Created
June 9, 2014 11:31
-
-
Save saaj/fdc8e6351d07fbb1a511 to your computer and use it in GitHub Desktop.
Python SQLite ranking functions for sqlitefts
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
''' | |
Ranking code based on: | |
https://github.com/coleifer/peewee/blob/master/playhouse/sqlite_ext.py | |
''' | |
import struct | |
import math | |
def parseMatchInfo(buf): | |
'''see http://sqlite.org/fts3.html#matchinfo''' | |
bufsize = len(buf) # length in bytes | |
return [struct.unpack('@I', buf[i:i+4])[0] for i in range(0, bufsize, 4)] | |
def simple(raw_match_info): | |
''' | |
handle match_info called w/default args 'pcx' - based on the example rank | |
function http://sqlite.org/fts3.html#appendix_a | |
''' | |
match_info = parseMatchInfo(raw_match_info) | |
score = 0.0 | |
p, c = match_info[:2] | |
for phrase_num in range(p): | |
phrase_info_idx = 2 + (phrase_num * c * 3) | |
for col_num in range(c): | |
col_idx = phrase_info_idx + (col_num * 3) | |
x1, x2 = match_info[col_idx:col_idx + 2] | |
if x1 > 0: | |
score += float(x1) / x2 | |
return score | |
def bm25(raw_match_info, column_index, k1 = 1.2, b = 0.75): | |
""" | |
FTS4-only ranking function. | |
Usage: | |
# Format string *must* be pcxnal | |
# Second parameter to bm25 specifies the index of the column, on | |
# the table being queries. | |
bm25(matchinfo(document_tbl, 'pcxnal'), 1) AS rank | |
""" | |
match_info = parseMatchInfo(raw_match_info) | |
score = 0.0 | |
# p, 1 --> num terms | |
# c, 1 --> num cols | |
# x, (3 * p * c) --> for each phrase/column, | |
# term_freq for this column | |
# term_freq for all columns | |
# total documents containing this term | |
# n, 1 --> total rows in table | |
# a, c --> for each column, avg number of tokens in this column | |
# l, c --> for each column, length of value for this column (in this row) | |
# s, c --> ignore | |
p, c = match_info[:2] | |
n_idx = 2 + (3 * p * c) | |
a_idx = n_idx + 1 | |
l_idx = a_idx + c | |
n = match_info[n_idx] | |
a = match_info[a_idx: a_idx + c] | |
l = match_info[l_idx: l_idx + c] | |
total_docs = n | |
avg_length = float(a[column_index]) | |
doc_length = float(l[column_index]) | |
if avg_length == 0: | |
D = 0 | |
else: | |
D = 1 - b + (b * (doc_length / avg_length)) | |
for phrase in range(p): | |
# p, c, p0c01, p0c02, p0c03, p0c11, p0c12, p0c13, p1c01, p1c02, p1c03.. | |
# So if we're interested in column <i>, the counts will be at indexes | |
x_idx = 2 + (3 * column_index * (phrase + 1)) | |
term_freq = float(match_info[x_idx]) | |
term_matches = float(match_info[x_idx + 2]) | |
# The `max` check here is based on a suggestion in the Wikipedia | |
# article. For terms that are common to a majority of documents, the | |
# idf function can return negative values. Applying the max() here | |
# weeds out those values. | |
idf = max( | |
math.log( | |
(total_docs - term_matches + 0.5) / | |
(term_matches + 0.5)), | |
0) | |
denom = term_freq + (k1 * D) | |
if denom == 0: | |
rhs = 0 | |
else: | |
rhs = (term_freq * (k1 + 1)) / denom | |
score += (idf * rhs) | |
return score | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
import unittest | |
import sqlite3 | |
import re | |
import sqlitefts.sqlite_tokenizer as fts | |
import ranking | |
class Tokenizer(fts.Tokenizer): | |
_spliter = re.compile(r'\s+|\S+', re.UNICODE) | |
_nonws = re.compile(r'\S+', re.UNICODE) | |
def _normalize(self, token): | |
return token.lower() | |
def _tokenize(self, text): | |
pos = 0 | |
for t in self._spliter.findall(text): | |
byteLen = len(t.encode('utf-8')) | |
if self._nonws.match(t): | |
yield self._normalize(t), pos, pos + byteLen | |
pos += byteLen | |
def tokenize(self, text): | |
return self._tokenize(text) | |
class TestCase(unittest.TestCase): | |
def setUp(self): | |
name = 'test' | |
conn = sqlite3.connect(':memory:') | |
conn.row_factory = sqlite3.Row | |
fts.register_tokenizer(conn, name, fts.make_tokenizer_module(Tokenizer())) | |
conn.execute('CREATE VIRTUAL TABLE fts3 USING FTS3(tokenize={})'.format(name)) | |
conn.execute('CREATE VIRTUAL TABLE fts4 USING FTS4(tokenize={})'.format(name)) | |
values = [ | |
(u'Make thing I',), | |
(u'Some thing φχικλψ thing',), | |
(u'Fusce volutpat hendrerit sem. Fusce sit amet vulputate dui. ' | |
u'Sed posuere mi a nisl aliquet tempor. Praesent tincidunt vel nunc ac pharetra.',), | |
(u'Nam molestie euismod leo id aliquam. In hac habitasse platea dictumst.',), | |
(u'Vivamus tincidunt feugiat tellus ac bibendum. In rhoncus dignissim suscipit.',), | |
(u'Pellentesque hendrerit nulla rutrum luctus rutrum. Fusce hendrerit fermentum nunc at posuere.',), | |
] | |
for n in ('fts3', 'fts4'): | |
result = conn.executemany('INSERT INTO {0} VALUES(?)'.format(n), values) | |
assert result.rowcount == len(values) | |
conn.create_function('bm25', 2, ranking.bm25) | |
conn.create_function('rank', 1, ranking.simple) | |
self.testee = conn | |
def testSimple(self): | |
sql = ''' | |
SELECT content, rank(matchinfo(fts3)) AS rank | |
FROM fts3 | |
WHERE fts3 MATCH :query | |
ORDER BY rank DESC | |
''' | |
actual = map(dict, self.testee.execute(sql, {'query' : u'thing'})) | |
self.assertEqual(2, len(actual)) | |
self.assertEqual({ | |
'content' : u'Some thing φχικλψ thing', | |
'rank' : 0.6666666666666666 | |
}, actual[0]) | |
self.assertEqual({ | |
'content' : u'Make thing I', | |
'rank' : 0.3333333333333333 | |
}, actual[1]) | |
def testBm25(self): | |
sql = ''' | |
SELECT content, bm25(matchinfo(fts4, 'pcxnal'), 0) AS rank | |
FROM fts4 | |
WHERE fts4 MATCH :query | |
ORDER BY rank DESC | |
''' | |
actual = map(dict, self.testee.execute(sql, {'query' : u'thing'})) | |
self.assertEqual(2, len(actual)) | |
self.assertEqual({ | |
'content' : u'Some thing φχικλψ thing', | |
'rank' : 0.9722786938230542 | |
}, actual[0]) | |
self.assertEqual({ | |
'content' : u'Make thing I', | |
'rank' : 0.8236501036844982 | |
}, actual[1]) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment