Created
March 2, 2021 05:43
-
-
Save saccadic/bfe161520063bf18fb724631069d3fe2 to your computer and use it in GitHub Desktop.
マルチプロセス処理のサンプル
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import pandas as pd | |
| import cv2 | |
| from tqdm import tqdm | |
| import numpy as np | |
| from scipy.stats import multivariate_normal | |
| import matplotlib.pyplot as plt | |
| import time | |
| import pathlib | |
| from multiprocessing import Process, Queue | |
| import multiprocessing | |
| def runner(id,q,s,e,csv): | |
| csvData = { | |
| "x":list(), | |
| "y":list() | |
| } | |
| for i in tqdm(range(s, e), position=id, desc=str(s)+", "+str(e)): | |
| img = cv2.imread(csv["x"][i]) | |
| h, w, c = img.shape | |
| y = np.loadtxt(csv["y"][i], delimiter=',') | |
| p_x = y[::2] | |
| p_y = y[1::2] | |
| plt.clf() | |
| data = dict() | |
| for j in range(len(p_x)): | |
| pos = np.dstack(np.mgrid[0:h:1, 0:w:1]) | |
| rv = multivariate_normal(mean=[p_y[j], p_x[j]], cov=100) | |
| mask = rv.pdf(pos).astype(np.float64) | |
| mask = cv2.normalize(mask, 0, 255, cv2.NORM_MINMAX).astype(np.uint8) | |
| mask = cv2.resize(mask,(128,128)) | |
| data["x_" + str(j)] = np.ravel(mask) | |
| path = pathlib.Path(csv["y"][i]) | |
| maskPath = "./y_mask/" + path.name | |
| df = pd.DataFrame.from_dict(data) | |
| #df = df.T | |
| df.to_csv(maskPath, index=False,header=False) | |
| csvData["x"].append(csv["x"][i]) | |
| csvData["y"].append(maskPath) | |
| q.put(csvData) | |
| if __name__ == '__main__': | |
| csv = pd.read_csv("./train.csv") | |
| worker = 10 | |
| #size = len(csv["x"]) | |
| size = 100 | |
| index = list(range(0, size+1, int(size/worker))) | |
| q = multiprocessing.Manager().Queue() | |
| taskList = [] | |
| for i in range(len(index)-1): | |
| s = index[i] | |
| e = index[i+1] | |
| p = Process(target=runner, args=[i,q, s, e, csv]) | |
| p.start() | |
| taskList.append(p) | |
| for i in range(len(taskList)): | |
| taskList[i].join() | |
| data = { | |
| "x":list(), | |
| "y":list() | |
| } | |
| for i in range(len(taskList)): | |
| tmp_df = q.get() | |
| data["x"].extend(tmp_df["x"]) | |
| data["y"].extend(tmp_df["y"]) | |
| df = pd.DataFrame.from_dict(data) | |
| df.to_csv("./dataset.csv", index=False) | |
| totalSize = len(df.index) | |
| trainSize = int(float(totalSize) * 0.7) | |
| testSize = totalSize - trainSize | |
| print(trainSize, testSize) | |
| train_df = df[df.index < trainSize] | |
| test_df = df[df.index >= trainSize] | |
| train_df.to_csv("./trainV3.csv", index=False) | |
| test_df.to_csv("./testV3.csv", index=False) | |
| print(train_df) | |
| print(test_df) | |
| print("Finish !") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment