Created
August 25, 2016 05:38
-
-
Save rysk-t/d999a56a636d4f41288aa2c9e35d5c03 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
import codecs | |
import sys | |
import os | |
import glob | |
import time | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from scipy import stats | |
from skimage import data, img_as_float | |
from skimage import exposure | |
from skimage import io | |
from skimage import transform | |
scale = 0.75 | |
# function for escape [] | |
def escapeBraceForGlob(str): | |
# convert [ -> [[] , ] -> []] | |
newStr = str.replace("[","\\[").replace("]","\\]") | |
newStr = newStr.replace("\\[","[[]").replace("\\]","[]]") | |
return newStr | |
# script for optimize contrast of scanned book | |
sys.stdin = codecs.getreader('utf-8')(sys.stdin) | |
path = sys.argv | |
rawpath = path[1] | |
path = escapeBraceForGlob(rawpath) | |
print "run at: " + path | |
if os.path.exists(rawpath[0:-1]+"_re/")==True: | |
print "directory exist" | |
else: | |
os.mkdir(rawpath[0:-1]+"_re/") | |
# Image processing | |
i = 1 | |
t = time.time() | |
for file in glob.glob(path+'/*.jpg'): | |
print(file) | |
savefilename = "re_"+"{0:04d}".format(i)+".jpg" | |
print "=>: " + savefilename | |
# image loading & processing | |
img = io.imread(file, 0) | |
# plt.hist(img.ravel(), 128) | |
# plt.show() | |
# discriminate color page | |
if img.shape[2]==3: | |
# imzR = stats.mstats.zscore(img[0:,0:,0].ravel()) | |
# imzG = stats.mstats.zscore(img[0:,0:,1].ravel()) | |
# imzB = stats.mstats.zscore(img[0:,0:,2].ravel()) | |
# buf, p1 = stats.wilcoxon(imzR,imzG) | |
# buf, p2 = stats.wilcoxon(imzG,imzB) | |
# buf, p3 = stats.wilcoxon(imzB,imzR) | |
# r = np.corrcoef(imzR,imzB) | |
# r2 = np.corrcoef(imzR,imzG) | |
grayim = True | |
else: | |
grayim = True | |
# print np.median(imzR) #np.median(img[0:,0:,0].ravel()) | |
# print np.median(imzG) #np.median(img[0:,0:,1].ravel()) | |
# print np.median(imzB) #np.median(img[0:,0:,2].ravel()) | |
# print r,r2 | |
# if (p1 < 0.05) | (p2 < 0.05) | (p3 < 0.05): | |
# grayim = False | |
# print "Color!" | |
# else: | |
# grayim = True | |
# img = np.mean(img, 2) | |
# print "Gray!" | |
p2, p98 = np.percentile(img, (1, 85)) | |
img_rescale = exposure.rescale_intensity(img, in_range=(p2, p98)) | |
scaleShape = scale*np.array(img_rescale.shape) | |
scaleShape = scaleShape.astype(np.int32) | |
scaleShape[2] = 3; | |
img_rescale = transform.resize(img_rescale, scaleShape) | |
io.imsave(rawpath[0:-1]+"_re/"+savefilename, img_rescale) | |
i = i+1 | |
print "======Complete Batch ====== " | |
# Report time elapsed | |
elapsed = time.time() - t | |
print("{0:04f}".format(elapsed)+"[sec]/ "+"{0:04d}".format(i)+" [frames]") | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment