Created
April 10, 2018 23:31
-
-
Save sabas1080/9b00f32d50c4e02671bd7b3b573809dd to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
include "SparkFunMPL3115A2.h" //Pressure sensor - Search "SparkFun MPL3115" and install from Library Manager | |
#include "SparkFunHTU21D.h" //Humidity sensor - Search "SparkFun HTU21D" and install from Library Manager | |
#include <lmic.h> | |
#include <hal/hal.h> | |
#include <SPI.h> | |
#include<CayenneLPP.h> | |
CayenneLPP lpp(51); | |
MPL3115A2 myPressure; //Create an instance of the pressure sensor | |
HTU21D myHumidity; //Create an instance of the humidity sensor | |
//Hardware pin definitions | |
//-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= | |
// digital I/O pins | |
const byte WSPEED = 18; //3; //Pines empalmados | |
const byte RAIN = 19; //2; //Pines empalmados | |
const byte STAT1 = 7; | |
const byte STAT2 = 8; | |
// analog I/O pins | |
const byte REFERENCE_3V3 = A3; | |
const byte LIGHT = A1; | |
const byte BATT = A2; | |
const byte WDIR = A0; | |
//-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= | |
//Global Variables | |
//-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= | |
long lastSecond; //The millis counter to see when a second rolls by | |
byte seconds; //When it hits 60, increase the current minute | |
byte seconds_2m; //Keeps track of the "wind speed/dir avg" over last 2 minutes array of data | |
byte minutes; //Keeps track of where we are in various arrays of data | |
byte minutes_10m; //Keeps track of where we are in wind gust/dir over last 10 minutes array of data | |
long lastWindCheck = 0; | |
volatile long lastWindIRQ = 0; | |
volatile byte windClicks = 0; | |
//We need to keep track of the following variables: | |
//Wind speed/dir each update (no storage) | |
//Wind gust/dir over the day (no storage) | |
//Wind speed/dir, avg over 2 minutes (store 1 per second) | |
//Wind gust/dir over last 10 minutes (store 1 per minute) | |
//Rain over the past hour (store 1 per minute) | |
//Total rain over date (store one per day) | |
byte windspdavg[120]; //120 bytes to keep track of 2 minute average | |
#define WIND_DIR_AVG_SIZE 120 | |
int winddiravg[WIND_DIR_AVG_SIZE]; //120 ints to keep track of 2 minute average | |
float windgust_10m[10]; //10 floats to keep track of 10 minute max | |
int windgustdirection_10m[10]; //10 ints to keep track of 10 minute max | |
volatile float rainHour[60]; //60 floating numbers to keep track of 60 minutes of rain | |
//These are all the weather values that wunderground expects: | |
int winddir = 0; // [0-360 instantaneous wind direction] | |
float windspeedmph = 0; // [mph instantaneous wind speed] | |
float windgustmph = 0; // [mph current wind gust, using software specific time period] | |
int windgustdir = 0; // [0-360 using software specific time period] | |
float windspdmph_avg2m = 0; // [mph 2 minute average wind speed mph] | |
int winddir_avg2m = 0; // [0-360 2 minute average wind direction] | |
float windgustmph_10m = 0; // [mph past 10 minutes wind gust mph ] | |
int windgustdir_10m = 0; // [0-360 past 10 minutes wind gust direction] | |
float humidity = 0; // [%] | |
float tempf = 0; // [temperature F] | |
float rainin = 0; // [rain inches over the past hour)] -- the accumulated rainfall in the past 60 min | |
volatile float dailyrainin = 0; // [rain inches so far today in local time] | |
//float baromin = 30.03;// [barom in] - It's hard to calculate baromin locally, do this in the agent | |
float pressure = 0; | |
//float dewptf; // [dewpoint F] - It's hard to calculate dewpoint locally, do this in the agent | |
float batt_lvl = 11.8; //[analog value from 0 to 1023] | |
float light_lvl = 455; //[analog value from 0 to 1023] | |
// This EUI must be in little-endian format, so least-significant-byte | |
// first. When copying an EUI from ttnctl output, this means to reverse | |
// the bytes. For TTN issued EUIs the last bytes should be 0xD5, 0xB3, | |
// 0x70. | |
static const u1_t PROGMEM APPEUI[8]= {0x04,0x23,0x89,0x23,0x37,0x14,0x82,0x23}; | |
void os_getArtEui (u1_t* buf) { memcpy_P(buf, APPEUI, 8);} | |
// This should also be in little endian format, see above. | |
static const u1_t PROGMEM DEVEUI[8]= {0x82,0x47,0x47,0x47,0x38,0x92,0x91,0x12}; | |
void os_getDevEui (u1_t* buf) { memcpy_P(buf, DEVEUI, 8);} | |
// This key should be in big endian format (or, since it is not really a | |
// number but a block of memory, endianness does not really apply). In | |
// practice, a key taken from ttnctl can be copied as-is. | |
// The key shown here is the semtech default key. | |
static const u1_t PROGMEM APPKEY[16] = {0xAA,0xAF,0xFF,0xBB,0x12,0x82,0x31,0x98,0x94,0x24,0x92,0x39,0x83,0x42,0x14,0x82}; | |
void os_getDevKey (u1_t* buf) { memcpy_P(buf, APPKEY, 16);} | |
//static uint8_t mydata[] = "Hello, world!"; | |
static osjob_t sendjob; | |
// Schedule TX every this many seconds (might become longer due to duty | |
// cycle limitations). | |
const unsigned TX_INTERVAL = 10; | |
// Pin mapping | |
const lmic_pinmap lmic_pins = { | |
.nss = 53, | |
.rxtx = LMIC_UNUSED_PIN, | |
.rst = 9, | |
.dio = {2, 3, 4}, //Pines empalmados | |
}; | |
void onEvent (ev_t ev) { | |
Serial.print(os_getTime()); | |
Serial.print(": "); | |
switch(ev) { | |
case EV_SCAN_TIMEOUT: | |
Serial.println(F("EV_SCAN_TIMEOUT")); | |
break; | |
case EV_BEACON_FOUND: | |
Serial.println(F("EV_BEACON_FOUND")); | |
break; | |
case EV_BEACON_MISSED: | |
Serial.println(F("EV_BEACON_MISSED")); | |
break; | |
case EV_BEACON_TRACKED: | |
Serial.println(F("EV_BEACON_TRACKED")); | |
break; | |
case EV_JOINING: | |
Serial.println(F("EV_JOINING")); | |
break; | |
case EV_JOINED: | |
Serial.println(F("EV_JOINED")); | |
// Disable link check validation (automatically enabled | |
// during join, but not supported by TTN at this time). | |
LMIC_setLinkCheckMode(0); | |
// turn on interrupts | |
interrupts(); | |
break; | |
case EV_RFU1: | |
Serial.println(F("EV_RFU1")); | |
break; | |
case EV_JOIN_FAILED: | |
Serial.println(F("EV_JOIN_FAILED")); | |
break; | |
case EV_REJOIN_FAILED: | |
Serial.println(F("EV_REJOIN_FAILED")); | |
break; | |
break; | |
case EV_TXCOMPLETE: | |
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)")); | |
if (LMIC.txrxFlags & TXRX_ACK) | |
Serial.println(F("Received ack")); | |
if (LMIC.dataLen) { | |
Serial.println(F("Received ")); | |
Serial.println(LMIC.dataLen); | |
Serial.println(F(" bytes of payload")); | |
} | |
// Schedule next transmission | |
os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send); | |
break; | |
case EV_LOST_TSYNC: | |
Serial.println(F("EV_LOST_TSYNC")); | |
break; | |
case EV_RESET: | |
Serial.println(F("EV_RESET")); | |
break; | |
case EV_RXCOMPLETE: | |
// data received in ping slot | |
Serial.println(F("EV_RXCOMPLETE")); | |
break; | |
case EV_LINK_DEAD: | |
Serial.println(F("EV_LINK_DEAD")); | |
break; | |
case EV_LINK_ALIVE: | |
Serial.println(F("EV_LINK_ALIVE")); | |
break; | |
default: | |
Serial.println(F("Unknown event")); | |
break; | |
} | |
} | |
void do_send(osjob_t* j){ | |
// Check if there is not a current TX/RX job running | |
if (LMIC.opmode & OP_TXRXPEND) { | |
Serial.println(F("OP_TXRXPEND, not sending")); | |
} else { | |
// Prepare upstream data transmission at the next possible time. | |
printWeather(); | |
LMIC_setTxData2(1, lpp.getBuffer(), lpp.getSize(), 0); | |
Serial.println(F("Packet queued")); | |
} | |
// Next TX is scheduled after TX_COMPLETE event. | |
} | |
// volatiles are subject to modification by IRQs | |
volatile unsigned long raintime, rainlast, raininterval, rain; | |
//-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= | |
//Interrupt routines (these are called by the hardware interrupts, not by the main code) | |
//-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= | |
void rainIRQ() | |
// Count rain gauge bucket tips as they occur | |
// Activated by the magnet and reed switch in the rain gauge, attached to input D2 | |
{ | |
raintime = millis(); // grab current time | |
raininterval = raintime - rainlast; // calculate interval between this and last event | |
if (raininterval > 10) // ignore switch-bounce glitches less than 10mS after initial edge | |
{ | |
dailyrainin += 0.011; //Each dump is 0.011" of water | |
rainHour[minutes] += 0.011; //Increase this minute's amount of rain | |
rainlast = raintime; // set up for next event | |
} | |
} | |
void wspeedIRQ() | |
// Activated by the magnet in the anemometer (2 ticks per rotation), attached to input D3 | |
{ | |
if (millis() - lastWindIRQ > 10) // Ignore switch-bounce glitches less than 10ms (142MPH max reading) after the reed switch closes | |
{ | |
lastWindIRQ = millis(); //Grab the current time | |
windClicks++; //There is 1.492MPH for each click per second. | |
} | |
} | |
void setup() | |
{ | |
Serial.begin(115200); | |
pinMode(STAT1, OUTPUT); //Status LED Blue | |
pinMode(STAT2, OUTPUT); //Status LED Green | |
pinMode(WSPEED, INPUT_PULLUP); // input from wind meters windspeed sensor | |
pinMode(RAIN, INPUT_PULLUP); // input from wind meters rain gauge sensor | |
pinMode(REFERENCE_3V3, INPUT); | |
pinMode(LIGHT, INPUT); | |
// LMIC init | |
os_init(); | |
// Reset the MAC state. Session and pending data transfers will be discarded. | |
LMIC_reset(); | |
//Configuration for SubBand 7 | |
for (int channel=0; channel<72; ++channel) { | |
LMIC_disableChannel(channel); | |
} | |
LMIC_enableChannel(48); | |
LMIC_enableChannel(49); | |
LMIC_enableChannel(50); | |
LMIC_enableChannel(51); | |
LMIC_enableChannel(52); | |
LMIC_enableChannel(53); | |
LMIC_enableChannel(54); | |
LMIC_enableChannel(55); | |
LMIC_enableChannel(70); | |
// TTN uses SF9 for its RX2 window. This is configured in the | |
// join accept message, but the LMIC library does not currently | |
// process this part of the join accept yet (see Arduino-LMIC issue #20). | |
LMIC.dn2Dr = DR_SF9; | |
// Use a fixed data rate of SF9 (not sure if tx power is | |
// actually used). SF9 is the lowest datarate that (withing the | |
// TTN fair-usage-policy of 30 seconds of airtime per day) | |
// allows us to send at least 4 packets every hour. | |
LMIC_setDrTxpow(DR_SF7, 14); | |
// Let LMIC compensate for +/- 1% clock error | |
LMIC_setClockError(MAX_CLOCK_ERROR * 1 / 100); | |
//Configure the pressure sensor | |
myPressure.begin(); // Get sensor online | |
myPressure.setModeBarometer(); // Measure pressure in Pascals from 20 to 110 kPa | |
myPressure.setOversampleRate(7); // Set Oversample to the recommended 128 | |
myPressure.enableEventFlags(); // Enable all three pressure and temp event flags | |
//Configure the humidity sensor | |
myHumidity.begin(); | |
seconds = 0; | |
lastSecond = millis(); | |
// attach external interrupt pins to IRQ functions | |
attachInterrupt(0, rainIRQ, FALLING); | |
attachInterrupt(1, wspeedIRQ, FALLING); | |
// turn on interrupts | |
//interrupts(); | |
Serial.println(F("Weather Shield online!")); | |
// Start job (sending automatically starts OTAA too) | |
do_send(&sendjob); | |
} | |
void loop() | |
{ | |
//Keep track of which minute it is | |
if(millis() - lastSecond >= 1000) | |
{ | |
digitalWrite(STAT1, HIGH); //Blink stat LED | |
lastSecond += 1000; | |
//Take a speed and direction reading every second for 2 minute average | |
if(++seconds_2m > 119) seconds_2m = 0; | |
//Calc the wind speed and direction every second for 120 second to get 2 minute average | |
float currentSpeed = get_wind_speed(); | |
windspeedmph = currentSpeed; //update global variable for windspeed when using the printWeather() function | |
//float currentSpeed = random(5); //For testing | |
int currentDirection = get_wind_direction(); | |
windspdavg[seconds_2m] = (int)currentSpeed; | |
winddiravg[seconds_2m] = currentDirection; | |
//if(seconds_2m % 10 == 0) displayArrays(); //For testing | |
//Check to see if this is a gust for the minute | |
if(currentSpeed > windgust_10m[minutes_10m]) | |
{ | |
windgust_10m[minutes_10m] = currentSpeed; | |
windgustdirection_10m[minutes_10m] = currentDirection; | |
} | |
//Check to see if this is a gust for the day | |
if(currentSpeed > windgustmph) | |
{ | |
windgustmph = currentSpeed; | |
windgustdir = currentDirection; | |
} | |
if(++seconds > 59) | |
{ | |
seconds = 0; | |
if(++minutes > 59) minutes = 0; | |
if(++minutes_10m > 9) minutes_10m = 0; | |
rainHour[minutes] = 0; //Zero out this minute's rainfall amount | |
windgust_10m[minutes_10m] = 0; //Zero out this minute's gust | |
} | |
//Report all readings every second | |
//printWeather(); | |
digitalWrite(STAT1, LOW); //Turn off stat LED | |
} | |
//delay(100); | |
os_runloop_once(); | |
} | |
//Calculates each of the variables that wunderground is expecting | |
void calcWeather() | |
{ | |
//Calc winddir | |
winddir = get_wind_direction(); | |
//Calc windspeed | |
//windspeedmph = get_wind_speed(); //This is calculated in the main loop on line 179 | |
//Calc windgustmph | |
//Calc windgustdir | |
//These are calculated in the main loop | |
//Calc windspdmph_avg2m | |
float temp = 0; | |
for(int i = 0 ; i < 120 ; i++) | |
temp += windspdavg[i]; | |
temp /= 120.0; | |
windspdmph_avg2m = temp; | |
//Calc winddir_avg2m, Wind Direction | |
//You can't just take the average. Google "mean of circular quantities" for more info | |
//We will use the Mitsuta method because it doesn't require trig functions | |
//And because it sounds cool. | |
//Based on: http://abelian.org/vlf/bearings.html | |
//Based on: http://stackoverflow.com/questions/1813483/averaging-angles-again | |
long sum = winddiravg[0]; | |
int D = winddiravg[0]; | |
for(int i = 1 ; i < WIND_DIR_AVG_SIZE ; i++) | |
{ | |
int delta = winddiravg[i] - D; | |
if(delta < -180) | |
D += delta + 360; | |
else if(delta > 180) | |
D += delta - 360; | |
else | |
D += delta; | |
sum += D; | |
} | |
winddir_avg2m = sum / WIND_DIR_AVG_SIZE; | |
if(winddir_avg2m >= 360) winddir_avg2m -= 360; | |
if(winddir_avg2m < 0) winddir_avg2m += 360; | |
//Calc windgustmph_10m | |
//Calc windgustdir_10m | |
//Find the largest windgust in the last 10 minutes | |
windgustmph_10m = 0; | |
windgustdir_10m = 0; | |
//Step through the 10 minutes | |
for(int i = 0; i < 10 ; i++) | |
{ | |
if(windgust_10m[i] > windgustmph_10m) | |
{ | |
windgustmph_10m = windgust_10m[i]; | |
windgustdir_10m = windgustdirection_10m[i]; | |
} | |
} | |
//Calc humidity | |
humidity = myHumidity.readHumidity(); | |
//float temp_h = myHumidity.readTemperature(); | |
//Serial.print(" TempH:"); | |
//Serial.print(temp_h, 2); | |
//Calc tempf from pressure sensor | |
tempf = myPressure.readTempF(); | |
//Serial.print(" TempP:"); | |
//Serial.print(tempf, 2); | |
//Total rainfall for the day is calculated within the interrupt | |
//Calculate amount of rainfall for the last 60 minutes | |
rainin = 0; | |
for(int i = 0 ; i < 60 ; i++) | |
rainin += rainHour[i]; | |
//Calc pressure | |
pressure = myPressure.readPressure(); | |
//Calc dewptf | |
//Calc light level | |
light_lvl = get_light_level(); | |
//Calc battery level | |
batt_lvl = get_battery_level(); | |
} | |
//Returns the voltage of the light sensor based on the 3.3V rail | |
//This allows us to ignore what VCC might be (an Arduino plugged into USB has VCC of 4.5 to 5.2V) | |
float get_light_level() | |
{ | |
float operatingVoltage = analogRead(REFERENCE_3V3); | |
float lightSensor = analogRead(LIGHT); | |
operatingVoltage = 3.3 / operatingVoltage; //The reference voltage is 3.3V | |
lightSensor = operatingVoltage * lightSensor; | |
return(lightSensor); | |
} | |
//Returns the voltage of the raw pin based on the 3.3V rail | |
//This allows us to ignore what VCC might be (an Arduino plugged into USB has VCC of 4.5 to 5.2V) | |
//Battery level is connected to the RAW pin on Arduino and is fed through two 5% resistors: | |
//3.9K on the high side (R1), and 1K on the low side (R2) | |
float get_battery_level() | |
{ | |
float operatingVoltage = analogRead(REFERENCE_3V3); | |
float rawVoltage = analogRead(BATT); | |
operatingVoltage = 3.30 / operatingVoltage; //The reference voltage is 3.3V | |
rawVoltage = operatingVoltage * rawVoltage; //Convert the 0 to 1023 int to actual voltage on BATT pin | |
rawVoltage *= 4.90; //(3.9k+1k)/1k - multiple BATT voltage by the voltage divider to get actual system voltage | |
return(rawVoltage); | |
} | |
//Returns the instataneous wind speed | |
float get_wind_speed() | |
{ | |
float deltaTime = millis() - lastWindCheck; //750ms | |
deltaTime /= 1000.0; //Covert to seconds | |
float windSpeed = (float)windClicks / deltaTime; //3 / 0.750s = 4 | |
windClicks = 0; //Reset and start watching for new wind | |
lastWindCheck = millis(); | |
windSpeed *= 1.492; //4 * 1.492 = 5.968MPH | |
/* Serial.println(); | |
Serial.print("Windspeed:"); | |
Serial.println(windSpeed);*/ | |
return(windSpeed); | |
} | |
//Read the wind direction sensor, return heading in degrees | |
int get_wind_direction() | |
{ | |
unsigned int adc; | |
adc = analogRead(WDIR); // get the current reading from the sensor | |
// The following table is ADC readings for the wind direction sensor output, sorted from low to high. | |
// Each threshold is the midpoint between adjacent headings. The output is degrees for that ADC reading. | |
// Note that these are not in compass degree order! See Weather Meters datasheet for more information. | |
if (adc < 380) return (113); | |
if (adc < 393) return (68); | |
if (adc < 414) return (90); | |
if (adc < 456) return (158); | |
if (adc < 508) return (135); | |
if (adc < 551) return (203); | |
if (adc < 615) return (180); | |
if (adc < 680) return (23); | |
if (adc < 746) return (45); | |
if (adc < 801) return (248); | |
if (adc < 833) return (225); | |
if (adc < 878) return (338); | |
if (adc < 913) return (0); | |
if (adc < 940) return (293); | |
if (adc < 967) return (315); | |
if (adc < 990) return (270); | |
return (-1); // error, disconnected? | |
} | |
//Prints the various variables directly to the port | |
//I don't like the way this function is written but Arduino doesn't support floats under sprintf | |
void printWeather() | |
{ | |
calcWeather(); //Go calc all the various sensors | |
lpp.reset(); | |
Serial.println(); | |
Serial.print(F("$,winddir=")); | |
Serial.print(winddir); | |
lpp.addAnalogInput(1, winddir); | |
Serial.print(F(",windspeedmph=")); | |
Serial.print(windspeedmph, 1); | |
lpp.addAnalogInput(2, windspeedmph); | |
Serial.print(F(",humidity=")); | |
Serial.print(humidity, 1); | |
lpp.addRelativeHumidity(3, humidity); | |
Serial.print(F(",tempf=")); | |
Serial.print(tempf, 1); | |
lpp.addTemperature(4, tempf); | |
Serial.print(F(",rainin=")); | |
Serial.print(rainin, 2); | |
lpp.addAnalogInput(5, rainin); | |
Serial.print(F(",dailyrainin=")); | |
Serial.print(dailyrainin, 2); | |
lpp.addAnalogInput(6, dailyrainin); | |
Serial.print(F(",pressure=")); | |
Serial.print(pressure, 2); | |
lpp.addBarometricPressure(7,pressure); | |
Serial.print(F(",batt_lvl=")); | |
Serial.print(batt_lvl, 2); | |
lpp.addAnalogInput(8, batt_lvl); | |
Serial.print(F(",light_lvl=")); | |
Serial.println(light_lvl, 2); | |
lpp.addLuminosity(9,light_lvl); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment