 - k); | |
y = xa > xa0 ? *--xa : 0; | |
d1 = z << k | y >> (32 - k); | |
} | |
else { | |
d0 = Exp_1 | y; | |
d1 = z; | |
} | |
#else | |
if (k < Ebits + 16) { | |
z = xa > xa0 ? *--xa : 0; | |
d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k; | |
w = xa > xa0 ? *--xa : 0; | |
y = xa > xa0 ? *--xa : 0; | |
d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k; | |
goto ret_d; | |
} | |
z = xa > xa0 ? *--xa : 0; | |
w = xa > xa0 ? *--xa : 0; | |
k -= Ebits + 16; | |
d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k; | |
y = xa > xa0 ? *--xa : 0; | |
d1 = w << k + 16 | y << k; | |
#endif | |
ret_d: | |
#ifdef VAX | |
word0(&d) = d0 >> 16 | d0 << 16; | |
word1(&d) = d1 >> 16 | d1 << 16; | |
#else | |
#undef d0 | |
#undef d1 | |
#endif | |
return dval(&d); | |
} | |
static Bigint * | |
d2b | |
#ifdef KR_headers | |
(KRm1 d, e, bits) KRm2 U *d; int *e, *bits; | |
#else | |
(mdec U *d, int *e, int *bits) | |
#endif | |
{ | |
Bigint *b; | |
int de, k; | |
ULong *x, y, z; | |
#ifndef Sudden_Underflow | |
int i; | |
#endif | |
#ifdef VAX | |
ULong d0, d1; | |
d0 = word0(d) >> 16 | word0(d) << 16; | |
d1 = word1(d) >> 16 | word1(d) << 16; | |
#else | |
#define d0 word0(d) | |
#define d1 word1(d) | |
#endif | |
#ifdef Pack_32 | |
b = Balloc(mcall 1); | |
#else | |
b = Balloc(mcall 2); | |
#endif | |
x = b->x; | |
z = d0 & Frac_mask; | |
d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ | |
#ifdef Sudden_Underflow | |
de = (int)(d0 >> Exp_shift); | |
#ifndef IBM | |
z |= Exp_msk11; | |
#endif | |
#else | |
if ((de = (int)(d0 >> Exp_shift))) | |
z |= Exp_msk1; | |
#endif | |
#ifdef Pack_32 | |
if ((y = d1)) { | |
if ((k = lo0bits(&y))) { | |
x[0] = y | z << (32 - k); | |
z >>= k; | |
} | |
else | |
x[0] = y; | |
#ifndef Sudden_Underflow | |
i = | |
#endif | |
b->wds = (x[1] = z) ? 2 : 1; | |
} | |
else { | |
k = lo0bits(&z); | |
x[0] = z; | |
#ifndef Sudden_Underflow | |
i = | |
#endif | |
b->wds = 1; | |
k += 32; | |
} | |
#else | |
if (y = d1) { | |
if (k = lo0bits(&y)) | |
if (k >= 16) { | |
x[0] = y | z << 32 - k & 0xffff; | |
x[1] = z >> k - 16 & 0xffff; | |
x[2] = z >> k; | |
i = 2; | |
} | |
else { | |
x[0] = y & 0xffff; | |
x[1] = y >> 16 | z << 16 - k & 0xffff; | |
x[2] = z >> k & 0xffff; | |
x[3] = z >> k+16; | |
i = 3; | |
} | |
else { | |
x[0] = y & 0xffff; | |
x[1] = y >> 16; | |
x[2] = z & 0xffff; | |
x[3] = z >> 16; | |
i = 3; | |
} | |
} | |
else { | |
#ifdef DEBUG | |
if (!z) | |
Bug("Zero passed to d2b"); | |
#endif | |
k = lo0bits(&z); | |
if (k >= 16) { | |
x[0] = z; | |
i = 0; | |
} | |
else { | |
x[0] = z & 0xffff; | |
x[1] = z >> 16; | |
i = 1; | |
} | |
k += 32; | |
} | |
while(!x[i]) | |
--i; | |
b->wds = i + 1; | |
#endif | |
#ifndef Sudden_Underflow | |
if (de) { | |
#endif | |
#ifdef IBM | |
*e = (de - Bias - (P-1) << 2) + k; | |
*bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask); | |
#else | |
*e = de - Bias - (P-1) + k; | |
*bits = P - k; | |
#endif | |
#ifndef Sudden_Underflow | |
} | |
else { | |
*e = de - Bias - (P-1) + 1 + k; | |
#ifdef Pack_32 | |
*bits = 32*i - hi0bits(x[i-1]); | |
#else | |
*bits = (i+2)*16 - hi0bits(x[i]); | |
#endif | |
} | |
#endif | |
return b; | |
} | |
#undef d0 | |
#undef d1 | |
static double | |
ratio | |
#ifdef KR_headers | |
(a, b) Bigint *a, *b; | |
#else | |
(Bigint *a, Bigint *b) | |
#endif | |
{ | |
U da, db; | |
int k, ka, kb; | |
dval(&da) = b2d(a, &ka); | |
dval(&db) = b2d(b, &kb); | |
#ifdef Pack_32 | |
k = ka - kb + 32*(a->wds - b->wds); | |
#else | |
k = ka - kb + 16*(a->wds - b->wds); | |
#endif | |
#ifdef IBM | |
if (k > 0) { | |
word0(&da) += (k >> 2)*Exp_msk1; | |
if (k &= 3) | |
dval(&da) *= 1 << k; | |
} | |
else { | |
k = -k; | |
word0(&db) += (k >> 2)*Exp_msk1; | |
if (k &= 3) | |
dval(&db) *= 1 << k; | |
} | |
#else | |
if (k > 0) | |
word0(&da) += k*Exp_msk1; | |
else { | |
k = -k; | |
word0(&db) += k*Exp_msk1; | |
} | |
#endif | |
return dval(&da) / dval(&db); | |
} | |
static CONST double | |
tens[] = { | |
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, | |
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, | |
1e20, 1e21, 1e22 | |
#ifdef VAX | |
, 1e23, 1e24 | |
#endif | |
}; | |
static CONST double | |
#ifdef IEEE_Arith | |
bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; | |
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, | |
#ifdef Avoid_Underflow | |
9007199254740992.*9007199254740992.e-256 | |
/* = 2^106 * 1e-256 */ | |
#else | |
1e-256 | |
#endif | |
}; | |
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ | |
/* flag unnecessarily. It leads to a song and dance at the end of strtod. */ | |
#define Scale_Bit 0x10 | |
#define n_bigtens 5 | |
#else | |
#ifdef IBM | |
bigtens[] = { 1e16, 1e32, 1e64 }; | |
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 }; | |
#define n_bigtens 3 | |
#else | |
bigtens[] = { 1e16, 1e32 }; | |
static CONST double tinytens[] = { 1e-16, 1e-32 }; | |
#define n_bigtens 2 | |
#endif | |
#endif | |
#undef Need_Hexdig | |
#ifdef INFNAN_CHECK | |
#ifndef No_Hex_NaN | |
#define Need_Hexdig | |
#endif | |
#endif | |
#ifndef Need_Hexdig | |
#ifndef NO_HEX_FP | |
#define Need_Hexdig | |
#endif | |
#endif | |
#ifdef Need_Hexdig /*{*/ | |
static unsigned char hexdig[256]; | |
static void | |
#ifdef KR_headers | |
htinit(h, s, inc) unsigned char *h; unsigned char *s; int inc; | |
#else | |
htinit(unsigned char *h, unsigned char *s, int inc) | |
#endif | |
{ | |
int i, j; | |
for(i = 0; (j = s[i]) !=0; i++) | |
h[j] = i + inc; | |
} | |
static void | |
#ifdef KR_headers | |
hexdig_init() | |
#else | |
hexdig_init(void) | |
#endif | |
{ | |
#define USC (unsigned char *) | |
htinit(hexdig, USC "0123456789", 0x10); | |
htinit(hexdig, USC "abcdef", 0x10 + 10); | |
htinit(hexdig, USC "ABCDEF", 0x10 + 10); | |
} | |
#endif /* } Need_Hexdig */ | |
#ifdef INFNAN_CHECK | |
#ifndef NAN_WORD0 | |
#define NAN_WORD0 0x7ff80000 | |
#endif | |
#ifndef NAN_WORD1 | |
#define NAN_WORD1 0 | |
#endif | |
static int | |
match | |
#ifdef KR_headers | |
(sp, t) char **sp, *t; | |
#else | |
(CONST char **sp, char *t) | |
#endif | |
{ | |
int c, d; | |
CONST char *s = *sp; | |
while((d = *t++)) { | |
if ((c = *++s) >= 'A' && c <= 'Z') | |
c += 'a' - 'A'; | |
if (c != d) | |
return 0; | |
} | |
*sp = s + 1; | |
return 1; | |
} | |
#ifndef No_Hex_NaN | |
static void | |
hexnan | |
#ifdef KR_headers | |
(rvp, sp) U *rvp; CONST char **sp; | |
#else | |
(U *rvp, CONST char **sp) | |
#endif | |
{ | |
ULong c, x[2]; | |
CONST char *s; | |
int c1, havedig, udx0, xshift; | |
if (!hexdig['0']) | |
hexdig_init(); | |
x[0] = x[1] = 0; | |
havedig = xshift = 0; | |
udx0 = 1; | |
s = *sp; | |
/* allow optional initial 0x or 0X */ | |
while((c = *(CONST unsigned char*)(s+1)) && c <= ' ') | |
++s; | |
if (s[1] == '0' && (s[2] == 'x' || s[2] == 'X')) | |
s += 2; | |
while((c = *(CONST unsigned char*)++s)) { | |
if ((c1 = hexdig[c])) | |
c = c1 & 0xf; | |
else if (c <= ' ') { | |
if (udx0 && havedig) { | |
udx0 = 0; | |
xshift = 1; | |
} | |
continue; | |
} | |
#ifdef GDTOA_NON_PEDANTIC_NANCHECK | |
else if (/*(*/ c == ')' && havedig) { | |
*sp = s + 1; | |
break; | |
} | |
else | |
return; /* invalid form: don't change *sp */ | |
#else | |
else { | |
do { | |
if (/*(*/ c == ')') { | |
*sp = s + 1; | |
break; | |
} | |
} while((c = *++s)); | |
break; | |
} | |
#endif | |
havedig = 1; | |
if (xshift) { | |
xshift = 0; | |
x[0] = x[1]; | |
x[1] = 0; | |
} | |
if (udx0) | |
x[0] = (x[0] << 4) | (x[1] >> 28); | |
x[1] = (x[1] << 4) | c; | |
} | |
if ((x[0] &= 0xfffff) || x[1]) { | |
word0(rvp) = Exp_mask | x[0]; | |
word1(rvp) = x[1]; | |
} | |
} | |
#endif /*No_Hex_NaN*/ | |
#endif /* INFNAN_CHECK */ | |
#ifdef Pack_32 | |
#define ULbits 32 | |
#define kshift 5 | |
#define kmask 31 | |
#else | |
#define ULbits 16 | |
#define kshift 4 | |
#define kmask 15 | |
#endif | |
#ifndef NO_HEX_FP /*{*/ | |
static void | |
#ifdef KR_headers | |
rshift(b, k) Bigint *b; int k; | |
#else | |
rshift(Bigint *b, int k) | |
#endif | |
{ | |
ULong *x, *x1, *xe, y; | |
int n; | |
x = x1 = b->x; | |
n = k >> kshift; | |
if (n < b->wds) { | |
xe = x + b->wds; | |
x += n; | |
if (k &= kmask) { | |
n = 32 - k; | |
y = *x++ >> k; | |
while(x < xe) { | |
*x1++ = (y | (*x << n)) & 0xffffffff; | |
y = *x++ >> k; | |
} | |
if ((*x1 = y) !=0) | |
x1++; | |
} | |
else | |
while(x < xe) | |
*x1++ = *x++; | |
} | |
if ((b->wds = x1 - b->x) == 0) | |
b->x[0] = 0; | |
} | |
static ULong | |
#ifdef KR_headers | |
any_on(b, k) Bigint *b; int k; | |
#else | |
any_on(Bigint *b, int k) | |
#endif | |
{ | |
int n, nwds; | |
ULong *x, *x0, x1, x2; | |
x = b->x; | |
nwds = b->wds; | |
n = k >> kshift; | |
if (n > nwds) | |
n = nwds; | |
else if (n < nwds && (k &= kmask)) { | |
x1 = x2 = x[n]; | |
x1 >>= k; | |
x1 <<= k; | |
if (x1 != x2) | |
return 1; | |
} | |
x0 = x; | |
x += n; | |
while(x > x0) | |
if (*--x) | |
return 1; | |
return 0; | |
} | |
enum { /* rounding values: same as FLT_ROUNDS */ | |
Round_zero = 0, | |
Round_near = 1, | |
Round_up = 2, | |
Round_down = 3 | |
}; | |
void | |
#ifdef KR_headers | |
gethex(sp, rvp, rounding, sign) | |
CONST char **sp; U *rvp; int rounding, sign; | |
#else | |
gethex( CONST char **sp, U *rvp, int rounding, int sign) | |
#endif | |
{ | |
Bigint *b; | |
CONST unsigned char *decpt, *s0, *s, *s1; | |
Long e, e1; | |
ULong L, lostbits, *x; | |
int big, denorm, esign, havedig, k, n, nbits, up, zret; | |
#ifdef IBM | |
int j; | |
#endif | |
enum { | |
#ifdef IEEE_Arith /*{{*/ | |
emax = 0x7fe - Bias - P + 1, | |
emin = Emin - P + 1 | |
#else /*}{*/ | |
emin = Emin - P, | |
#ifdef VAX | |
emax = 0x7ff - Bias - P + 1 | |
#endif | |
#ifdef IBM | |
emax = 0x7f - Bias - P | |
#endif | |
#endif /*}}*/ | |
}; | |
#ifdef USE_LOCALE | |
int i; | |
#ifdef NO_LOCALE_CACHE | |
const unsigned char *decimalpoint = (unsigned char*) | |
localeconv()->decimal_point; | |
#else | |
const unsigned char *decimalpoint; | |
static unsigned char *decimalpoint_cache; | |
if (!(s0 = decimalpoint_cache)) { | |
s0 = (unsigned char*)localeconv()->decimal_point; | |
if ((decimalpoint_cache = (unsigned char*) | |
MALLOC(strlen((CONST char*)s0) + 1))) { | |
strcpy((char*)decimalpoint_cache, (CONST char*)s0); | |
s0 = decimalpoint_cache; | |
} | |
} | |
decimalpoint = s0; | |
#endif | |
#endif | |
if (!hexdig['0']) | |
hexdig_init(); | |
havedig = 0; | |
s0 = *(CONST unsigned char **)sp + 2; | |
while(s0[havedig] == '0') | |
havedig++; | |
s0 += havedig; | |
s = s0; | |
decpt = 0; | |
zret = 0; | |
e = 0; | |
if (hexdig[*s]) | |
havedig++; | |
else { | |
zret = 1; | |
#ifdef USE_LOCALE | |
for(i = 0; decimalpoint[i]; ++i) { | |
if (s[i] != decimalpoint[i]) | |
goto pcheck; | |
} | |
decpt = s += i; | |
#else | |
if (*s != '.') | |
goto pcheck; | |
decpt = ++s; | |
#endif | |
if (!hexdig[*s]) | |
goto pcheck; | |
while(*s == '0') | |
s++; | |
if (hexdig[*s]) | |
zret = 0; | |
havedig = 1; | |
s0 = s; | |
} | |
while(hexdig[*s]) | |
s++; | |
#ifdef USE_LOCALE | |
if (*s == *decimalpoint && !decpt) { | |
for(i = 1; decimalpoint[i]; ++i) { | |
if (s[i] != decimalpoint[i]) | |
goto pcheck; | |
} | |
decpt = s += i; | |
#else | |
if (*s == '.' && !decpt) { | |
decpt = ++s; | |
#endif | |
while(hexdig[*s]) | |
s++; | |
}/*}*/ | |
if (decpt) | |
e = -(((Long)(s-decpt)) << 2); | |
pcheck: | |
s1 = s; | |
big = esign = 0; | |
switch(*s) { | |
case 'p': | |
case 'P': | |
switch(*++s) { | |
case '-': | |
esign = 1; | |
/* no break */ | |
case '+': | |
s++; | |
} | |
if ((n = hexdig[*s]) == 0 || n > 0x19) { | |
s = s1; | |
break; | |
} | |
e1 = n - 0x10; | |
while((n = hexdig[*++s]) !=0 && n <= 0x19) { | |
if (e1 & 0xf8000000) | |
big = 1; | |
e1 = 10*e1 + n - 0x10; | |
} | |
if (esign) | |
e1 = -e1; | |
e += e1; | |
} | |
*sp = (char*)s; | |
if (!havedig) | |
*sp = (char*)s0 - 1; | |
if (zret) | |
goto retz1; | |
if (big) { | |
if (esign) { | |
#ifdef IEEE_Arith | |
switch(rounding) { | |
case Round_up: | |
if (sign) | |
break; | |
goto ret_tiny; | |
case Round_down: | |
if (!sign) | |
break; | |
goto ret_tiny; | |
} | |
#endif | |
goto retz; | |
#ifdef IEEE_Arith | |
ret_tiny: | |
#ifndef NO_ERRNO | |
errno = ERANGE; | |
#endif | |
word0(rvp) = 0; | |
word1(rvp) = 1; | |
return; | |
#endif /* IEEE_Arith */ | |
} | |
switch(rounding) { | |
case Round_near: | |
goto ovfl1; | |
case Round_up: | |
if (!sign) | |
goto ovfl1; | |
goto ret_big; | |
case Round_down: | |
if (sign) | |
goto ovfl1; | |
goto ret_big; | |
} | |
ret_big: | |
word0(rvp) = Big0; | |
word1(rvp) = Big1; | |
return; | |
} | |
n = s1 - s0 - 1; | |
for(k = 0; n > (1 << (kshift-2)) - 1; n >>= 1) | |
k++; | |
b = Balloc(k); | |
x = b->x; | |
n = 0; | |
L = 0; | |
#ifdef USE_LOCALE | |
for(i = 0; decimalpoint[i+1]; ++i); | |
#endif | |
while(s1 > s0) { | |
#ifdef USE_LOCALE | |
if (*--s1 == decimalpoint[i]) { | |
s1 -= i; | |
continue; | |
} | |
#else | |
if (*--s1 == '.') | |
continue; | |
#endif | |
if (n == ULbits) { | |
*x++ = L; | |
L = 0; | |
n = 0; | |
} | |
L |= (hexdig[*s1] & 0x0f) << n; | |
n += 4; | |
} | |
*x++ = L; | |
b->wds = n = x - b->x; | |
n = ULbits*n - hi0bits(L); | |
nbits = Nbits; | |
lostbits = 0; | |
x = b->x; | |
if (n > nbits) { | |
n -= nbits; | |
if (any_on(b,n)) { | |
lostbits = 1; | |
k = n - 1; | |
if (x[k>>kshift] & 1 << (k & kmask)) { | |
lostbits = 2; | |
if (k > 0 && any_on(b,k)) | |
lostbits = 3; | |
} | |
} | |
rshift(b, n); | |
e += n; | |
} | |
else if (n < nbits) { | |
n = nbits - n; | |
b = lshift(b, n); | |
e -= n; | |
x = b->x; | |
} | |
if (e > Emax) { | |
ovfl: | |
Bfree(b); | |
ovfl1: | |
#ifndef NO_ERRNO | |
errno = ERANGE; | |
#endif | |
word0(rvp) = Exp_mask; | |
word1(rvp) = 0; | |
return; | |
} | |
denorm = 0; | |
if (e < emin) { | |
denorm = 1; | |
n = emin - e; | |
if (n >= nbits) { | |
#ifdef IEEE_Arith /*{*/ | |
switch (rounding) { | |
case Round_near: | |
if (n == nbits && (n < 2 || any_on(b,n-1))) | |
goto ret_tiny; | |
break; | |
case Round_up: | |
if (!sign) | |
goto ret_tiny; | |
break; | |
case Round_down: | |
if (sign) | |
goto ret_tiny; | |
} | |
#endif /* } IEEE_Arith */ | |
Bfree(b); | |
retz: | |
#ifndef NO_ERRNO | |
errno = ERANGE; | |
#endif | |
retz1: | |
rvp->d = 0.; | |
return; | |
} | |
k = n - 1; | |
if (lostbits) | |
lostbits = 1; | |
else if (k > 0) | |
lostbits = any_on(b,k); | |
if (x[k>>kshift] & 1 << (k & kmask)) | |
lostbits |= 2; | |
nbits -= n; | |
rshift(b,n); | |
e = emin; | |
} | |
if (lostbits) { | |
up = 0; | |
switch(rounding) { | |
case Round_zero: | |
break; | |
case Round_near: | |
if (lostbits & 2 | |
&& (lostbits & 1) | (x[0] & 1)) | |
up = 1; | |
break; | |
case Round_up: | |
up = 1 - sign; | |
break; | |
case Round_down: | |
up = sign; | |
} | |
if (up) { | |
k = b->wds; | |
b = increment(b); | |
x = b->x; | |
if (denorm) { | |
#if 0 | |
if (nbits == Nbits - 1 | |
&& x[nbits >> kshift] & 1 << (nbits & kmask)) | |
denorm = 0; /* not currently used */ | |
#endif | |
} | |
else if (b->wds > k | |
|| ((n = nbits & kmask) !=0 | |
&& hi0bits(x[k-1]) < 32-n)) { | |
rshift(b,1); | |
if (++e > Emax) | |
goto ovfl; | |
} | |
} | |
} | |
#ifdef IEEE_Arith | |
if (denorm) | |
word0(rvp) = b->wds > 1 ? b->x[1] & ~0x100000 : 0; | |
else | |
word0(rvp) = (b->x[1] & ~0x100000) | ((e + 0x3ff + 52) << 20); | |
word1(rvp) = b->x[0]; | |
#endif | |
#ifdef IBM | |
if ((j = e & 3)) { | |
k = b->x[0] & ((1 << j) - 1); | |
rshift(b,j); | |
if (k) { | |
switch(rounding) { | |
case Round_up: | |
if (!sign) | |
increment(b); | |
break; | |
case Round_down: | |
if (sign) | |
increment(b); | |
break; | |
case Round_near: | |
j = 1 << (j-1); | |
if (k & j && ((k & (j-1)) | lostbits)) | |
increment(b); | |
} | |
} | |
} | |
e >>= 2; | |
word0(rvp) = b->x[1] | ((e + 65 + 13) << 24); | |
word1(rvp) = b->x[0]; | |
#endif | |
#ifdef VAX | |
/* The next two lines ignore swap of low- and high-order 2 bytes. */ | |
/* word0(rvp) = (b->x[1] & ~0x800000) | ((e + 129 + 55) << 23); */ | |
/* word1(rvp) = b->x[0]; */ | |
word0(rvp) = ((b->x[1] & ~0x800000) >> 16) | ((e + 129 + 55) << 7) | (b->x[1] << 16); | |
word1(rvp) = (b->x[0] >> 16) | (b->x[0] << 16); | |
#endif | |
Bfree(b); | |
} | |
#endif /*}!NO_HEX_FP*/ | |
static Bigint * | |
#ifdef KR_headers | |
increment(KRm1 b) KRm2 Bigint *b; | |
#else | |
increment(mdec Bigint *b) | |
#endif | |
{ | |
ULong *x, *xe; | |
Bigint *b1; | |
x = b->x; | |
xe = x + b->wds; | |
do { | |
if (*x < (ULong)0xffffffffL) { | |
++*x; | |
return b; | |
} | |
*x++ = 0; | |
} while(x < xe); | |
{ | |
if (b->wds >= b->maxwds) { | |
b1 = Balloc(mcall b->k+1); | |
Bcopy(b1,b); | |
Bfree(mcall b); | |
b = b1; | |
} | |
b->x[b->wds++] = 1; | |
} | |
return b; | |
} | |
static int | |
#ifdef KR_headers | |
dshift(b, p2) Bigint *b; int p2; | |
#else | |
dshift(Bigint *b, int p2) | |
#endif | |
{ | |
int rv = hi0bits(b->x[b->wds-1]) - 4; | |
if (p2 > 0) | |
rv -= p2; | |
return rv & kmask; | |
} | |
static int | |
quorem | |
#ifdef KR_headers | |
(b, S) Bigint *b, *S; | |
#else | |
(Bigint *b, Bigint *S) | |
#endif | |
{ | |
int n; | |
ULong *bx, *bxe, q, *sx, *sxe; | |
#ifdef ULLong | |
ULLong borrow, carry, y, ys; | |
#else | |
ULong borrow, carry, y, ys; | |
#ifdef Pack_32 | |
ULong si, z, zs; | |
#endif | |
#endif | |
n = S->wds; | |
#ifdef DEBUG | |
/*debug*/ if (b->wds > n) | |
/*debug*/ Bug("oversize b in quorem"); | |
#endif | |
if (b->wds < n) | |
return 0; | |
sx = S->x; | |
sxe = sx + --n; | |
bx = b->x; | |
bxe = bx + n; | |
q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ | |
#ifdef DEBUG | |
/*debug*/ if (q > 9) | |
/*debug*/ Bug("oversized quotient in quorem"); | |
#endif | |
if (q) { | |
borrow = 0; | |
carry = 0; | |
do { | |
#ifdef ULLong | |
ys = *sx++ * (ULLong)q + carry; | |
carry = ys >> 32; | |
y = *bx - (ys & FFFFFFFF) - borrow; | |
borrow = y >> 32 & (ULong)1; | |
*bx++ = (ULong) (y & FFFFFFFF); | |
#else | |
#ifdef Pack_32 | |
si = *sx++; | |
ys = (si & 0xffff) * q + carry; | |
zs = (si >> 16) * q + (ys >> 16); | |
carry = zs >> 16; | |
y = (*bx & 0xffff) - (ys & 0xffff) - borrow; | |
borrow = (y & 0x10000) >> 16; | |
z = (*bx >> 16) - (zs & 0xffff) - borrow; | |
borrow = (z & 0x10000) >> 16; | |
Storeinc(bx, z, y); | |
#else | |
ys = *sx++ * q + carry; | |
carry = ys >> 16; | |
y = *bx - (ys & 0xffff) - borrow; | |
borrow = (y & 0x10000) >> 16; | |
*bx++ = y & 0xffff; | |
#endif | |
#endif | |
} | |
while(sx <= sxe); | |
if (!*bxe) { | |
bx = b->x; | |
while(--bxe > bx && !*bxe) | |
--n; | |
b->wds = n; | |
} | |
} | |
if (cmp(b, S) >= 0) { | |
q++; | |
borrow = 0; | |
carry = 0; | |
bx = b->x; | |
sx = S->x; | |
do { | |
#ifdef ULLong | |
ys = *sx++ + carry; | |
carry = ys >> 32; | |
y = *bx - (ys & FFFFFFFF) - borrow; | |
borrow = y >> 32 & (ULong)1; | |
*bx++ = (ULong) (y & FFFFFFFF); | |
#else | |
#ifdef Pack_32 | |
si = *sx++; | |
ys = (si & 0xffff) + carry; | |
zs = (si >> 16) + (ys >> 16); | |
carry = zs >> 16; | |
y = (*bx & 0xffff) - (ys & 0xffff) - borrow; | |
borrow = (y & 0x10000) >> 16; | |
z = (*bx >> 16) - (zs & 0xffff) - borrow; | |
borrow = (z & 0x10000) >> 16; | |
Storeinc(bx, z, y); | |
#else | |
ys = *sx++ + carry; | |
carry = ys >> 16; | |
y = *bx - (ys & 0xffff) - borrow; | |
borrow = (y & 0x10000) >> 16; | |
*bx++ = y & 0xffff; | |
#endif | |
#endif | |
} | |
while(sx <= sxe); | |
bx = b->x; | |
bxe = bx + n; | |
if (!*bxe) { | |
while(--bxe > bx && !*bxe) | |
--n; | |
b->wds = n; | |
} | |
} | |
return q; | |
} | |
#ifndef NO_STRTOD_BIGCOMP | |
static void | |
bigcomp | |
#ifdef KR_headers | |
(KRm1 rv, s0, bc) | |
KRm2 U *rv; CONST char *s0; BCinfo *bc; | |
#else | |
(mdec U *rv, CONST char *s0, BCinfo *bc) | |
#endif | |
{ | |
Bigint *b, *d; | |
int b2, bbits, d2, dd, dig, dsign, i, j, nd, nd0, p2, p5, speccase; | |
dsign = bc->dsign; | |
nd = bc->nd; | |
nd0 = bc->nd0; | |
p5 = nd + bc->e0 - 1; | |
speccase = 0; | |
#ifndef Sudden_Underflow | |
if (rv->d == 0.) { /* special case: value near underflow-to-zero */ | |
/* threshold was rounded to zero */ | |
b = i2b(mcall 1); | |
p2 = Emin - P + 1; | |
bbits = 1; | |
#ifdef Avoid_Underflow | |
word0(rv) = (P+2) << Exp_shift; | |
#else | |
word1(rv) = 1; | |
#endif | |
i = 0; | |
#ifdef Honor_FLT_ROUNDS | |
if (bc->rounding == 1) | |
#endif | |
{ | |
speccase = 1; | |
--p2; | |
dsign = 0; | |
goto have_i; | |
} | |
} | |
else | |
#endif | |
b = d2b(mcall rv, &p2, &bbits); | |
#ifdef Avoid_Underflow | |
p2 -= bc->scale; | |
#endif | |
/* floor(log2(rv)) == bbits - 1 + p2 */ | |
/* Check for denormal case. */ | |
i = P - bbits; | |
if (i > (j = P - Emin - 1 + p2)) { | |
#ifdef Sudden_Underflow | |
Bfree(b); | |
b = i2b(1); | |
p2 = Emin; | |
i = P - 1; | |
#ifdef Avoid_Underflow | |
word0(rv) = (1 + bc->scale) << Exp_shift; | |
#else | |
word0(rv) = Exp_msk1; | |
#endif | |
word1(rv) = 0; | |
#else | |
i = j; | |
#endif | |
} | |
#ifdef Honor_FLT_ROUNDS | |
if (bc->rounding != 1) { | |
if (i > 0) | |
b = lshift(mcall b, i); | |
if (dsign) | |
b = increment(mcall b); | |
} | |
else | |
#endif | |
{ | |
b = lshift(mcall b, ++i); | |
b->x[0] |= 1; | |
} | |
#ifndef Sudden_Underflow | |
have_i: | |
#endif | |
p2 -= p5 + i; | |
d = i2b(mcall 1); | |
/* Arrange for convenient computation of quotients: | |
* shift left if necessary so divisor has 4 leading 0 bits. | |
*/ | |
if (p5 > 0) | |
d = pow5mult(mcall d, p5); | |
else if (p5 < 0) | |
b = pow5mult(mcall b, -p5); | |
if (p2 > 0) { | |
b2 = p2; | |
d2 = 0; | |
} | |
else { | |
b2 = 0; | |
d2 = -p2; | |
} | |
i = dshift(d, d2); | |
if ((b2 += i) > 0) | |
b = lshift(mcall b, b2); | |
if ((d2 += i) > 0) | |
d = lshift(mcall d, d2); | |
/* Now b/d = exactly half-way between the two floating-point values */ | |
/* on either side of the input string. Compute first digit of b/d. */ | |
if (!(dig = quorem(b,d))) { | |
b = multadd(mcall b, 10, 0); /* very unlikely */ | |
dig = quorem(b,d); | |
} | |
/* Compare b/d with s0 */ | |
dd = 0; | |
for(i = 0; i < nd0; ) { | |
if ((dd = s0[i++] - '0' - dig)) | |
goto ret; | |
if (!b->x[0] && b->wds == 1) { | |
if (i < nd) | |
dd = 1; | |
goto ret; | |
} | |
b = multadd(mcall b, 10, 0); | |
dig = quorem(b,d); | |
} | |
for(j = bc->dp1; i++ < nd;) { | |
if ((dd = s0[j++] - '0' - dig)) | |
goto ret; | |
if (!b->x[0] && b->wds == 1) { | |
if (i < nd) | |
dd = 1; | |
goto ret; | |
} | |
b = multadd(mcall b, 10, 0); | |
dig = quorem(b,d); | |
} | |
if (b->x[0] || b->wds > 1) | |
dd = -1; | |
ret: | |
Bfree(mcall b); | |
Bfree(mcall d); | |
#ifdef Honor_FLT_ROUNDS | |
if (bc->rounding != 1) { | |
if (dd < 0) { | |
if (bc->rounding == 0) { | |
if (!dsign) | |
goto retlow1; | |
} | |
else if (dsign) | |
goto rethi1; | |
} | |
else if (dd > 0) { | |
if (bc->rounding == 0) { | |
if (dsign) | |
goto rethi1; | |
goto ret1; | |
} | |
if (!dsign) | |
goto rethi1; | |
dval(rv) += 2.*ulp(rv); | |
} | |
else { | |
bc->inexact = 0; | |
if (dsign) | |
goto rethi1; | |
} | |
} | |
else | |
#endif | |
if (speccase) { | |
if (dd <= 0) | |
rv->d = 0.; | |
} | |
else if (dd < 0) { | |
if (!dsign) /* does not happen for round-near */ | |
retlow1: | |
dval(rv) -= ulp(rv); | |
} | |
else if (dd > 0) { | |
if (dsign) { | |
rethi1: | |
dval(rv) += ulp(rv); | |
} | |
} | |
else { | |
/* Exact half-way case: apply round-even rule. */ | |
if (word1(rv) & 1) { | |
if (dsign) | |
goto rethi1; | |
goto retlow1; | |
} | |
} | |
#ifdef Honor_FLT_ROUNDS | |
ret1: | |
#endif | |
return; | |
} | |
#endif /* NO_STRTOD_BIGCOMP */ | |
double | |
DTOA_MANGLE(strtod) | |
#ifdef KR_headers | |
(s00, se) CONST char *s00; char **se; | |
#else | |
(CONST char *s00, char **se) | |
#endif | |
{ | |
int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, e, e1; | |
int esign, i, j, k, nd, nd0, nf, nz, nz0, sign; | |
CONST char *s, *s0, *s1; | |
double aadj, aadj1; | |
#ifdef Local_Private_Memory | |
MemInfo meminfo = { 0,0,0 }, *mem = &meminfo; | |
#endif | |
Long L; | |
U aadj2, adj, rv, rv0; | |
ULong y, z; | |
BCinfo bc; | |
Bigint *bb, *bb1, *bd, *bd0, *bs, *delta; | |
#ifdef SET_INEXACT | |
int oldinexact; | |
#endif | |
#ifdef Honor_FLT_ROUNDS /*{*/ | |
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */ | |
bc.rounding = Flt_Rounds; | |
#else /*}{*/ | |
bc.rounding = 1; | |
switch(fegetround()) { | |
case FE_TOWARDZERO: bc.rounding = 0; break; | |
case FE_UPWARD: bc.rounding = 2; break; | |
case FE_DOWNWARD: bc.rounding = 3; | |
} | |
#endif /*}}*/ | |
#endif /*}*/ | |
#ifdef USE_LOCALE | |
CONST char *s2; | |
#endif | |
#ifdef Local_Private_Memory | |
meminfo.pmem_next = meminfo.private_mem; | |
#endif | |
memset(&meminfo.freelist,0,sizeof(meminfo.freelist)); // this should happen automatically | |
sign = nz0 = nz = bc.dplen = bc.uflchk = 0; | |
dval(&rv) = 0.; | |
for(s = s00;;s++) switch(*s) { | |
case '-': | |
sign = 1; | |
/* no break */ | |
case '+': | |
if (*++s) | |
goto break2; | |
/* no break */ | |
case 0: | |
goto ret0; | |
case '\t': | |
case '\n': | |
case '\v': | |
case '\f': | |
case '\r': | |
case ' ': | |
continue; | |
default: | |
goto break2; | |
} | |
break2: | |
if (*s == '0') { | |
#ifndef NO_HEX_FP /*{*/ | |
switch(s[1]) { | |
case 'x': | |
case 'X': | |
#ifdef Honor_FLT_ROUNDS | |
gethex(&s, &rv, bc.rounding, sign); | |
#else | |
gethex(&s, &rv, 1, sign); | |
#endif | |
goto ret; | |
} | |
#endif /*}*/ | |
nz0 = 1; | |
while(*++s == '0') ; | |
if (!*s) | |
goto ret; | |
} | |
s0 = s; | |
y = z = 0; | |
for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) | |
if (nd < 9) | |
y = 10*y + c - '0'; | |
else if (nd < 16) | |
z = 10*z + c - '0'; | |
nd0 = nd; | |
bc.dp0 = bc.dp1 = s - s0; | |
#ifdef USE_LOCALE | |
s1 = localeconv()->decimal_point; | |
if (c == *s1) { | |
c = '.'; | |
if (*++s1) { | |
s2 = s; | |
for(;;) { | |
if (*++s2 != *s1) { | |
c = 0; | |
break; | |
} | |
if (!*++s1) { | |
s = s2; | |
break; | |
} | |
} | |
} | |
} | |
#endif | |
if (c == '.') { | |
c = *++s; | |
bc.dp1 = s - s0; | |
bc.dplen = bc.dp1 - bc.dp0; | |
if (!nd) { | |
for(; c == '0'; c = *++s) | |
nz++; | |
if (c > '0' && c <= '9') { | |
s0 = s; | |
nf += nz; | |
nz = 0; | |
goto have_dig; | |
} | |
goto dig_done; | |
} | |
for(; c >= '0' && c <= '9'; c = *++s) { | |
have_dig: | |
nz++; | |
if (c -= '0') { | |
nf += nz; | |
for(i = 1; i < nz; i++) | |
if (nd++ < 9) | |
y *= 10; | |
else if (nd <= DBL_DIG + 1) | |
z *= 10; | |
if (nd++ < 9) | |
y = 10*y + c; | |
else if (nd <= DBL_DIG + 1) | |
z = 10*z + c; | |
nz = 0; | |
} | |
} | |
} | |
dig_done: | |
e = 0; | |
if (c == 'e' || c == 'E') { | |
if (!nd && !nz && !nz0) { | |
goto ret0; | |
} | |
s00 = s; | |
esign = 0; | |
switch(c = *++s) { | |
case '-': | |
esign = 1; | |
case '+': | |
c = *++s; | |
} | |
if (c >= '0' && c <= '9') { | |
while(c == '0') | |
c = *++s; | |
if (c > '0' && c <= '9') { | |
L = c - '0'; | |
s1 = s; | |
while((c = *++s) >= '0' && c <= '9') | |
L = 10*L + c - '0'; | |
if (s - s1 > 8 || L > 19999) | |
/* Avoid confusion from exponents | |
* so large that e might overflow. | |
*/ | |
e = 19999; /* safe for 16 bit ints */ | |
else | |
e = (int)L; | |
if (esign) | |
e = -e; | |
} | |
else | |
e = 0; | |
} | |
else | |
s = s00; | |
} | |
if (!nd) { | |
if (!nz && !nz0) { | |
#ifdef INFNAN_CHECK | |
/* Check for Nan and Infinity */ | |
if (!bc.dplen) | |
switch(c) { | |
case 'i': | |
case 'I': | |
if (match(&s,"nf")) { | |
--s; | |
if (!match(&s,"inity")) | |
++s; | |
word0(&rv) = 0x7ff00000; | |
word1(&rv) = 0; | |
goto ret; | |
} | |
break; | |
case 'n': | |
case 'N': | |
if (match(&s, "an")) { | |
word0(&rv) = NAN_WORD0; | |
word1(&rv) = NAN_WORD1; | |
#ifndef No_Hex_NaN | |
if (*s == '(') /*)*/ | |
hexnan(&rv, &s); | |
#endif | |
goto ret; | |
} | |
} | |
#endif /* INFNAN_CHECK */ | |
ret0: | |
s = s00; | |
sign = 0; | |
} | |
goto ret; | |
} | |
bc.e0 = e1 = e -= nf; | |
/* Now we have nd0 digits, starting at s0, followed by a | |
* decimal point, followed by nd-nd0 digits. The number we're | |
* after is the integer represented by those digits times | |
* 10**e */ | |
if (!nd0) | |
nd0 = nd; | |
k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; | |
dval(&rv) = y; | |
if (k > 9) { | |
#ifdef SET_INEXACT | |
if (k > DBL_DIG) | |
oldinexact = get_inexact(); | |
#endif | |
dval(&rv) = tens[k - 9] * dval(&rv) + z; | |
} | |
bd0 = 0; | |
if (nd <= DBL_DIG | |
#ifndef RND_PRODQUOT | |
#ifndef Honor_FLT_ROUNDS | |
&& Flt_Rounds == 1 | |
#endif | |
#endif | |
) { | |
if (!e) | |
goto ret; | |
if (e > 0) { | |
if (e <= Ten_pmax) { | |
#ifdef VAX | |
goto vax_ovfl_check; | |
#else | |
#ifdef Honor_FLT_ROUNDS | |
/* round correctly FLT_ROUNDS = 2 or 3 */ | |
if (sign) { | |
rv.d = -rv.d; | |
sign = 0; | |
} | |
#endif | |
/* rv = */ rounded_product(dval(&rv), tens[e]); | |
goto ret; | |
#endif | |
} | |
i = DBL_DIG - nd; | |
if (e <= Ten_pmax + i) { | |
/* A fancier test would sometimes let us do | |
* this for larger i values. | |
*/ | |
#ifdef Honor_FLT_ROUNDS | |
/* round correctly FLT_ROUNDS = 2 or 3 */ | |
if (sign) { | |
rv.d = -rv.d; | |
sign = 0; | |
} | |
#endif | |
e -= i; | |
dval(&rv) *= tens[i]; | |
#ifdef VAX | |
/* VAX exponent range is so narrow we must | |
* worry about overflow here... | |
*/ | |
vax_ovfl_check: | |
word0(&rv) -= P*Exp_msk1; | |
/* rv = */ rounded_product(dval(&rv), tens[e]); | |
if ((word0(&rv) & Exp_mask) | |
> Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) | |
goto ovfl; | |
word0(&rv) += P*Exp_msk1; | |
#else | |
/* rv = */ rounded_product(dval(&rv), tens[e]); | |
#endif | |
goto ret; | |
} | |
} | |
#ifndef Inaccurate_Divide | |
else if (e >= -Ten_pmax) { | |
#ifdef Honor_FLT_ROUNDS | |
/* round correctly FLT_ROUNDS = 2 or 3 */ | |
if (sign) { | |
rv.d = -rv.d; | |
sign = 0; | |
} | |
#endif | |
/* rv = */ rounded_quotient(dval(&rv), tens[-e]); | |
goto ret; | |
} | |
#endif | |
} | |
e1 += nd - k; | |
#ifdef IEEE_Arith | |
#ifdef SET_INEXACT | |
bc.inexact = 1; | |
if (k <= DBL_DIG) | |
oldinexact = get_inexact(); | |
#endif | |
#ifdef Avoid_Underflow | |
bc.scale = 0; | |
#endif | |
#ifdef Honor_FLT_ROUNDS | |
if (bc.rounding >= 2) { | |
if (sign) | |
bc.rounding = bc.rounding == 2 ? 0 : 2; | |
else | |
if (bc.rounding != 2) | |
bc.rounding = 0; | |
} | |
#endif | |
#endif /*IEEE_Arith*/ | |
/* Get starting approximation = rv * 10**e1 */ | |
if (e1 > 0) { | |
if ((i = e1 & 15)) | |
dval(&rv) *= tens[i]; | |
if (e1 &= ~15) { | |
if (e1 > DBL_MAX_10_EXP) { | |
ovfl: | |
#ifndef NO_ERRNO | |
errno = ERANGE; | |
#endif | |
/* Can't trust HUGE_VAL */ | |
#ifdef IEEE_Arith | |
#ifdef Honor_FLT_ROUNDS | |
switch(bc.rounding) { | |
case 0: /* toward 0 */ | |
case 3: /* toward -infinity */ | |
word0(&rv) = Big0; | |
word1(&rv) = Big1; | |
break; | |
default: | |
word0(&rv) = Exp_mask; | |
word1(&rv) = 0; | |
} | |
#else /*Honor_FLT_ROUNDS*/ | |
word0(&rv) = Exp_mask; | |
word1(&rv) = 0; | |
#endif /*Honor_FLT_ROUNDS*/ | |
#ifdef SET_INEXACT | |
/* set overflow bit */ | |
dval(&rv0) = 1e300; | |
dval(&rv0) *= dval(&rv0); | |
#endif | |
#else /*IEEE_Arith*/ | |
word0(&rv) = Big0; | |
word1(&rv) = Big1; | |
#endif /*IEEE_Arith*/ | |
goto ret; | |
} | |
e1 >>= 4; | |
for(j = 0; e1 > 1; j++, e1 >>= 1) | |
if (e1 & 1) | |
dval(&rv) *= bigtens[j]; | |
/* The last multiplication could overflow. */ | |
word0(&rv) -= P*Exp_msk1; | |
dval(&rv) *= bigtens[j]; | |
if ((z = word0(&rv) & Exp_mask) | |
> Exp_msk1*(DBL_MAX_EXP+Bias-P)) | |
goto ovfl; | |
if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { | |
/* set to largest number */ | |
/* (Can't trust DBL_MAX) */ | |
word0(&rv) = Big0; | |
word1(&rv) = Big1; | |
} | |
else | |
word0(&rv) += P*Exp_msk1; | |
} | |
} | |
else if (e1 < 0) { | |
e1 = -e1; | |
if ((i = e1 & 15)) | |
dval(&rv) /= tens[i]; | |
if (e1 >>= 4) { | |
if (e1 >= 1 << n_bigtens) | |
goto undfl; | |
#ifdef Avoid_Underflow | |
if (e1 & Scale_Bit) | |
bc.scale = 2*P; | |
for(j = 0; e1 > 0; j++, e1 >>= 1) | |
if (e1 & 1) | |
dval(&rv) *= tinytens[j]; | |
if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask) | |
>> Exp_shift)) > 0) { | |
/* scaled rv is denormal; clear j low bits */ | |
if (j >= 32) { | |
word1(&rv) = 0; | |
if (j >= 53) | |
word0(&rv) = (P+2)*Exp_msk1; | |
else | |
word0(&rv) &= 0xffffffff << (j-32); | |
} | |
else | |
word1(&rv) &= 0xffffffff << j; | |
} | |
#else | |
for(j = 0; e1 > 1; j++, e1 >>= 1) | |
if (e1 & 1) | |
dval(&rv) *= tinytens[j]; | |
/* The last multiplication could underflow. */ | |
dval(&rv0) = dval(&rv); | |
dval(&rv) *= tinytens[j]; | |
if (!dval(&rv)) { | |
dval(&rv) = 2.*dval(&rv0); | |
dval(&rv) *= tinytens[j]; | |
#endif | |
if (!dval(&rv)) { | |
undfl: | |
dval(&rv) = 0.; | |
#ifndef NO_ERRNO | |
errno = ERANGE; | |
#endif | |
goto ret; | |
} | |
#ifndef Avoid_Underflow | |
word0(&rv) = Tiny0; | |
word1(&rv) = Tiny1; | |
/* The refinement below will clean | |
* this approximation up. | |
*/ | |
} | |
#endif | |
} | |
} | |
/* Now the hard part -- adjusting rv to the correct value.*/ | |
/* Put digits into bd: true value = bd * 10^e */ | |
bc.nd = nd; | |
#ifndef NO_STRTOD_BIGCOMP | |
bc.nd0 = nd0; /* Only needed if nd > strtod_diglim, but done here */ | |
/* to silence an erroneous warning about bc.nd0 */ | |
/* possibly not being initialized. */ | |
if (nd > strtod_diglim) { | |
/* ASSERT(strtod_diglim >= 18); 18 == one more than the */ | |
/* minimum number of decimal digits to distinguish double values */ | |
/* in IEEE arithmetic. */ | |
i = j = 18; | |
if (i > nd0) | |
j += bc.dplen; | |
for(;;) { | |
if (--j <= bc.dp1 && j >= bc.dp0) | |
j = bc.dp0 - 1; | |
if (s0[j] != '0') | |
break; | |
--i; | |
} | |
e += nd - i; | |
nd = i; | |
if (nd0 > nd) | |
nd0 = nd; | |
if (nd < 9) { /* must recompute y */ | |
y = 0; | |
for(i = 0; i < nd0; ++i) | |
y = 10*y + s0[i] - '0'; | |
for(j = bc.dp1; i < nd; ++i) | |
y = 10*y + s0[j++] - '0'; | |
} | |
} | |
#endif | |
bd0 = s2b(mcall s0, nd0, nd, y, bc.dplen); | |
for(;;) { | |
bd = Balloc(mcall bd0->k); | |
Bcopy(bd, bd0); | |
bb = d2b(mcall &rv, &bbe, &bbbits); /* rv = bb * 2^bbe */ | |
bs = i2b(mcall 1); | |
if (e >= 0) { | |
bb2 = bb5 = 0; | |
bd2 = bd5 = e; | |
} | |
else { | |
bb2 = bb5 = -e; | |
bd2 = bd5 = 0; | |
} | |
if (bbe >= 0) | |
bb2 += bbe; | |
else | |
bd2 -= bbe; | |
bs2 = bb2; | |
#ifdef Honor_FLT_ROUNDS | |
if (bc.rounding != 1) | |
bs2++; | |
#endif | |
#ifdef Avoid_Underflow | |
j = bbe - bc.scale; | |
i = j + bbbits - 1; /* logb(rv) */ | |
if (i < Emin) /* denormal */ | |
j += P - Emin; | |
else | |
j = P + 1 - bbbits; | |
#else /*Avoid_Underflow*/ | |
#ifdef Sudden_Underflow | |
#ifdef IBM | |
j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3); | |
#else | |
j = P + 1 - bbbits; | |
#endif | |
#else /*Sudden_Underflow*/ | |
j = bbe; | |
i = j + bbbits - 1; /* logb(rv) */ | |
if (i < Emin) /* denormal */ | |
j += P - Emin; | |
else | |
j = P + 1 - bbbits; | |
#endif /*Sudden_Underflow*/ | |
#endif /*Avoid_Underflow*/ | |
bb2 += j; | |
bd2 += j; | |
#ifdef Avoid_Underflow | |
bd2 += bc.scale; | |
#endif | |
i = bb2 < bd2 ? bb2 : bd2; | |
if (i > bs2) | |
i = bs2; | |
if (i > 0) { | |
bb2 -= i; | |
bd2 -= i; | |
bs2 -= i; | |
} | |
if (bb5 > 0) { | |
bs = pow5mult(mcall bs, bb5); | |
bb1 = mult(mcall bs, bb); | |
Bfree(mcall bb); | |
bb = bb1; | |
} | |
if (bb2 > 0) | |
bb = lshift(mcall bb, bb2); | |
if (bd5 > 0) | |
bd = pow5mult(mcall bd, bd5); | |
if (bd2 > 0) | |
bd = lshift(mcall bd, bd2); | |
if (bs2 > 0) | |
bs = lshift(mcall bs, bs2); | |
delta = diff(mcall bb, bd); | |
bc.dsign = delta->sign; | |
delta->sign = 0; | |
i = cmp(delta, bs); | |
#ifndef NO_STRTOD_BIGCOMP | |
if (bc.nd > nd && i <= 0) { | |
if (bc.dsign) | |
break; /* Must use bigcomp(). */ | |
#ifdef Honor_FLT_ROUNDS | |
if (bc.rounding != 1) { | |
if (i < 0) | |
break; | |
} | |
else | |
#endif | |
{ | |
bc.nd = nd; | |
i = -1; /* Discarded digits make delta smaller. */ | |
} | |
} | |
#endif | |
#ifdef Honor_FLT_ROUNDS | |
if (bc.rounding != 1) { | |
if (i < 0) { | |
/* Error is less than an ulp */ | |
if (!delta->x[0] && delta->wds <= 1) { | |
/* exact */ | |
#ifdef SET_INEXACT | |
bc.inexact = 0; | |
#endif | |
break; | |
} | |
if (bc.rounding) { | |
if (bc.dsign) { | |
adj.d = 1.; | |
goto apply_adj; | |
} | |
} | |
else if (!bc.dsign) { | |
adj.d = -1.; | |
if (!word1(&rv) | |
&& !(word0(&rv) & Frac_mask)) { | |
y = word0(&rv) & Exp_mask; | |
#ifdef Avoid_Underflow | |
if (!bc.scale || y > 2*P*Exp_msk1) | |
#else | |
if (y) | |
#endif | |
{ | |
delta = lshift(mcall delta,Log2P); | |
if (cmp(delta, bs) <= 0) | |
adj.d = -0.5; | |
} | |
} | |
apply_adj: | |
#ifdef Avoid_Underflow | |
if (bc.scale && (y = word0(&rv) & Exp_mask) | |
<= 2*P*Exp_msk1) | |
word0(&adj) += (2*P+1)*Exp_msk1 - y; | |
#else | |
#ifdef Sudden_Underflow | |
if ((word0(&rv) & Exp_mask) <= | |
P*Exp_msk1) { | |
word0(&rv) += P*Exp_msk1; | |
dval(&rv) += adj.d*ulp(dval(&rv)); | |
word0(&rv) -= P*Exp_msk1; | |
} | |
else | |
#endif /*Sudden_Underflow*/ | |
#endif /*Avoid_Underflow*/ | |
dval(&rv) += adj.d*ulp(&rv); | |
} | |
break; | |
} | |
adj.d = ratio(delta, bs); | |
if (adj.d < 1.) | |
adj.d = 1.; | |
if (adj.d <= 0x7ffffffe) { | |
/* adj = rounding ? ceil(adj) : floor(adj); */ | |
y = (ULong) adj.d; | |
if (y != adj.d) { | |
if (!((bc.rounding>>1) ^ bc.dsign)) | |
y++; | |
adj.d = y; | |
} | |
} | |
#ifdef Avoid_Underflow | |
if (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) | |
word0(&adj) += (2*P+1)*Exp_msk1 - y; | |
#else | |
#ifdef Sudden_Underflow | |
if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) { | |
word0(&rv) += P*Exp_msk1; | |
adj.d *= ulp(dval(&rv)); | |
if (bc.dsign) | |
dval(&rv) += adj.d; | |
else | |
dval(&rv) -= adj.d; | |
word0(&rv) -= P*Exp_msk1; | |
goto cont; | |
} | |
#endif /*Sudden_Underflow*/ | |
#endif /*Avoid_Underflow*/ | |
adj.d *= ulp(&rv); | |
if (bc.dsign) { | |
if (word0(&rv) == Big0 && word1(&rv) == Big1) | |
goto ovfl; | |
dval(&rv) += adj.d; | |
} | |
else | |
dval(&rv) -= adj.d; | |
goto cont; | |
} | |
#endif /*Honor_FLT_ROUNDS*/ | |
if (i < 0) { | |
/* Error is less than half an ulp -- check for | |
* special case of mantissa a power of two. | |
*/ | |
if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask | |
#ifdef IEEE_Arith | |
#ifdef Avoid_Underflow | |
|| (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1 | |
#else | |
|| (word0(&rv) & Exp_mask) <= Exp_msk1 | |
#endif | |
#endif | |
) { | |
#ifdef SET_INEXACT | |
if (!delta->x[0] && delta->wds <= 1) | |
bc.inexact = 0; | |
#endif | |
break; | |
} | |
if (!delta->x[0] && delta->wds <= 1) { | |
/* exact result */ | |
#ifdef SET_INEXACT | |
bc.inexact = 0; | |
#endif | |
break; | |
} | |
delta = lshift(mcall delta,Log2P); | |
if (cmp(delta, bs) > 0) | |
goto drop_down; | |
break; | |
} | |
if (i == 0) { | |
/* exactly half-way between */ | |
if (bc.dsign) { | |
if ((word0(&rv) & Bndry_mask1) == Bndry_mask1 | |
&& word1(&rv) == ( | |
#ifdef Avoid_Underflow | |
(bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) | |
? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) : | |
#endif | |
0xffffffff)) { | |
/*boundary case -- increment exponent*/ | |
word0(&rv) = (word0(&rv) & Exp_mask) | |
+ Exp_msk1 | |
#ifdef IBM | |
| Exp_msk1 >> 4 | |
#endif | |
; | |
word1(&rv) = 0; | |
#ifdef Avoid_Underflow | |
bc.dsign = 0; | |
#endif | |
break; | |
} | |
} | |
else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) { | |
drop_down: | |
/* boundary case -- decrement exponent */ | |
#ifdef Sudden_Underflow /*{{*/ | |
L = word0(&rv) & Exp_mask; | |
#ifdef IBM | |
if (L < Exp_msk1) | |
#else | |
#ifdef Avoid_Underflow | |
if (L <= (bc.scale ? (2*P+1)*Exp_msk1 : Exp_msk1)) | |
#else | |
if (L <= Exp_msk1) | |
#endif /*Avoid_Underflow*/ | |
#endif /*IBM*/ | |
{ | |
if (bc.nd >nd) { | |
bc.uflchk = 1; | |
break; | |
} | |
goto undfl; | |
} | |
L -= Exp_msk1; | |
#else /*Sudden_Underflow}{*/ | |
#ifdef Avoid_Underflow | |
if (bc.scale) { | |
L = word0(&rv) & Exp_mask; | |
if (L <= (2*P+1)*Exp_msk1) { | |
if (L > (P+2)*Exp_msk1) | |
/* round even ==> */ | |
/* accept rv */ | |
break; | |
/* rv = smallest denormal */ | |
if (bc.nd >nd) { | |
bc.uflchk = 1; | |
break; | |
} | |
goto undfl; | |
} | |
} | |
#endif /*Avoid_Underflow*/ | |
L = (word0(&rv) & Exp_mask) - Exp_msk1; | |
#endif /*Sudden_Underflow}}*/ | |
word0(&rv) = L | Bndry_mask1; | |
word1(&rv) = 0xffffffff; | |
#ifdef IBM | |
goto cont; | |
#else | |
break; | |
#endif | |
} | |
#ifndef ROUND_BIASED | |
if (!(word1(&rv) & LSB)) | |
break; | |
#endif | |
if (bc.dsign) | |
dval(&rv) += ulp(&rv); | |
#ifndef ROUND_BIASED | |
else { | |
dval(&rv) -= ulp(&rv); | |
#ifndef Sudden_Underflow | |
if (!dval(&rv)) { | |
if (bc.nd >nd) { | |
bc.uflchk = 1; | |
break; | |
} | |
goto undfl; | |
} | |
#endif | |
} | |
#ifdef Avoid_Underflow | |
bc.dsign = 1 - bc.dsign; | |
#endif | |
#endif | |
break; | |
} | |
if ((aadj = ratio(delta, bs)) <= 2.) { | |
if (bc.dsign) | |
aadj = aadj1 = 1.; | |
else if (word1(&rv) || word0(&rv) & Bndry_mask) { | |
#ifndef Sudden_Underflow | |
if (word1(&rv) == Tiny1 && !word0(&rv)) { | |
if (bc.nd >nd) { | |
bc.uflchk = 1; | |
break; | |
} | |
goto undfl; | |
} | |
#endif | |
aadj = 1.; | |
aadj1 = -1.; | |
} | |
else { | |
/* special case -- power of FLT_RADIX to be */ | |
/* rounded down... */ | |
if (aadj < 2./FLT_RADIX) | |
aadj = 1./FLT_RADIX; | |
else | |
aadj *= 0.5; | |
aadj1 = -aadj; | |
} | |
} | |
else { | |
aadj *= 0.5; | |
aadj1 = bc.dsign ? aadj : -aadj; | |
#ifdef Check_FLT_ROUNDS | |
switch(bc.rounding) { | |
case 2: /* towards +infinity */ | |
aadj1 -= 0.5; | |
break; | |
case 0: /* towards 0 */ | |
case 3: /* towards -infinity */ | |
aadj1 += 0.5; | |
} | |
#else | |
if (Flt_Rounds == 0) | |
aadj1 += 0.5; | |
#endif /*Check_FLT_ROUNDS*/ | |
} | |
y = word0(&rv) & Exp_mask; | |
/* Check for overflow */ | |
if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { | |
dval(&rv0) = dval(&rv); | |
word0(&rv) -= P*Exp_msk1; | |
adj.d = aadj1 * ulp(&rv); | |
dval(&rv) += adj.d; | |
if ((word0(&rv) & Exp_mask) >= | |
Exp_msk1*(DBL_MAX_EXP+Bias-P)) { | |
if (word0(&rv0) == Big0 && word1(&rv0) == Big1) | |
goto ovfl; | |
word0(&rv) = Big0; | |
word1(&rv) = Big1; | |
goto cont; | |
} | |
else | |
word0(&rv) += P*Exp_msk1; | |
} | |
else { | |
#ifdef Avoid_Underflow | |
if (bc.scale && y <= 2*P*Exp_msk1) { | |
if (aadj <= 0x7fffffff) { | |
if ((z = (ULong) aadj) <= 0) | |
z = 1; | |
aadj = z; | |
aadj1 = bc.dsign ? aadj : -aadj; | |
} | |
dval(&aadj2) = aadj1; | |
word0(&aadj2) += (2*P+1)*Exp_msk1 - y; | |
aadj1 = dval(&aadj2); | |
} | |
adj.d = aadj1 * ulp(&rv); | |
dval(&rv) += adj.d; | |
#else | |
#ifdef Sudden_Underflow | |
if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) { | |
dval(&rv0) = dval(&rv); | |
word0(&rv) += P*Exp_msk1; | |
adj.d = aadj1 * ulp(&rv); | |
dval(&rv) += adj.d; | |
#ifdef IBM | |
if ((word0(&rv) & Exp_mask) < P*Exp_msk1) | |
#else | |
if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) | |
#endif | |
{ | |
if (word0(&rv0) == Tiny0 | |
&& word1(&rv0) == Tiny1) { | |
if (bc.nd >nd) { | |
bc.uflchk = 1; | |
break; | |
} | |
goto undfl; | |
} | |
word0(&rv) = Tiny0; | |
word1(&rv) = Tiny1; | |
goto cont; | |
} | |
else | |
word0(&rv) -= P*Exp_msk1; | |
} | |
else { | |
adj.d = aadj1 * ulp(&rv); | |
dval(&rv) += adj.d; | |
} | |
#else /*Sudden_Underflow*/ | |
/* Compute adj so that the IEEE rounding rules will | |
* correctly round rv + adj in some half-way cases. | |
* If rv * ulp(rv) is denormalized (i.e., | |
* y <= (P-1)*Exp_msk1), we must adjust aadj to avoid | |
* trouble from bits lost to denormalization; | |
* example: 1.2e-307 . | |
*/ | |
if (y <= (P-1)*Exp_msk1 && aadj > 1.) { | |
aadj1 = (double)(int)(aadj + 0.5); | |
if (!bc.dsign) | |
aadj1 = -aadj1; | |
} | |
adj.d = aadj1 * ulp(&rv); | |
dval(&rv) += adj.d; | |
#endif /*Sudden_Underflow*/ | |
#endif /*Avoid_Underflow*/ | |
} | |
z = word0(&rv) & Exp_mask; | |
#ifndef SET_INEXACT | |
if (bc.nd == nd) { | |
#ifdef Avoid_Underflow | |
if (!bc.scale) | |
#endif | |
if (y == z) { | |
/* Can we stop now? */ | |
L = (Long)aadj; | |
aadj -= L; | |
/* The tolerances below are conservative. */ | |
if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) { | |
if (aadj < .4999999 || aadj > .5000001) | |
break; | |
} | |
else if (aadj < .4999999/FLT_RADIX) | |
break; | |
} | |
} | |
#endif | |
cont: | |
Bfree(mcall bb); | |
Bfree(mcall bd); | |
Bfree(mcall bs); | |
Bfree(mcall delta); | |
} | |
Bfree(mcall bb); | |
Bfree(mcall bd); | |
Bfree(mcall bs); | |
Bfree(mcall bd0); | |
Bfree(mcall delta); | |
#ifndef NO_STRTOD_BIGCOMP | |
if (bc.nd > nd) | |
bigcomp(mcall &rv, s0, &bc); | |
#endif | |
#ifdef SET_INEXACT | |
if (bc.inexact) { | |
if (!oldinexact) { | |
word0(&rv0) = Exp_1 + (70 << Exp_shift); | |
word1(&rv0) = 0; | |
dval(&rv0) += 1.; | |
} | |
} | |
else if (!oldinexact) | |
clear_inexact(); | |
#endif | |
#ifdef Avoid_Underflow | |
if (bc.scale) { | |
word0(&rv0) = Exp_1 - 2*P*Exp_msk1; | |
word1(&rv0) = 0; | |
dval(&rv) *= dval(&rv0); | |
#ifndef NO_ERRNO | |
/* try to avoid the bug of testing an 8087 register value */ | |
#ifdef IEEE_Arith | |
if (!(word0(&rv) & Exp_mask)) | |
#else | |
if (word0(&rv) == 0 && word1(&rv) == 0) | |
#endif | |
errno = ERANGE; | |
#endif | |
} | |
#endif /* Avoid_Underflow */ | |
#ifdef SET_INEXACT | |
if (bc.inexact && !(word0(&rv) & Exp_mask)) { | |
/* set underflow bit */ | |
dval(&rv0) = 1e-300; | |
dval(&rv0) *= dval(&rv0); | |
} | |
#endif | |
ret: | |
if (se) | |
*se = (char *)s; | |
return sign ? -dval(&rv) : dval(&rv); | |
} | |
#if !defined(MULTIPLE_THREADS) && !defined(Local_Private_Memory) | |
static char *dtoa_result; | |
#endif | |
static char * | |
#ifdef KR_headers | |
rv_alloc(KRm1 i) KRm2 int i; | |
#else | |
rv_alloc(mdec int i) | |
#endif | |
{ | |
int j, k, *r; | |
j = sizeof(ULong); | |
for(k = 0; | |
sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned int) i; | |
j <<= 1) | |
k++; | |
#ifdef Local_Private_Memory | |
if (k > mem->return_storage_size) return NULL; | |
r = (int *) mem->return_storage; | |
#else | |
r = (int*)Balloc(mcall k); | |
if (r == 0) return NULL; | |
#endif | |
*r = k; | |
return | |
#if !defined(MULTIPLE_THREADS) && !defined(Local_Private_Memory) | |
dtoa_result = | |
#endif | |
(char *)(r+1); | |
} | |
static char * | |
#ifdef KR_headers | |
nrv_alloc(KRm1 s, rve, n) KRm2 char *s, **rve; int n; | |
#else | |
nrv_alloc(mdec char *s, char **rve, int n) | |
#endif | |
{ | |
char *rv, *t; | |
t = rv = rv_alloc(mcall n); | |
if (rv == NULL) return NULL; | |
while((*t = *s++)) t++; | |
if (rve) | |
*rve = t; | |
return rv; | |
} | |
/* freedtoa(s) must be used to free values s returned by dtoa | |
* when MULTIPLE_THREADS is #defined. It should be used in all cases | |
* except if Local_Private_Memory is defined, but for consistency with | |
* earlier versions of dtoa, it is optional when MULTIPLE_THREADS is | |
* not defined. | |
*/ | |
void | |
#ifdef KR_headers | |
freedtoa(s) char *s; | |
#else | |
freedtoa(char *s) | |
#endif | |
{ | |
#ifndef Local_Private_Memory | |
Bigint *b = (Bigint *)((int *)s - 1); | |
b->maxwds = 1 << (b->k = *(int*)b); | |
Bfree(b); | |
#ifndef MULTIPLE_THREADS | |
if (s == dtoa_result) | |
dtoa_result = 0; | |
#endif | |
#endif | |
s = s; // @@@RAD avoid warning | |
} | |
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. | |
* | |
* Inspired by "How to Print Floating-Point Numbers Accurately" by | |
* Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. | |
* | |
* Modifications: | |
* 1. Rather than iterating, we use a simple numeric overestimate | |
* to determine k = floor(log10(d)). We scale relevant | |
* quantities using O(log2(k)) rather than O(k) multiplications. | |
* 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't | |
* try to generate digits strictly left to right. Instead, we | |
* compute with fewer bits and propagate the carry if necessary | |
* when rounding the final digit up. This is often faster. | |
* 3. Under the assumption that input will be rounded nearest, | |
* mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. | |
* That is, we allow equality in stopping tests when the | |
* round-nearest rule will give the same floating-point value | |
* as would satisfaction of the stopping test with strict | |
* inequality. | |
* 4. We remove common factors of powers of 2 from relevant | |
* quantities. | |
* 5. When converting floating-point integers less than 1e16, | |
* we use floating-point arithmetic rather than resorting | |
* to multiple-precision integers. | |
* 6. When asked to produce fewer than 15 digits, we first try | |
* to get by with floating-point arithmetic; we resort to | |
* multiple-precision integer arithmetic only if we cannot | |
* guarantee that the floating-point calculation has given | |
* the correctly rounded result. For k requested digits and | |
* "uniformly" distributed input, the probability is | |
* something like 10^(k-15) that we must resort to the Long | |
* calculation. | |
*/ | |
#ifdef Local_Private_Memory | |
char * | |
DTOA_MANGLE(dtoa) | |
#ifdef KR_headers | |
(dd, mode, ndigits, decpt, sign, rv, rv_length) | |
double dd; int mode, ndigits, *decpt, *sign; char *rv; int rv_length; | |
#else | |
(double dd, int mode, int ndigits, int *decpt, int *sign, char *rv, int rv_length) | |
#endif | |
#else | |
char * | |
DTOA_MANGLE(dtoa) | |
#ifdef KR_headers | |
(dd, mode, ndigits, decpt, sign, rve) | |
double dd; int mode, ndigits, *decpt, *sign; char **rve; | |
#else | |
(double dd, int mode, int ndigits, int *decpt, int *sign, char **rve) | |
#endif | |
#endif | |
{ | |
/* Arguments ndigits, decpt, sign are similar to those | |
of ecvt and fcvt; trailing zeros are suppressed from | |
the returned string. If not null, *rve is set to point | |
to the end of the return value. If d is +-Infinity or NaN, | |
then *decpt is set to 9999. | |
mode: | |
0 ==> shortest string that yields d when read in | |
and rounded to nearest. | |
1 ==> like 0, but with Steele & White stopping rule; | |
e.g. with IEEE P754 arithmetic , mode 0 gives | |
1e23 whereas mode 1 gives 9.999999999999999e22. | |
2 ==> max(1,ndigits) significant digits. This gives a | |
return value similar to that of ecvt, except | |
that trailing zeros are suppressed. | |
3 ==> through ndigits past the decimal point. This | |
gives a return value similar to that from fcvt, | |
except that trailing zeros are suppressed, and | |
ndigits can be negative. | |
4,5 ==> similar to 2 and 3, respectively, but (in | |
round-nearest mode) with the tests of mode 0 to | |
possibly return a shorter string that rounds to d. | |
With IEEE arithmetic and compilation with | |
-DHonor_FLT_ROUNDS, modes 4 and 5 behave the same | |
as modes 2 and 3 when FLT_ROUNDS != 1. | |
6-9 ==> Debugging modes similar to mode - 4: don't try | |
fast floating-point estimate (if applicable). | |
Values of mode other than 0-9 are treated as mode 0. | |
Sufficient space is allocated to the return value | |
to hold the suppressed trailing zeros. | |
*/ | |
int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, | |
j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, | |
spec_case, try_quick; | |
Long L; | |
#ifdef Local_Private_Memory | |
MemInfo meminfo = { 0,0,0 }, *mem = &meminfo; | |
char *dummy, **rve = &dummy; | |
#endif | |
#ifndef Sudden_Underflow | |
int denorm; | |
ULong x; | |
#endif | |
Bigint *b, *b1, *delta, *mlo=0, *mhi, *S; | |
U d2, eps, u; | |
double ds; | |
char *s, *s0; | |
#ifdef SET_INEXACT | |
int inexact, oldinexact; | |
#endif | |
#ifdef Honor_FLT_ROUNDS /*{*/ | |
int Rounding; | |
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */ | |
Rounding = Flt_Rounds; | |
#else /*}{*/ | |
Rounding = 1; | |
switch(fegetround()) { | |
case FE_TOWARDZERO: Rounding = 0; break; | |
case FE_UPWARD: Rounding = 2; break; | |
case FE_DOWNWARD: Rounding = 3; | |
} | |
#endif /*}}*/ | |
#endif /*}*/ | |
#ifdef Local_Private_Memory | |
meminfo.return_storage = rv; | |
meminfo.return_storage_size = rv_length; | |
meminfo.pmem_next = meminfo.private_mem; | |
#endif | |
#ifndef Local_Private_Memory | |
#ifndef MULTIPLE_THREADS | |
if (dtoa_result) { | |
freedtoa(dtoa_result); | |
dtoa_result = 0; | |
} | |
#endif | |
#endif | |
memset(&meminfo.freelist,0,sizeof(meminfo.freelist)); // this should happen automatically | |
u.d = dd; | |
if (word0(&u) & Sign_bit) { | |
/* set sign for everything, including 0's and NaNs */ | |
*sign = 1; | |
word0(&u) &= ~Sign_bit; /* clear sign bit */ | |
} | |
else | |
*sign = 0; | |
#if defined(IEEE_Arith) + defined(VAX) | |
#ifdef IEEE_Arith | |
if ((word0(&u) & Exp_mask) == Exp_mask) | |
#else | |
if (word0(&u) == 0x8000) | |
#endif | |
{ | |
/* Infinity or NaN */ | |
*decpt = 9999; | |
#ifdef IEEE_Arith | |
if (!word1(&u) && !(word0(&u) & 0xfffff)) | |
return nrv_alloc(mcall "Infinity", rve, 8); | |
#endif | |
return nrv_alloc(mcall "NaN", rve, 3); | |
} | |
#endif | |
#ifdef IBM | |
dval(&u) += 0; /* normalize */ | |
#endif | |
if (!dval(&u)) { | |
*decpt = 1; | |
return nrv_alloc(mcall "0", rve, 1); | |
} | |
#ifdef SET_INEXACT | |
try_quick = oldinexact = get_inexact(); | |
inexact = 1; | |
#endif | |
#ifdef Honor_FLT_ROUNDS | |
if (Rounding >= 2) { | |
if (*sign) | |
Rounding = Rounding == 2 ? 0 : 2; | |
else | |
if (Rounding != 2) | |
Rounding = 0; | |
} | |
#endif | |
b = d2b(mcall &u, &be, &bbits); | |
#ifdef Sudden_Underflow | |
i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)); | |
#else | |
if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) { | |
#endif | |
dval(&d2) = dval(&u); | |
word0(&d2) &= Frac_mask1; | |
word0(&d2) |= Exp_11; | |
#ifdef IBM | |
if (j = 11 - hi0bits(word0(&d2) & Frac_mask)) | |
dval(&d2) /= 1 << j; | |
#endif | |
/* log(x) ~=~ log(1.5) + (x-1.5)/1.5 | |
* log10(x) = log(x) / log(10) | |
* ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) | |
* log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) | |
* | |
* This suggests computing an approximation k to log10(d) by | |
* | |
* k = (i - Bias)*0.301029995663981 | |
* + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); | |
* | |
* We want k to be too large rather than too small. | |
* The error in the first-order Taylor series approximation | |
* is in our favor, so we just round up the constant enough | |
* to compensate for any error in the multiplication of | |
* (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, | |
* and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, | |
* adding 1e-13 to the constant term more than suffices. | |
* Hence we adjust the constant term to 0.1760912590558. | |
* (We could get a more accurate k by invoking log10, | |
* but this is probably not worthwhile.) | |
*/ | |
i -= Bias; | |
#ifdef IBM | |
i <<= 2; | |
i += j; | |
#endif | |
#ifndef Sudden_Underflow | |
denorm = 0; | |
} | |
else { | |
/* d is denormalized */ | |
i = bbits + be + (Bias + (P-1) - 1); | |
x = i > 32 ? word0(&u) << (64 - i) | word1(&u) >> (i - 32) | |
: word1(&u) << (32 - i); | |
dval(&d2) = x; | |
word0(&d2) -= 31*Exp_msk1; /* adjust exponent */ | |
i -= (Bias + (P-1) - 1) + 1; | |
denorm = 1; | |
} | |
#endif | |
ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; | |
k = (int)ds; | |
if (ds < 0. && ds != k) | |
k--; /* want k = floor(ds) */ | |
k_check = 1; | |
if (k >= 0 && k <= Ten_pmax) { | |
if (dval(&u) < tens[k]) | |
k--; | |
k_check = 0; | |
} | |
j = bbits - i - 1; | |
if (j >= 0) { | |
b2 = 0; | |
s2 = j; | |
} | |
else { | |
b2 = -j; | |
s2 = 0; | |
} | |
if (k >= 0) { | |
b5 = 0; | |
s5 = k; | |
s2 += k; | |
} | |
else { | |
b2 -= k; | |
b5 = -k; | |
s5 = 0; | |
} | |
if (mode < 0 || mode > 9) | |
mode = 0; | |
#ifndef SET_INEXACT | |
#ifdef Check_FLT_ROUNDS | |
try_quick = Rounding == 1; | |
#else | |
try_quick = 1; | |
#endif | |
#endif /*SET_INEXACT*/ | |
if (mode > 5) { | |
mode -= 4; | |
try_quick = 0; | |
} | |
leftright = 1; | |
ilim = ilim1 = -1; /* Values for cases 0 and 1; done here to */ | |
/* silence erroneous "gcc -Wall" warning. */ | |
switch(mode) { | |
case 0: | |
case 1: | |
i = 18; | |
ndigits = 0; | |
break; | |
case 2: | |
leftright = 0; | |
/* no break */ | |
case 4: | |
if (ndigits <= 0) | |
ndigits = 1; | |
ilim = ilim1 = i = ndigits; | |
break; | |
case 3: | |
leftright = 0; | |
/* no break */ | |
case 5: | |
i = ndigits + k + 1; | |
ilim = i; | |
ilim1 = i - 1; | |
if (i <= 0) | |
i = 1; | |
} | |
s = s0 = rv_alloc(mcall i); | |
#ifdef Honor_FLT_ROUNDS | |
if (mode > 1 && Rounding != 1) | |
leftright = 0; | |
#endif | |
if (ilim >= 0 && ilim <= Quick_max && try_quick) { | |
/* Try to get by with floating-point arithmetic. */ | |
i = 0; | |
dval(&d2) = dval(&u); | |
k0 = k; | |
ilim0 = ilim; | |
ieps = 2; /* conservative */ | |
if (k > 0) { | |
ds = tens[k&0xf]; | |
j = k >> 4; | |
if (j & Bletch) { | |
/* prevent overflows */ | |
j &= Bletch - 1; | |
dval(&u) /= bigtens[n_bigtens-1]; | |
ieps++; | |
} | |
for(; j; j >>= 1, i++) | |
if (j & 1) { | |
ieps++; | |
ds *= bigtens[i]; | |
} | |
dval(&u) /= ds; | |
} | |
else if ((j1 = -k)) { | |
dval(&u) *= tens[j1 & 0xf]; | |
for(j = j1 >> 4; j; j >>= 1, i++) | |
if (j & 1) { | |
ieps++; | |
dval(&u) *= bigtens[i]; | |
} | |
} | |
if (k_check && dval(&u) < 1. && ilim > 0) { | |
if (ilim1 <= 0) | |
goto fast_failed; | |
ilim = ilim1; | |
k--; | |
dval(&u) *= 10.; | |
ieps++; | |
} | |
dval(&eps) = ieps*dval(&u) + 7.; | |
word0(&eps) -= (P-1)*Exp_msk1; | |
if (ilim == 0) { | |
S = mhi = 0; | |
dval(&u) -= 5.; | |
if (dval(&u) > dval(&eps)) | |
goto one_digit; | |
if (dval(&u) < -dval(&eps)) | |
goto no_digits; | |
goto fast_failed; | |
} | |
#ifndef No_leftright | |
if (leftright) { | |
/* Use Steele & White method of only | |
* generating digits needed. | |
*/ | |
dval(&eps) = 0.5/tens[ilim-1] - dval(&eps); | |
for(i = 0;;) { | |
L = (ULong) dval(&u); | |
rrAssert(L >= 0 && L <= 9); | |
dval(&u) -= L; | |
*s++ = '0' + (int)L; | |
if (dval(&u) < dval(&eps)) | |
goto ret1; | |
if (1. - dval(&u) < dval(&eps)) | |
goto bump_up; | |
if (++i >= ilim) | |
break; | |
dval(&eps) *= 10.; | |
dval(&u) *= 10.; | |
} | |
} | |
else { | |
#endif | |
/* Generate ilim digits, then fix them up. */ | |
dval(&eps) *= tens[ilim-1]; | |
for(i = 1;; i++, dval(&u) *= 10.) { | |
L = (Long)(dval(&u)); | |
rrAssert(L >= 0 && L <= 9); | |
if (!(dval(&u) -= L)) | |
ilim = i; | |
*s++ = '0' + (int)L; | |
if (i == ilim) { | |
if (dval(&u) > 0.5 + dval(&eps)) | |
goto bump_up; | |
else if (dval(&u) < 0.5 - dval(&eps)) { | |
while(*--s == '0'); | |
s++; | |
goto ret1; | |
} | |
break; | |
} | |
} | |
#ifndef No_leftright | |
} | |
#endif | |
fast_failed: | |
s = s0; | |
dval(&u) = dval(&d2); | |
k = k0; | |
ilim = ilim0; | |
} | |
/* Do we have a "small" integer? */ | |
if (be >= 0 && k <= Int_max) { | |
/* Yes. */ | |
ds = tens[k]; | |
if (ndigits < 0 && ilim <= 0) { | |
S = mhi = 0; | |
if (ilim < 0 || dval(&u) <= 5*ds) | |
goto no_digits; | |
goto one_digit; | |
} | |
for(i = 1;; i++, dval(&u) *= 10.) { | |
L = (Long)(dval(&u) / ds); | |
dval(&u) -= L*ds; | |
#ifdef Check_FLT_ROUNDS | |
/* If FLT_ROUNDS == 2, L will usually be high by 1 */ | |
if (dval(&u) < 0) { | |
L--; | |
dval(&u) += ds; | |
} | |
#endif | |
*s++ = '0' + (int)L; | |
if (!dval(&u)) { | |
#ifdef SET_INEXACT | |
inexact = 0; | |
#endif | |
break; | |
} | |
if (i == ilim) { | |
#ifdef Honor_FLT_ROUNDS | |
if (mode > 1) | |
switch(Rounding) { | |
case 0: goto ret1; | |
case 2: goto bump_up; | |
} | |
#endif | |
dval(&u) += dval(&u); | |
if (dval(&u) > ds || (dval(&u) == ds && L & 1)) { | |
bump_up: | |
while(*--s == '9') | |
if (s == s0) { | |
k++; | |
*s = '0'; | |
break; | |
} | |
++*s++; | |
} | |
break; | |
} | |
} | |
goto ret1; | |
} | |
m2 = b2; | |
m5 = b5; | |
mhi = mlo = 0; | |
if (leftright) { | |
i = | |
#ifndef Sudden_Underflow | |
denorm ? be + (Bias + (P-1) - 1 + 1) : | |
#endif | |
#ifdef IBM | |
1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3); | |
#else | |
1 + P - bbits; | |
#endif | |
b2 += i; | |
s2 += i; | |
mhi = i2b(mcall 1); | |
} | |
if (m2 > 0 && s2 > 0) { | |
i = m2 < s2 ? m2 : s2; | |
b2 -= i; | |
m2 -= i; | |
s2 -= i; | |
} | |
if (b5 > 0) { | |
if (leftright) { | |
if (m5 > 0) { | |
mhi = pow5mult(mcall mhi, m5); | |
b1 = mult(mcall mhi, b); | |
Bfree(mcall b); | |
b = b1; | |
} | |
if ((j = b5 - m5)) | |
b = pow5mult(mcall b, j); | |
} | |
else | |
b = pow5mult(mcall b, b5); | |
} | |
S = i2b(mcall 1); | |
if (s5 > 0) | |
S = pow5mult(mcall S, s5); | |
/* Check for special case that d is a normalized power of 2. */ | |
spec_case = 0; | |
if ((mode < 2 || leftright) | |
#ifdef Honor_FLT_ROUNDS | |
&& Rounding == 1 | |
#endif | |
) { | |
if (!word1(&u) && !(word0(&u) & Bndry_mask) | |
#ifndef Sudden_Underflow | |
&& word0(&u) & (Exp_mask & ~Exp_msk1) | |
#endif | |
) { | |
/* The special case */ | |
b2 += Log2P; | |
s2 += Log2P; | |
spec_case = 1; | |
} | |
} | |
/* Arrange for convenient computation of quotients: | |
* shift left if necessary so divisor has 4 leading 0 bits. | |
* | |
* Perhaps we should just compute leading 28 bits of S once | |
* and for all and pass them and a shift to quorem, so it | |
* can do shifts and ors to compute the numerator for q. | |
*/ | |
#ifdef Pack_32 | |
if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f)) | |
i = 32 - i; | |
#define iInc 28 | |
#else | |
if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf) | |
i = 16 - i; | |
#define iInc 12 | |
#endif | |
i = dshift(S, s2); | |
b2 += i; | |
m2 += i; | |
s2 += i; | |
if (b2 > 0) | |
b = lshift(mcall b, b2); | |
if (s2 > 0) | |
S = lshift(mcall S, s2); | |
if (k_check) { | |
if (cmp(b,S) < 0) { | |
k--; | |
b = multadd(mcall b, 10, 0); /* we botched the k estimate */ | |
if (leftright) | |
mhi = multadd(mcall mhi, 10, 0); | |
ilim = ilim1; | |
} | |
} | |
if (ilim <= 0 && (mode == 3 || mode == 5)) { | |
if (ilim < 0 || cmp(b,S = multadd(mcall S,5,0)) <= 0) { | |
/* no digits, fcvt style */ | |
no_digits: | |
k = -1 - ndigits; | |
goto ret; | |
} | |
one_digit: | |
*s++ = '1'; | |
k++; | |
goto ret; | |
} | |
if (leftright) { | |
if (m2 > 0) | |
mhi = lshift(mcall mhi, m2); | |
/* Compute mlo -- check for special case | |
* that d is a normalized power of 2. | |
*/ | |
mlo = mhi; | |
if (spec_case) { | |
mhi = Balloc(mcall mhi->k); | |
Bcopy(mhi, mlo); | |
mhi = lshift(mcall mhi, Log2P); | |
} | |
for(i = 1;;i++) { | |
dig = quorem(b,S) + '0'; | |
/* Do we yet have the shortest decimal string | |
* that will round to d? | |
*/ | |
j = cmp(b, mlo); | |
delta = diff(mcall S, mhi); | |
j1 = delta->sign ? 1 : cmp(b, delta); | |
Bfree(mcall delta); | |
#ifndef ROUND_BIASED | |
if (j1 == 0 && mode != 1 && !(word1(&u) & 1) | |
#ifdef Honor_FLT_ROUNDS | |
&& Rounding >= 1 | |
#endif | |
) { | |
if (dig == '9') | |
goto round_9_up; | |
if (j > 0) | |
dig++; | |
#ifdef SET_INEXACT | |
else if (!b->x[0] && b->wds <= 1) | |
inexact = 0; | |
#endif | |
*s++ = (char)dig; | |
goto ret; | |
} | |
#endif | |
if (j < 0 || (j == 0 && mode != 1 | |
#ifndef ROUND_BIASED | |
&& !(word1(&u) & 1) | |
#endif | |
)) { | |
if (!b->x[0] && b->wds <= 1) { | |
#ifdef SET_INEXACT | |
inexact = 0; | |
#endif | |
goto accept_dig; | |
} | |
#ifdef Honor_FLT_ROUNDS | |
if (mode > 1) | |
switch(Rounding) { | |
case 0: goto accept_dig; | |
case 2: goto keep_dig; | |
} | |
#endif /*Honor_FLT_ROUNDS*/ | |
if (j1 > 0) { | |
b = lshift(mcall b, 1); | |
j1 = cmp(b, S); | |
if ((j1 > 0 || (j1 == 0 && dig & 1)) | |
&& dig++ == '9') | |
goto round_9_up; | |
} | |
accept_dig: | |
*s++ = (char)dig; | |
goto ret; | |
} | |
if (j1 > 0) { | |
#ifdef Honor_FLT_ROUNDS | |
if (!Rounding) | |
goto accept_dig; | |
#endif | |
if (dig == '9') { /* possible if i == 1 */ | |
round_9_up: | |
*s++ = '9'; | |
goto roundoff; | |
} | |
*s++ = (char)(dig + 1); | |
goto ret; | |
} | |
#ifdef Honor_FLT_ROUNDS | |
keep_dig: | |
#endif | |
*s++ = (char)dig; | |
if (i == ilim) | |
break; | |
b = multadd(mcall b, 10, 0); | |
if (mlo == mhi) | |
mlo = mhi = multadd(mcall mhi, 10, 0); | |
else { | |
mlo = multadd(mcall mlo, 10, 0); | |
mhi = multadd(mcall mhi, 10, 0); | |
} | |
} | |
} | |
else | |
for(i = 1;; i++) { | |
*s++ = dig = quorem(b,S) + '0'; | |
if (!b->x[0] && b->wds <= 1) { | |
#ifdef SET_INEXACT | |
inexact = 0; | |
#endif | |
goto ret; | |
} | |
if (i >= ilim) | |
break; | |
b = multadd(mcall b, 10, 0); | |
} | |
/* Round off last digit */ | |
#ifdef Honor_FLT_ROUNDS | |
switch(Rounding) { | |
case 0: goto trimzeros; | |
case 2: goto roundoff; | |
} | |
#endif | |
b = lshift(mcall b, 1); | |
j = cmp(b, S); | |
if (j > 0 || (j == 0 && dig & 1)) { | |
roundoff: | |
while(*--s == '9') | |
if (s == s0) { | |
k++; | |
*s++ = '1'; | |
goto ret; | |
} | |
++*s++; | |
} | |
else { | |
#ifdef Honor_FLT_ROUNDS | |
trimzeros: | |
#endif | |
while(*--s == '0'); | |
s++; | |
} | |
ret: | |
Bfree(mcall S); | |
if (mhi) { | |
if (mlo && mlo != mhi) | |
Bfree(mcall mlo); | |
Bfree(mcall mhi); | |
} | |
ret1: | |
#ifdef SET_INEXACT | |
if (inexact) { | |
if (!oldinexact) { | |
word0(&u) = Exp_1 + (70 << Exp_shift); | |
word1(&u) = 0; | |
dval(&u) += 1.; | |
} | |
} | |
else if (!oldinexact) | |
clear_inexact(); | |
#endif | |
Bfree(mcall b); | |
*s = 0; | |
*decpt = k + 1; | |
if (rve) | |
*rve = s; | |
return s0; | |
} | |
#ifdef __cplusplus | |
} | |
#endif | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// To avoid name conflicts, add a prefix. | |
#define DTOA_MANGLE(name) rr_ ## name | |
#ifdef __cplusplus | |
extern "C" { | |
#endif | |
double DTOA_MANGLE(strtod)(const char *s00, char **se); | |
char *DTOA_MANGLE(dtoa)(double d, int mode, int ndigits, | |
int *decpt, int *sign, char *rv, int rv_length); | |
#ifdef __cplusplus | |
} | |
#endif | |
When Honor_FLT_ROUNDS
and Trust_FLT_ROUNDS
are not defined, which is the default for Windows + recent MSVC versions, and other operating systems, then bc.rounding
remains undefined: https://gist.github.com/rygorous/6628262#file-dtoa-c-L2566-L2577
#ifdef Honor_FLT_ROUNDS /*{*/
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
bc.rounding = Flt_Rounds;
#else /*}{*/
bc.rounding = 1;
switch(fegetround()) {
case FE_TOWARDZERO: bc.rounding = 0; break;
case FE_UPWARD: bc.rounding = 2; break;
case FE_DOWNWARD: bc.rounding = 3;
}
#endif /*}}*/
#endif /*}*/
I made all my double round-trip unit tests pass by initializing bc.rounding
to 1
:
#ifdef Honor_FLT_ROUNDS /*{*/
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
bc.rounding = Flt_Rounds;
#else /*}{*/
bc.rounding = 1;
switch(fegetround()) {
case FE_TOWARDZERO: bc.rounding = 0; break;
case FE_UPWARD: bc.rounding = 2; break;
case FE_DOWNWARD: bc.rounding = 3;
}
#endif /*}}*/
#else
bc.rounding = 1;
#endif /*}*/
Hope that helps 🤞
Thanks for the heads-up, but we haven't been using that code in anything
for a few years now!
…-Fabian
On Thu, Nov 21, 2019 at 1:46 PM Gregory Pakosz ***@***.***> wrote:
When Honor_FLT_ROUNDS and Trust_FLT_ROUNDS are not defined, which is the
default for Windows + recent MSVC versions, and other operating systems,
then bc.rounding remains undefined:
https://gist.github.com/rygorous/6628262#file-dtoa-c-L2566-L2577
#ifdef Honor_FLT_ROUNDS /*{*/
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
bc.rounding = Flt_Rounds;
#else /*}{*/
bc.rounding = 1;
switch(fegetround()) {
case FE_TOWARDZERO: bc.rounding = 0; break;
case FE_UPWARD: bc.rounding = 2; break;
case FE_DOWNWARD: bc.rounding = 3;
}
#endif /*}}*/
#endif /*}*/
I made all my double round-trip unit tests pass by initializing
bc.rounding to 1:
#ifdef Honor_FLT_ROUNDS /*{*/
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
bc.rounding = Flt_Rounds;
#else /*}{*/
bc.rounding = 1;
switch(fegetround()) {
case FE_TOWARDZERO: bc.rounding = 0; break;
case FE_UPWARD: bc.rounding = 2; break;
case FE_DOWNWARD: bc.rounding = 3;
}
#endif /*}}*/
#else
bc.rounding = 1;
#endif /*}*/
Hope that helps 🤞
—
You are receiving this because you authored the thread.
Reply to this email directly, view it on GitHub
<https://gist.github.com/6628262?email_source=notifications&email_token=AAIHB6BB4NC4LX5LDKXGVQ3QU36TNA5CNFSM4JQISYUKYY3PNVWWK3TUL52HS4DFVNDWS43UINXW23LFNZ2KUY3PNVWWK3TUL5UWJTQAF4S4U#gistcomment-3089866>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/AAIHB6BBWIRH74FMUCJ3O7TQU36TNANCNFSM4JQISYUA>
.
No problem. We didn't use strtod()
at first as we were only serializing and reading back float
values. But since recently we have a need for double
values that round-trip
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
https://gist.github.com/rygorous/6628262#file-dtoa-c-L144 <--
FLT_ROUNDS